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Preface

We are living in exciting times! Some of us have been fortunate
to have lived through huge advances in technology—the inven‐
tion of the personal computer, the dawn of the internet, the
proliferation of cell phones, and the advent of social media.
And now, major breakthroughs are happening in AI!

It’s exciting to watch and be a part of this change. I think we’re
just getting started, and it’s amazing to think of how the world
might change over the next decade. How great it is that we’re
living during these times and can participate in the expansion
of AI?

PyTorch has, no doubt, enabled some of the finest advances in
deep learning and AI. It’s free to download and use, and with it
anyone with a computer or internet connection can run AI
experiments. In addition to more comprehensive references
like this one, there are many free and inexpensive training
courses, blog articles, and tutorials that can help you. Anyone
can get started using PyTorch for machine learning and AI.

Who Should Read This Book
This book is written for both beginners and advanced users
interested in machine learning and AI. It will help to have some
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experience writing Python code and a basic understanding of
data science and machine learning.

If you’re just getting started in machine learning, this book will
help you learn the basics of PyTorch and provide some simple
examples. If you’ve been using another framework, such as
TensorFlow, Caffe2, or MXNet, the book with help you become
familiar with the PyTorch API and its programming mindset so
you can expand your skillset.

If you’ve been using PyTorch for a while, this book will help
you expand your knowledge on advanced topics like accelera‐
tion and optimization and provide a quick-reference resource
while you use PyTorch for your day-to-day development.

Why I Wrote This Book
Learning and mastering PyTorch can be very exciting. There’s
so much to explore! When I first started learning PyTorch, I
wished I had a single resource that would teach me everything.
I wanted something that would give me a good high-level look
at what PyTorch had to offer, but also would provide examples
and enough details when I needed to dig deeper.

There are some really good books and courses on PyTorch, but
they often focus on tensors and training for deep learning
models. The PyTorch online documentation is really good, too,
and provides a lot of details and examples; however, I found
using it was often cumbersome. I kept having to click around
to learn or Google what I needed to know. I needed a book on
my desk that I could earmark and reference as I was coding.

My goal is that this will be the ultimate PyTorch reference for
you. In addition to reading through it to get a high-level under‐
standing of the PyTorch resources available to you, I hope that
you earmark the key sections for your development work and
keep it on your desk. That way if you forget something, you can
get the answer right away. If you prefer ebooks or online books,
You can bookmark this book online. However you may use it, I
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hope the book helps you create some amazing new technology
with PyTorch!

Navigating This Book
If you’re just beginning to learn PyTorch, you should start at
Chapter 1 and read each chapter in sequence. The chapters
move from beginner to advanced topics. If you already have
some experience with PyTorch, you might want to jump
around to the topics that interest you the most. Don’t forget to
check out Chapter 8 on the PyTorch Ecosystem. You’re bound
to discover something new!

This book is roughly organized as follows:

• Chapter 1 gives a brief introduction to PyTorch, helps you
set up your development environment, and provides a fun
example for you to try yourself.

• Chapter 2 covers the tensor, PyTorch’s fundamental build‐
ing block. It’s the foundation for everything in PyTorch.

• Chapter 3 gives you a comprehensive look at how you can
use PyTorch for deep learning, and Chapter 4 provides
example reference designs so you can see PyTorch in
action.

• Chapters 5 and 6 cover more advanced topics. Chapter 5
shows you how you can customize PyTorch components
for your own work, while Chapter 6 shows you how to
accelerate training and optimize your models.

• Chapter 7 shows you how you can deploy PyTorch to pro‐
duction via local machines, cloud servers, and mobile or
edge devices.

• Chapter 8 guides you in where to go next by introducing
the PyTorch Ecosystem, describing popular packages, and
listing additional training resources.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user. Additionally, bold is used for emphasis in
functions in tables.

Constant width italic

Shows text that should be replaced with user-supplied val‐
ues or by values determined by context. Additionally, italic
transforms listed in tables are currently not supported by
TorchScript.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is avail‐
able for download at https://github.com/joe-papa/pytorch-book.

If you have a technical question or a problem using the code
examples, please email bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book

x | Preface

https://github.com/joe-papa/pytorch-book
mailto:bookquestions@oreilly.com


and quoting example code does not require permission. Incor‐
porating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “PyTorch Pocket Reference by Joe Papa
(O’Reilly). Copyright 2021 Mobile Insights Technology Group,
LLC, 978-1-492-09000-7.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly
Media has provided technology and
business training, knowledge, and
insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast col‐
lection of text and video from O’Reilly and 200+ other publish‐
ers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
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707-829-0104 (fax)

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at https://oreil.ly/PyTorch-pocket.

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia
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CHAPTER 1

An Introduction to PyTorch

PyTorch is one of the most popular deep learning Python libra‐
ries, and it is widely used by the AI research community. Many
developers and researchers use PyTorch to accelerate deep
learning research experimentation and prototyping.

In this chapter, I will give you a brief introduction to what
PyTorch is and some of the features that make it popular. I’ll
also show you how to install and set up your PyTorch develop‐
ment environment on your local machine and in the cloud. By
the end of this chapter, you will be able to verify that PyTorch is
properly installed and run a simple PyTorch program.

What Is PyTorch?
The PyTorch library is primarily developed by Facebook’s AI
Research Lab (FAIR) and is free and open source software with
over 1,700 contributors. It allows you to easily run array-based
calculations, build dynamic neural networks, and perform
autodifferentiation in Python with strong graphics processing
unit (GPU) acceleration—all important features required for
deep learning research. Although some use it for accelerated
tensor computing, most use it for deep learning development.
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PyTorch’s simple and flexible interface enables fast experimen‐
tation. You can load data, apply transforms, and build models
with a few lines of code. Then, you have the flexibility to write
customized training, validation, and test loops and deploy
trained models with ease.

It has a strong ecosystem and a large user community, includ‐
ing universities like Stanford and companies such as Uber,
NVIDIA, and Salesforce. In 2019, PyTorch dominated machine
learning and deep learning conference proceedings: 69% of the
Conference on Computer Vision and Pattern Recognition
(CVPR) proceedings used PyTorch, over 75% of both the Asso‐
ciation for Computational Linguistics (ACL) and the North
American Chapter of the ACL (NAACL) used it, and over 50%
of the International Conference on Learning Representations
(ICLR) and the International Conference on Machine Learning
(ICML) used it as well. There are also over 60,000 repositories
on GitHub related to PyTorch.

Many developers and researchers use PyTorch to accelerate
deep learning research experimentation and prototyping. Its
simple Python API, GPU support, and flexibility make it a pop‐
ular choice among academic and commercial research organi‐
zations. Since being open sourced in 2018, PyTorch has
reached a stable release and can be easily installed on Windows,
Mac, and Linux operating systems. The framework continues
to expand rapidly and now facilitates deployment to produc‐
tion environments in the cloud and mobile platforms.

Why Use PyTorch?
If you’re studying machine learning, conducting deep learning
research, or building AI systems, you’ll probably need to use a
deep learning framework. A deep learning framework makes it
easy to perform common tasks such data loading, preprocess‐
ing, model design, training, and deployment. PyTorch has
become very popular with the academic and research com‐
munities due to its simplicity, flexibility, and Python interface.
Here are some reasons to learn and use PyTorch:

2 | Chapter 1: An Introduction to PyTorch



PyTorch is popular
Many companies and research organizations use PyTorch
as their main deep learning framework. In fact, some
companies have built their custom machine learning tools
on top of PyTorch. As a result, PyTorch skills are in
demand.

PyTorch is supported by all major cloud platforms, such as Ama‐
zon Web Services (AWS), Google Cloud Platform (GCP), Micro‐
soft Azure, and Alibaba Cloud

You can spin up a virtual machine with PyTorch preloaded
for frictionless development. You can use prebuilt Docker
images, perform large-scale training on cloud GPU plat‐
forms, and run models at production scale.

PyTorch is supported by Google Colaboratory and Kaggle Kernels
You can run PyTorch code in a browser with no installa‐
tion or configuration needed. You can compete in Kaggle
competitions by running PyTorch directly in your kernel.

PyTorch is mature and stable
PyTorch is regularly maintained and is now beyond
release 1.8.

PyTorch supports CPU, GPU, TPU, and parallel processing
You can accelerate your training and inference using
GPUs and TPUs. Tensor processing units (TPUs) are AI-
accelerated application-specific integrated circuits (ASIC)
chips that were developed by Google to provide an alter‐
native to GPUs for NN hardware acceleration. With paral‐
lel processing, you can apply preprocessing on your CPU
while training a model on the GPU or TPU.

PyTorch supports distributed training
You can train neural networks over multiple GPUs on
multiple machines.

PyTorch supports deployment to production
With the newer TorchScript and TorchServe features, you
can easily deploy models to production environments
including cloud servers.
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PyTorch is beginning to support mobile deployment
Although it’s currently experimental, you can now deploy
models to iOS and Android devices.

PyTorch has a vast ecosystem and set of open source libraries
Libraries such as Torchvision, fastai, and PyTorch Light‐
ning extend capabilities and support specific fields like
natural olanguage processing (NLP) and computer vision.

PyTorch also has a C++ frontend
Although I will focus on the Python interface in this book,
PyTorch also supports a frontend C++ interface. If you
need to build high-performance, low-latency, or bare-
metal applications, you can write them in C++ using the
same design and architecture as the Python API.

PyTorch supports the Open Neural Network Exchange (ONNX)
format natively

You can easily export your models to ONNX format and
use them with ONNX-compatible platforms, runtimes, or
visualizers.

PyTorch has a large community of developers and user forums
There are more than 38,000 users on the PyTorch forum,
and it’s easy to get support or post questions to the com‐
munity by visiting the PyTorch Discussion Forum.

Getting Started
If you are familiar with PyTorch, you may already have
installed it and set up your development environment. If not, I
will show you some options to do so in this section. The fastest
way to get started is to use Google Colaboratory (or Colab).
Google Colab is a free cloud-based development environment
similar to Jupyter Notebook and comes with PyTorch already
installed. Colab comes with free limited GPU support and
interfaces nicely with Google Drive for saving and sharing
notebooks.
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If you don’t have internet access, or you want to run the
PyTorch code on your own hardware, then I will show you how
to install PyTorch on a local machine. You can install PyTorch
on Windows, Linux, and macOS operating systems. I recom‐
mend that you have an NVIDIA GPU for acceleration, but it is
not required.

Lastly, you may want to develop PyTorch code using a cloud
platform like AWS, Azure, or GCP. If you would like to use a
cloud platform, I will show you the options to quickly get
started on each platform.

Running in Google Colaboratory
With Google Colab, you can write and execute Python and
PyTorch code in your browser. You can save files directly to
your Google Drive account and easily share your work with
others. To get started, visit the Google Colab website, as shown
in Figure 1-1.

Figure 1-1. Google Colaboratory welcome page
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If you are already signed into your Google account, you will get
a pop-up window. Click New Notebook in the bottom-right
corner. If the pop-up window does not appear, click File and
select New Notebook from the menu. You will be prompted to
sign in or create a Google account, as shown in Figure 1-2.

Figure 1-2. Google sign in

To verify your configuration, import the PyTorch library, print
the installed version, and check if you are using a GPU, as
shown in Figure 1-3.

Figure 1-3. Verify PyTorch installation in Google Colaboratory
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By default, our Colab notebook does not use a GPU. You will
need to select Change Runtime Type from the Runtime menu,
then select GPU from the “Hardware accelerator” drop-down
menu and click Save, as shown in Figure 1-4.

Figure 1-4. Use a GPU in Google Colaboratory

Now run the cell again by selecting the cell and pressing Shift-
Enter. You should see True as the output of is_available(), as
shown in Figure 1-5.

Figure 1-5. Verify GPU is active in Google Colaboratory

NOTE

Google offers a paid version called Colab Pro that provides
faster GPUs, longer runtimes, and more memory. For the
examples in this book, the free version of Colab should be
sufficient.
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Now you have verified that PyTorch is installed, and you also
know the version. You have also verified that you have a GPU
available and that the proper drivers are installed and operating
correctly. Next, I will show you how to verify your PyTorch on
a local machine.

Running on a Local Computer
You may want to install PyTorch on a local machine or your
own server under certain conditions. For example, you may
want to work with local storage, or use your own GPU or faster
GPU hardware, or you may not have internet access. Running
PyTorch does not require a GPU, but one would be needed to
run GPU acceleration. I recommend using an NVIDIA GPU as
PyTorch is closely tied to the Compute Unified Device Archi‐
tecture (CUDA) drivers for GPU support.

WARNING

Check your GPU and CUDA version first! PyTorch only
supports specific GPU and CUDA versions, and many
Mac computers use non-NVIDIA GPUs. If you are using a
Mac, verify that you have an NVIDIA GPU by clicking the
Apple icon on the menu bar, selecting “About This Mac,”
and clicking the Displays tab. If you see an NVIDIA GPU
on your Mac and want to use it, you’ll have to build
PyTorch from scratch. If you do not see an NVIDIA GPU,
you should use the CPU-only version of PyTorch or
choose another computer with a different OS.

The PyTorch website offers a convenient browser tool for
installation, as shown in Figure 1-6. Select the latest stable
build, your OS, your preferred Python package manager
(Conda is recommended), the Python language, and your
CUDA version. Execute the command line and follow the
instructions for your configuration. Note the prerequisites,
installation instructions, and verification methods.
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Figure 1-6. PyTorch online installation configuration tool

You should be able to run the verification code snippet in your
favorite IDE (Jupyter Notebook, Microsoft Visual Studio Code,
PyCharm, Spyder, etc.) or from the terminal. Figure 1-7 shows
how to verify that the correct version of PyTorch is installed
from a terminal on a Mac. The same commands can be used to
verify this in a Windows or Linux terminal as well.

Figure 1-7. PyTorch verification using a Mac terminal
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Running on Cloud Platforms
If you’re familiar with cloud platforms like AWS, GCP, or
Azure, you can run PyTorch in the cloud. Cloud platforms pro‐
vide powerful hardware and infrastructure for training and
deploying deep learning models. Remember that using cloud
services, especially GPU instances, incurs additional costs. To
get started, follow the instructions in the online PyTorch cloud
setup guide for your platform of interest.

Setting up your cloud environment is beyond the scope of this
book, but I’ll summarize the available options. Each platform
offers a virtual machine instance as well as managed services to
support PyTorch development.

Running on AWS
AWS offers multiple options to run PyTorch in the cloud. If
you prefer a fully managed service, you can use AWS Sage‐
Maker, or if you’d rather manage your own infrastructure, you
can use AWS Deep Learning Amazon Machine Images (AMIs)
or Containers:

Amazon SageMaker
This is a fully managed service to train and deploy models.
You can run Jupyter Notebooks from the dashboard and
use the SageMaker Python SDK to train and deploy mod‐
els in the cloud. You can run your notebooks on a dedica‐
ted GPU instance.

AWS Deep Learning AMIs
These are preconfigured virtual machine environments.
You can choose the Conda AMI, which has many libraries
(including PyTorch) preinstalled, or you can use the base
AMI if you’d prefer a clean environment to set up private
repositories or custom builds.

AWS Deep Learning Containers
These are Docker images that come preinstalled with
PyTorch. They enable you to skip the process of building
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and optimizing your environment from scratch and are
mainly used for deployment.

For more detailed information on how to get started, review
the “Getting Started with PyTorch on AWS” instructions.

Running on Microsoft Azure
Azure also offers multiple options to run PyTorch in the cloud.
You can develop PyTorch models using a fully managed service
called Azure Machine Learning, or you can run Data Science
Virtual Machines (DSVMs) if you prefer to manage your own
infrastructure:

Azure Machine Learning
This is an enterprise-grade machine learning service for
building and deploying models. It includes a drag-and-
drop designer and MLOps capabilities to integrate with
existing DevOps processes.

DSVMs
These are preconfigured virtual machine environments.
They come preinstalled with PyTorch and other deep
learning frameworks as well as development tools like
Jupyter Notebook and VS Code.

For more detailed information on how to get started, review
the Azure Machine Learning documentation.

Running on Google Cloud Platform
GCP also offers multiple options to run PyTorch in the cloud.
You can develop PyTorch models using the managed service,
called AI Platform Notebooks, or run Deep Learning VM
images if you prefer to manage your own infrastructure:

AI Platform Notebooks
This is a managed service whose integrated JupyterLab
environment allows you to create preconfigured GPU
instances.
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Deep Learning VM images
These are preconfigured virtual machine environments.
They come preinstalled with PyTorch and other deep
learning frameworks as well as development tools.

For more detailed information on how to get started, review
the instructions at Google Cloud “AI and Machine Learning
Products”.

Verifying Your PyTorch Environment
Whether you use Colab, your local machine, or your favorite
cloud platform, you should verify that PyTorch is properly
installed and check to see if you have a GPU available. You’ve
already seen how to do this in Colab. To verify that PyTorch is
properly installed, use the following code snippet. The code
imports the PyTorch library, prints the version, and checks to
see if a GPU is available:

import torch
print(torch.__version__)
print(torch.cuda.is_available())

WARNING

You import the library using import torch, not import
pytorch. PyTorch is originally based on the torch library,
an open source machine learning framework based on the
C and Lua programming languages. Keeping the library
named torch allows Torch code to be reused with a more
efficient PyTorch implementation.

A Fun Example
Now that you have verified that your environment is config‐
ured properly, let’s code up a fun example to show some of the
features of PyTorch and demonstrate best practices in machine
learning. In this example, we’ll build a classic image classifier
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that will attempt to identify an image’s content based on 1,000
possible classes or choices.

You can access this example from the book’s GitHub repository
and follow along. Try running the code in Google Colab, on
your local machine, or on a cloud platform like AWS, Azure, or
GCP. Don’t worry about understanding all of the concepts of
machine learning. We’ll cover them in more detail throughout
the book.

NOTE

In practice, you will import all the necessary libraries at the
beginning of your code. However, in this example, we will
import the libraries as they are used so you can see which
libraries are needed for each task.

First, let’s select an image we’d like to classify. In this example,
we’ll choose a nice fresh, hot cup of coffee. Use the following
code to download the coffee image to your local environment:

import urllib.request

url = url = 'https://pytorch.tips/coffee'
fpath = 'coffee.jpg'
urllib.request.urlretrieve(url, fpath)

Notice that the code uses the urllib library’s urlretrieve()
function to get an image from the web. We rename the file to
coffee.jpg by specifying fpath.

Next, we read our local image using the Pillow library (PIL):
import matplotlib.pyplot as plt
from PIL import Image

img = Image.open('coffee.jpg')
plt.imshow(img)
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Figure 1-8 shows what our image looks like. We can use mat
plotlib’s imshow() function to display the image on our sys‐
tem, as shown in the preceding code.

Figure 1-8. Input image for classifier

Notice we haven’t used PyTorch yet. Here’s where things get
exciting. Next, we are going to pass our image into a pretrained
image classification neural network (NN)—but before we do
so, we’ll need to preprocess our image. Preprocessing data is
very common in machine learning since the NN expects the
input to meet certain requirements.

In our example, the image data is an RGB 1600 × 1200-pixel
JPEG-formatted image. We need to apply a series of prepro‐
cessing steps, called transforms, to convert the image into the
proper format for the NN. We do this using Torchvision in the
following code:

import torch
from torchvision import transforms

transform = transforms.Compose([
  transforms.Resize(256),
  transforms.CenterCrop(224),
  transforms.ToTensor(),
  transforms.Normalize(
      mean=[0.485, 0.456, 0.406],
      std=[0.229, 0.224, 0.225])])

img_tensor = transform(img)
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print(type(img_tensor), img_tensor.shape)
# out:
# <class 'torch.tensor'> torch.Size([3, 224, 224])

We use the Compose() transform to define a series of transforms
used to preprocess our image. First, we need to resize and crop
the image to fit within the NN. The image is currently in PIL
format, since that’s how we read it earlier. But our NN requires
a tensor input, so we convert the PIL image to a tensor.

Tensors are the fundamental data objects in PyTorch, and we’ll
spend the entire next chapter exploring them. You can think of
tensors like NumPy arrays or numerical arrays with a bunch of
extra features. For now, we’ll just convert our image to a tensor
array of numbers to get it ready.

We apply one more transform, called Normalize(), to rescale
the range of pixel values between 0 and 1. The values for the
mean and standard deviation (std) were precomputed based on
the data used to train the model. Normalizing the image
improves the accuracy of the classifier.

Finally, we call transform(img) to apply all the transforms to
the image. As you can see, img_tensor is a 3 × 224 × 224
torch.Tensor representing a 3-channel image of 224 × 224
pixels.

Efficient machine learning processes data in batches, and our
model will expect a batch of data. However, we only have one
image, so we’ll need to create a batch of size 1, as shown in the
following code:

batch = img_tensor.unsqueeze(0)
print(batch.shape)
# out: torch.Size([1, 3, 224, 224])

We use PyTorch’s unsqueeze() function to add a dimension to
our tensor and create a batch of size 1. Now we have a tensor of
size 1 × 3 × 224 × 224, which represents a batch size of 1 and 3
channels (RGB) of 224 × 224 pixels. PyTorch provides a lot of
useful functions like unsqueeze() to manipulate tensors, and
we’ll explore many of them in the next chapter.
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Now our image is ready for our classifier NN! We’ll use a
famous image classifier called AlexNet. AlexNet won the
ImageNet Large Scale Visual Recognition Challenge in 2012.
It’s easy to load this model using Torchvision, as shown in the
following code:

from torchvision import models

model = models.alexnet(pretrained=True)

We’re going to use a pretrained model here, so we don’t need to
train it. The AlexNet model has been pretrained with millions
of images and does a pretty good job at classifying images. Let’s
pass in our image and see how it does:

device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
# out(results will vary): cpu

model.eval()
model.to(device)
y = model(batch.to(device))
print(y.shape)
# out: torch.Size([1, 1000])

GPU acceleration is a key benefit of PyTorch. In the first line,
we use PyTorch’s cuda.is_available() function to see if our
machine has a GPU. This is a very common line of PyTorch
code, and we’ll explore GPUs further in Chapters 2 and 6. We’re
only classifying one image, so we don’t need a GPU here, but if
we had a huge batch having a GPU might help speed things up.

The model.eval() function configures our AlexNet model for
inference or prediction (as opposed to training). Certain com‐
ponents of the model are only used during training, and we
don’t want to use them here. The use of model.to(device) and
batch.to(device) sends our model and input data to the GPU
if available, and executing model(batch.to(device)) runs our
classifier.

The output, y, consists of a batch of 1,000 outputs. Since our
batch contains only one image, the first dimension is 1 while
the number of classes is 1000, one value for each class. The
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higher the value, the more likely it is that the image contains
that class. The following code finds the winning class:

y_max, index = torch.max(y,1)
print(index, y_max)
# out: tensor([967]) tensor([22.3059],
#    grad_fn=<MaxBackward0>)

Using PyTorch’s max() function, we see that the class with index
967 has the highest value, 22.3059, and thus is the winner.
However, we don’t know what class 967 represents. Let’s load
the file with class names and find out:

url = 'https://pytorch.tips/imagenet-labels'

fpath = 'imagenet_class_labels.txt'
urllib.request.urlretrieve(url, fpath)

with open('imagenet_class_labels.txt') as f:
  classes = [line.strip() for line in f.readlines()]

print(classes[967])
# out: 967: 'espresso',

Like we did earlier, we use urlretrieve() and download the
text file containing descriptions of each class. Then, we read the
file using readlines() and create a list containing class names.
When we print(classes[967]), it shows us that class 967 is
espresso!

Using PyTorch’s softmax() function, we can convert the output
values to probabilities:

prob = torch.nn.functional.softmax(y, dim=1)[0] * 100
print(classes[index[0]], prob[index[0]].item())
#967: 'espresso', 87.85208892822266

To print the probability at an index, we use PyTorch’s
tensor.item() method. The item() method is frequently used
and returns the numeric value contained in a tensor. The
results show that the model is 87.85% sure that this image is an
image of an espresso.

We can use PyTorch’s sort() function to sort the output proba‐
bilities and look at the top five:
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_, indices = torch.sort(y, descending=True)

for idx in indices[0][:5]:
  print(classes[idx], prob[idx].item())
# out:
# 967: 'espresso', 87.85208892822266
# 968: 'cup', 7.28359317779541
# 504: 'coffee mug', 4.33521032333374
# 925: 'consomme', 0.36686763167381287
# 960: 'chocolate sauce, chocolate syrup',
#    0.09037172049283981

We see that the model predicts that the image is espresso with
87.85% probability. It also predicts cup with 7.28% and coffee
mug with 4.3% probability, but it seems pretty confident that
the image is an espresso.

You may feel like you need an espresso right now. We covered a
lot in that example! The core code to accomplish everything is
actually much shorter. Assuming you have downloaded the
files already, you only need to run the following code to classify
an image using AlexNet:

import torch
from torchvision import transforms, models

transform = transforms.Compose([
  transforms.Resize(256),
  transforms.CenterCrop(224),
  transforms.ToTensor(),
  transforms.Normalize(
      mean=[0.485, 0.456, 0.406],
      std=[0.229, 0.224, 0.225])])

img_tensor = transform(img)
batch = img_tensor.unsqueeze(0)
model = models.alexnet(pretrained=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.eval()
model.to(device)
y = model(batch.to(device))

prob = torch.nn.functional.softmax(y, dim=1)[0] * 100
_, indices = torch.sort(y, descending=True)
for idx in indices[0][:5]:
  print(classes[idx], prob[idx].item())
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And that’s how you build an image classifier with PyTorch. Try
running your own images through the model and see how it
classifies them. Also, try completing the example on another
platform. For example, if you used Colab to run the code, try
running it locally or in the cloud.

Congratulations, you’ve verified that your environment is con‐
figured properly and that you can execute PyTorch code! We’ll
explore each topic more deeply throughout the remainder of
the book. In the next chapter, we’ll explore the fundamentals of
PyTorch and provide a quick reference to tensors and their
operations.
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CHAPTER 2

Tensors

Before we dive deep into the world of PyTorch development,
it’s important to familiarize yourself with the fundamental data
structure in PyTorch: the torch.Tensor. By understanding the
tensor, you will understand how PyTorch handles and stores
data, and since deep learning is fundamentally the collection
and manipulation of floating-point numbers, understanding
tensors will help you understand how PyTorch implements
more advanced functions for deep learning. In addition, you
may find yourself using tensor operations frequently when pre‐
processing input data or manipulating output data during
model development.

This chapter serves as a quick reference to understanding ten‐
sors and implementing tensor functions within your code. I’ll
begin by describing what a tensor is and show you some simple
examples of how to use functions to create, manipulate, and
accelerate tensor operations on a GPU. Next, we’ll take a
broader look at the API for creating tensors and performing
math operations so that you can quickly reference a compre‐
hensive list of tensor capabilities. In each section, we will
explore some of the more important functions, identify com‐
mon pitfalls, and examine key points in their usage.
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What Is a Tensor?
In PyTorch, a tensor is a data structure used to store and
manipulate data. Like a NumPy array, a tensor is a multidimen‐
sional array containing elements of a single data type. Tensors
can be used to represent scalars, vectors, matrices, and n-
dimensional arrays and are derived from the torch.Tensor
class. However, tensors are more than just arrays of numbers.
Creating or instantiating a tensor object from the torch.Tensor
class gives us access to a set of built-in class attributes and
operations or class methods that provide a robust set of built-in
capabilities. This chapter describes these attributes and opera‐
tions in detail.

Tensors also include added benefits that make them more suit‐
able than NumPy arrays for deep learning calculations. First,
tensor operations can be performed significantly faster using
GPU acceleration. Second, tensors can be stored and manipu‐
lated at scale using distributed processing on multiple CPUs
and GPUs and across multiple servers. And third, tensors keep
track of their graph computations, which as we will see in
“Automatic Differentiation (Autograd)” on page 48 is very
important in implementing a deep learning library.

To further explain what a tensor actually is and how to use one,
I’ll begin by walking through a simple example that creates
some tensors and performs a tensor operation.

Simple CPU Example
Here’s a simple example that creates a tensor, performs a tensor
operation, and uses a built-in method on the tensor itself. By
default, the tensor data type will be derived from the input data
type and the tensor will be allocated to the CPU device. First,
we import the PyTorch library, then we create two tensors, x
and y, from two-dimensional lists. Next, we add the two ten‐
sors and store the result in z. We can just use the + operator
here because the torch.Tensor class supports operator over‐
loading. Finally, we print the new tensor, z, which we can see is
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the matrix sum of x and y, and we print the size of z. Notice
that z is a tensor object itself and the size() method is used to
return its matrix dimensions, namely 2 × 3:

import torch

x = torch.tensor([[1,2,3],[4,5,6]])
y = torch.tensor([[7,8,9],[10,11,12]])
z = x + y
print(z)
# out:
#  tensor([[ 8, 10, 12],
#          [14, 16, 18]])

print(z.size())
# out: torch.Size([2, 3])

NOTE

You   may   see   the  torch.Tensor()  (capital T)   con‐
structor   used   in   legacy   code.   This   is   an   alias   for
the   default   tensor  type torch.FloatTensor. You should
instead use torch.tensor() to create your tensors.

Simple GPU Example
Since the ability to accelerate tensor operations on a GPU is a
major advantage of tensors over NumPy arrays, I’ll show you
an easy example of this. This is the same example from the last
section, but here we move the tensors to the GPU device if one
is available. Notice that the output tensor is also allocated to the
GPU. You can use the device attribute (e.g., z.device) to
double-check where the tensor resides.

In the first line, the torch.cuda.is_available() function will
return True if your machine has GPU support. This is a conve‐
nient way to write more robust code that can be accelerated
when a GPU exists but also runs on a CPU when a GPU is not
present. In the output, device='cuda:0' indicates that the first
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GPU is being used. If your machine contains multiple GPUs,
you can also control which GPU is being used:

device = "cuda" if torch.cuda.is_available()
  else "cpu"
x = torch.tensor([[1,2,3],[4,5,6]],
                 device=device)
y = torch.tensor([[7,8,9],[10,11,12]],
                 device=device)
z = x + y
print(z)
# out:
#   tensor([[ 8, 10, 12],
#          [14, 16, 18]], device='cuda:0')

print(z.size())
# out: torch.Size([2, 3])

print(z.device)
# out: cuda:0

Moving Tensors Between CPUs and GPUs
The previous code uses torch.tensor() to create a tensor on a
specific device; however, it’s more common to move an existing
tensor to a device, namely a GPU if available. You can do so by
using the torch.to() method. When new tensors are created as
a result of tensor operations, PyTorch will create the new tensor
on the same device. In the following code, z resides on the
GPU because x and y reside on the GPU. The tensor z is moved
back to the CPU using torch.to("cpu") for further processing.
Also note that all the tensors within the operation must be on
the same device. If x was on the GPU and y was on the CPU, we
would get an error:

device = "cuda" if torch.cuda.is_available()
  else "cpu"
x = x.to(device)
y = y.to(device)
z = x + y
z = z.to("cpu")
# out:
# tensor([[ 8, 10, 12],
#         [14, 16, 18]])
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NOTE

You can use strings directly as device parameters instead of
device objects. The following are all equivalent:

• device="cuda"

• device=torch.device("cuda")

• device="cuda:0"

• device=torch.device("cuda:0")

Creating Tensors
The previous section showed a simple way to create tensors;
however, there are many other ways to do it. You can create
tensors from preexisting numeric data or create random sam‐
plings. Tensors can be created from preexisting data stored in
array-like structures such as lists, tuples, scalars, or serialized
data files, as well as in NumPy arrays.

The following code illustrates some common ways to create
tensors. First, it shows how to create a tensor from a list using
torch.tensor(). This method can also be used to create tensors
from other data structures like tuples, sets, or NumPy arrays:

import numpy

# Created from preexisting arrays

w = torch.tensor([1,2,3]) 

w = torch.tensor((1,2,3)) 

w = torch.tensor(numpy.array([1,2,3])) 

# Initialized by size

w = torch.empty(100,200) 

w = torch.zeros(100,200) 

w = torch.ones(100,200)  

From a list
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From a tuple

From a NumPy array

Uninitialized; element values are not predictable

All elements initialized with 0.0

All elements initialized with 1.0

As shown in the previous code sample, you can also create and
initialize tensors by using functions like torch.empty(),
torch.ones(), and torch.zeros() and specifying the desired
size.

If you want to initialize a tensor with random values, PyTorch
supports a robust set of functions that you can use, such as
torch.rand(), torch.randn(), and torch.randint(), as shown
in the following code:

# Initialized by size with random values

w = torch.rand(100,200)     

w = torch.randn(100,200)    

w = torch.randint(5,10,(100,200))  

# Initialized with specified data type or device
w = torch.empty((100,200), dtype=torch.float64,
                device="cuda")

# Initialized to have the same size, data type,
#   and device as another tensor
x = torch.empty_like(w)

Creates a 100 × 200 tensor with elements from a uniform
distribution on the interval [0, 1).

Elements are random numbers from a normal distribution
with a mean of 0 and a variance of 1.

Elements are random integers between 5 and 10.

Upon initialization, you can specify the data type and device
(i.e., CPU or GPU) as shown in the previous code sample. In
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addition, the example shows how you can use PyTorch to cre‐
ate tensors that have the same properties as other tensors but
are initialized with different data. Functions with the _like
postfix such as torch.empty_like() and torch.ones_like()
return tensors that have the same size, data type, and device as
another tensor but are initialized differently (see “Creating Ten‐
sors from Random Samples” on page 32).

NOTE

There are some legacy functions, such as from_numpy()
and as_tensor(), that have been replaced in practice by
the torch.tensor() constructor, which can be used to
handle all cases.

Table 2-1 lists PyTorch functions used to create tensors. You
should use each one with the torch namespace, e.g.,
torch.empty(). You can find more details by visiting the
PyTorch tensor documentation.

Table 2-1. Tensor creation functions

Function Description

torch.tensor(data, dtype=None, 

device=None, requires_grad=False, 

pin_memory=False)

Creates a tensor from
an existing data
structure

torch.empty(*size, out=None, 

dtype=None, layout=torch.strided, 

device=None, requires_grad=False)

Creates a tensor from
uninitialized elements
based on the random
state of values in
memory

torch.zeros(*size, out=None, 

dtype=None, layout=torch.strided, 

device=None, requires_grad=False)

Creates a tensor with
all elements initialized
to 0.0
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Function Description

torch.ones(*size, out=None, 

dtype=None, layout=torch.strided, 

device=None, requires_grad=False)

Creates a tensor with
all elements initialized
to 1.0

torch.arange(start=0, end, step=1, 

out=None, dtype=None, 

layout=torch.strided, device=None, 

requires_grad=False)

Creates a 1D tensor of
values over a range
with a common step
value

torch.linspace(start, end, 

steps=100, out=None, dtype=None, 

layout=torch.strided, device=None, 

requires_grad=False)

Creates a 1D tensor of
linearly spaced points
between the start
and end

torch.logspace(start, end, 

steps=100, base=10.0, out=None, 

dtype=None, layout=torch.strided, 

device=None, requires_grad=False)

Creates a 1D tensor of
logarithmically spaced
points between the
start and end

torch.eye(n, m=None, out=None, 

dtype=None, layout=torch.strided, 

device=None, requires_grad=False)

Creates a 2D tensor
with ones on the
diagonal and zeros
everywhere else

torch.full(size, fill_value, 

out=None, dtype=None, 

layout=torch.strided, device=None, 

requires_grad=False)

Creates a tensor filled
with fill_value

torch.load(f) Loads a tensor from a
serialized pickle file

torch.save(f) Saves a tensor to a
serialized pickle file

The PyTorch documentation contains a complete list of func‐
tions for creating tensors as well as more detailed explanations
of how to use them. Here are some common pitfalls and addi‐
tional insights to keep in mind when creating tensors:

28 | Chapter 2: Tensors



• Most creation functions accept the optional dtype and
device parameters, so you can set these at creation time.

• You should use torch.arange() in favor of the deprecated
torch.range() function. Use torch.arange() when the
step size is known. Use torch.linspace() when the num‐
ber of elements is known.

• You can use torch.tensor() to create tensors from array-
like structures such as lists, NumPy arrays, tuples, and
sets. To convert existing tensors to NumPy arrays and lists,
use the torch.numpy() and torch.tolist() functions,
respectively.

Tensor Attributes
One PyTorch quality that has contributed to its popularity is
the fact that it’s very Pythonic and object oriented in nature.
Since a tensor is its own data type, you can read attributes of
the tensor object itself. Now that you can create tensors, it’s
useful to be able to quickly find information about them by
accessing their attributes. Assuming x is a tensor, you can
access several attributes of x as follows:

x.dtype

Indicates the tensor’s data type (see Table 2-2 for a list of
PyTorch data types)

x.device

Indicates the tensor’s device location (e.g., CPU or GPU
memory)

x.shape

Shows the tensor’s dimensions

x.ndim

Identifies the number of a tensor’s dimensions or rank

Creating Tensors | 29



x.requires_grad

A Boolean attribute that indicates whether the tensor
keeps track of graph computations (see “Automatic Differ‐
entiation (Autograd)” on page 48)

x.grad

Contains the actual gradients if requires_grad is True

x.grad_fn

Stores the graph computation function used if
requires_grad is True

x.s_cuda, x.is_sparse, x.is_quantized, x.is_leaf,
x.is_mkldnn

Boolean attributes that indicate whether the tensor meets
certain conditions

x.layout

Indicates how a tensor is laid out in memory

Remember that when accessing object attributes, you do not
include parentheses (()) like you would with a class method
(e.g., use x.shape, not x.shape()).

Data Types
During deep learning development, it’s important to be aware
of the data type used by your data and its calculations. So when
you create tensors, you should control what data types are
being used. As mentioned previously, all tensor elements have
the same data type. You can specify the data type when creating
the tensor by using the dtype parameter, or you can cast a ten‐
sor to a new dtype using the appropriate casting method or the
to() method, as shown in the following code:

# Specify the data type at creation using dtype
w = torch.tensor([1,2,3], dtype=torch.float32)

# Use the casting method to cast to a new data type
w.int()       # w remains a float32 after the cast
w = w.int()   # w changes to an int32 after the cast

# Use the to() method to cast to a new type
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w = w.to(torch.float64) 

w = w.to(dtype=torch.float64) 

# Python automatically converts data types during
# operations
x = torch.tensor([1,2,3], dtype=torch.int32)
y = torch.tensor([1,2,3], dtype=torch.float32)

z = x + y 
print(z.dtype)
# out: torch.float32

Pass in the data type.

Define the data type directly with dtype.

Python automatically converts x to float32 and returns z
as float32.

Note that the casting and to() methods do not change the ten‐
sor’s data type unless you reassign the tensor. Also, when per‐
forming operations on mixed data types, PyTorch will automat‐
ically cast tensors to the appropriate type.

Most of the tensor creation functions allow you to specify the
data type upon creation using the dtype parameter. When you
set the dtype or cast tensors, remember to use the torch name‐
space (e.g., torch.int64, not just int64).

Table 2-2 lists all the available data types in PyTorch. Each data
type results in a different tensor class depending on the tensor’s
device. The corresponding tensor classes are shown in the two
rightmost columns for CPUs and GPUs, respectively.

Table 2-2. Tensor data types

Data type dtype CPU tensor GPU tensor

32-bit floating
point (default)

torch.float32

or torch.float
torch.

FloatTensor

torch.cuda.

FloatTensor

64-bit floating
point

torch.float64

or torch.double
torch.

DoubleTensor

torch.cuda.

DoubleTensor
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Data type dtype CPU tensor GPU tensor

16-bit floating
point

torch.float16

or torch.half
torch.

HalfTensor

torch.cuda.

HalfTensor

8-bit integer
(unsigned)

torch.uint8 torch.

ByteTensor

torch.cuda.

ByteTensor

8-bit integer
(signed)

torch.int8 torch.

CharTensor

torch.cuda.

CharTensor

16-bit integer
(signed)

torch.int16 or
torch.short

torch.

ShortTensor

torch.cuda.

ShortTensor

32-bit integer
(signed)

torch.int32 or
torch.int

torch.

IntTensor

torch.cuda.

IntTensor

64-bit integer
(signed)

torch.int64 or
torch.long

torch.

LongTensor

torch.cuda.

LongTensor

Boolean torch.bool torch.

BoolTensor

torch.cuda.

BoolTensor

NOTE

To reduce space complexity, you may sometimes want to
reuse memory and overwrite tensor values using in-place
operations. To perform in-place operations, append the
underscore (_) postfix to the function name. For example,
the function y.add_(x) adds x to y, but the results will be
stored in y.

Creating Tensors from Random Samples
The need to create random data comes up often during deep
learning development. Sometimes you will need to initialize
weights to random values or create random inputs with speci‐
fied distributions. PyTorch supports a very robust set of func‐
tions that you can use to create tensors from random data.
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As with other creation functions, you can specify the dtype and
device when creating the tensor. Table 2-3 lists some examples
of random sampling functions.

Table 2-3. Random sampling functions

Function Description

torch.rand(*size, out=None, 

dtype=None, layout=torch.strided, 

device=None, requires_grad=False)

Selects random values from
a uniform distribution on
the interval [0 to 1]

torch.randn(*size, out=None, 

dtype=None, layout=torch.strided, 

device=None, requires_grad=False)

Selects random values from
a standard normal
distribution with zero mean
unit variance

torch.normal(mean, std, *,

generator=None, out=None)

Selects random numbers
from a normal distribution
with a specified mean and
variance

torch.randint(low=0, high, size, 

*, generator=None, out=None, 

dtype=None, layout=torch.strided, 

device=None, requires_grad=False)

Selects random integers
generated uniformly
between specified low and
high values

torch.randperm(n, out=None, 

dtype=torch.int64,

layout=torch.strided, 

device=None, requires_grad=False)

Creates a random
permutation of integers
from 0 to n–1

torch.bernoulli(input, *,

generator=None, out=None)

Draws binary random
numbers (0 or 1) from a
Bernoulli distribution

torch.multinomial(input,

num_samples, replacement=False, 

*, generator=None, out=None)

Selects a random number
from a list according to
weights from a
multinomial distribution
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TIP

You  can  also  create  tensors  of  values  sampled  from
more  advanced  distributions,  like  Cauchy,  exponential,
geometric,  and log normal. To do so, use torch.empty()
to  create  the  tensor  and  apply  an  in-place  function  for
the  distribution  (e.g., Cauchy).  Remember,  in-place
methods use the underscore postfix. For example,
x = torch.empty([10,5]).cauchy_() creates a tensor of
random numbers drawn from the Cauchy distribution.

Creating Tensors Like Other Tensors
You  may  want  to  create  and  initialize  a  tensor   that  has
similar properties to another tensor, including the dtype,
device,  and layout  properties  to  facilitate  calculations.
Many  of the tensor creation operations have a similarity func‐
tion that allows you to easily do this. The similarity functions
will have the postfix _like. For example, torch.empty_like(ten
sor_a) will create an empty tensor with the dtype, device, and
layout properties of tensor_a. Some examples of similarity
functions include empty_like(), zeros_like(), ones_like(),
full_like(), rand_like(), randn_like(), and rand_int_like().

Tensor Operations
Now that you understand how to create tensors, let’s explore
what you can do with them. PyTorch supports a robust set of
tensor operations that allow you to access and transform your
tensor data.

First I’ll describe how to access portions of your data, manipu‐
late their elements, and combine tensors to form new tensors.
Then I’ll show you how to perform simple calculations as well
as advanced mathematical computations, often in constant
time. PyTorch provides many built-in functions. It’s useful to
check what’s available before creating your own.
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Indexing, Slicing, Combining, and Splitting Tensors
Once you have created tensors, you may want to access por‐
tions of the data and combine or split tensors to form new ten‐
sors. The following code demonstrates how to perform these
types of operations. You can slice and index tensors in the same
way you would slice and index NumPy arrays, as shown in the
first few lines of the following code. Note that indexing and
slicing will return tensors even if the array is only a single ele‐
ment. You will need to use the item() function to convert a
single-element tensor to a Python value when passing to other
functions like print():

x = torch.tensor([[1,2],[3,4],[5,6],[7,8]])
print(x)
# out:
# tensor([[1, 2],
#         [3, 4],
#         [5, 6],
#         [7, 8]])

# Indexing, returns a tensor
print(x[1,1])
# out: tensor(4)

# Indexing, returns a value as a Python number
print(x[1,1].item())
# out: 4

In the following code, we see that we can perform slicing using
the same [start:end:step] format that is used for slicing
Python lists and NumPy arrays. We can also use Boolean
indexing to extract portions of the data that meet certain crite‐
ria, as shown here:

# Slicing
print(x[:2,1])
# out: tensor([2, 4])

# Boolean indexing
# Only keep elements less than 5
print(x[x<5])
# out: tensor([1, 2, 3, 4])
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PyTorch also supports transposing and reshaping arrays, as
shown in the next few lines of code:

# Transpose array; x.t() or x.T can be used
print(x.t())
# tensor([[1, 3, 5, 7],
#         [2, 4, 6, 8]])

# Change shape; usually view() is preferred over
# reshape()
print(x.view((2,4)))
# tensor([[1, 3, 5, 7],
#         [2, 4, 6, 8]])

You can also combine or split tensors by using functions like
torch.stack() and torch.unbind(), respectively, as shown in
the following code:

# Combining tensors
y = torch.stack((x, x))
print(y)
# out:
# tensor([[[1, 2],
#          [3, 4],
#          [5, 6],
#          [7, 8]],

#         [[1, 2],
#          [3, 4],
#          [5, 6],
#          [7, 8]]])

# Splitting tensors
a,b = x.unbind(dim=1)
print(a,b)
# out:
#  tensor([1, 3, 5, 7]); tensor([2, 4, 6, 8])

PyTorch provides a robust set of built-in functions that can be
used to access, split, and combine tensors in different ways.
Table 2-4 lists some commonly used functions to manipulate
tensor elements.
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Table 2-4. Indexing, slicing, combining, and splitting operations

Function Description

torch.cat() Concatenates the given sequence of tensors in
the given dimension.

torch.chunk() Splits a tensor into a specific number of chunks.
Each chunk is a view of the input tensor.

torch.gather() Gathers values along an axis specified by the
dimension.

torch.index_select() Returns a new tensor that indexes the input
tensor along a dimension using the entries in
the index, which is a LongTensor.

torch.masked_select() Returns a new 1D tensor that indexes the input
tensor according to the Boolean mask, which is
a BoolTensor.

torch.narrow() Returns a tensor that is a narrow version of the
input tensor.

torch.nonzero() Returns the indices of nonzero elements.

torch.reshape() Returns a tensor with the same data and
number of elements as the input tensor, but a
different shape. Use view() instead to ensure
the tensor is not copied.

torch.split() Splits the tensor into chunks. Each chunk is a
view or subdivision of the original tensor.

torch.squeeze() Returns a tensor with all the dimensions of the
input tensor of size 1 removed.

torch.stack() Concatenates a sequence of tensors along a
new dimension.

torch.t() Expects the input to be a 2D tensor and
transposes dimensions 0 and 1.

torch.take() Returns a tensor at specified indices when
slicing is not continuous.

torch.transpose() Transposes only the specified dimensions.
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Function Description

torch.unbind() Removes a tensor dimension by returning a
tuple of the removed dimension.

torch.unsqueeze() Returns a new tensor with a dimension of size 1
inserted at the specified position.

torch.where() Returns a tensor of selected elements from
either one of two tensors, depending on the
specified condition.

Some of these functions may seem redundant. However, the
following key distinctions and best practices are important to
keep in mind:

• item() is an important and commonly used function to
return the Python number from a tensor containing a sin‐
gle value.

• Use view() instead of reshape() for reshaping tensors in
most cases. Using reshape() may cause the tensor to be
copied, depending on its layout in memory. view()

ensures that it will not be copied.
• Using x.T or x.t() is a simple way to transpose 1D or 2D

tensors. Use transpose() when dealing with multidimen‐
sional tensors.

• The torch.squeeze() function is used often in deep learn‐
ing to remove an unused dimension. For example, a batch
of images with a single image can be reduced from 4D to
3D using squeeze().

• The torch.unsqueeze() function is often used in deep
learning to add a dimension of size 1. Since most PyTorch
models expect a batch of data as an input, you could apply
unsqueeze() when you only have one data sample. For
example, you can pass a 3D image into torch.unsqueeze()
to create a batch of one image.
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NOTE

PyTorch is very Pythonic in nature. Like most Python
classes, some PyTorch functions can be applied directly on
a tensor using a built-in method such as x.size().

Other functions are called directly using the torch name‐
space. These functions take a tensor as an input, like the x
in torch.save(x, 'tensor.pt').

Tensor Operations for Mathematics
Deep learning development is strongly based on mathematical
computations, so PyTorch supports a very robust set of built-in
math functions. Whether you are creating new data transforms,
customizing loss functions, or building your own optimization
algorithms, you can speed up your research and development
with the math functions provided by PyTorch.

The purpose of this section is to provide a quick overview of
many of the mathematical functions available in PyTorch so
that you can quickly build your awareness of what currently
exists and find the appropriate functions when needed.

PyTorch supports many different types of math functions,
including pointwise operations, reduction functions, compari‐
son calculations, and linear algebra operations, as well as spec‐
tral and other math computations. The first category of useful
math operations we’ll look at are pointwise operations. Point‐
wise operations perform an operation on each point in the ten‐
sor individually and return a new tensor.

They are useful for rounding and truncation as well as trigono‐
metrical and logical operations. By default, the functions will
create a new tensor or use one passed in by the out parameter.
If you want to perform an in-place operation, remember to
append an underscore to the function name.

Table 2-5 lists some commonly used pointwise operations.
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Table 2-5. Pointwise operations

Operation type Sample functions

Basic math add(), div(), mul(), neg(), reciprocal(),
true_divide()

Truncation ceil(), clamp(), floor(), floor_divide(),
fmod(), frac(), lerp(), remainder(), round(),
sigmoid(), trunc()

Complex
numbers

abs(), angle(), conj(), imag(), real()

Trigonometry acos(), asin(), atan(), cos(), cosh(),
deg2rad(), rad2deg(), sin(), sinh(), tan(),
tanh()

Exponents and
logarithms

exp(), expm1(), log(), log10(), log1p(), log2(),
logaddexp(), pow(), rsqrt(), sqrt(), square()

Logical logical_and(), logical_not(), logical_or(),
logical_xor()

Cumulative
math

addcdiv(), addcmul()

Bitwise
operators

bitwise_not(), bitwise_and(), bitwise_or(),
bitwise_xor()

Error functions erf(), erfc(), erfinv()

Gamma
functions

digamma(), lgamma(), mvlgamma(), polygamma()

Use Python hints or refer to the PyTorch documentation for
details on function usage. Note that true_divide() converts
tensor data to floats first and should be used when dividing
integers to obtain true division results.
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NOTE

Three different syntaxes can be used for most tensor opera‐
tions. Tensors support operator overloading, so you can
use operators directly, as in z = x + y. Although you can
also use PyTorch functions such as torch.add() to do the
same thing, this is less common. Lastly, you can perform
in-place operations using the underscore (_) postfix. The
function y.add_(x) achieves the same results, but they’ll’
be stored in y.

The second category of math functions we’ll look at are reduc‐
tion operations. Reduction operations reduce a bunch of num‐
bers down to a single number or a smaller set of numbers. That
is, they reduce the dimensionality or rank of the tensor. Reduc‐
tion operations include functions for finding maximum or
minimum values as well as many statistical calculations, like
finding the mean or standard deviation.

These operations are frequently used in deep learning. For
example, deep learning classification often uses the argmax()
function to reduce softmax outputs to a dominant class.

Table 2-6 lists some commonly used reduction operations.

Table 2-6. Reduction operations

Function Description

torch.argmax(input, dim, 

keepdim=False, out=None)

Returns the index(es) of the maximum
value across all elements, or just a
dimension if it’s specified

torch.argmin(input, dim, 

keepdim=False, out=None)

Returns the index(es) of the minimum
value across all elements, or just a
dimension if it’s specified

torch.dist(input, dim, 

keepdim=False, out=None)

Computes the p-norm of two tensors
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Function Description

torch.logsumexp(input, 

dim, keepdim=False, 

out=None)

Computes the log of summed
exponentials of each row of the input
tensor in the given dimension

torch.mean(input, dim, 

keepdim=False, out=None)

Computes the mean or average across all
elements, or just a dimension if it’s
specified

torch.median(input, dim, 

keepdim=False, out=None)

Computes the median or middle value
across all elements, or just a dimension if
it’s specified

torch.mode(input, dim, 

keepdim=False, out=None)

Computes the mode or most frequent
value across all elements, or just a
dimension if it’s specified

torch.norm(input, 

p='fro', dim=None,

keepdim=False, out=None, 
dtype=None)

Computes the matrix or vector norm
across all elements, or just a dimension if
it’s specified

torch.prod(input, dim, 

keepdim=False, 

dtype=None)

Computes the product of all elements, or
of each row of the input tensor if it’s
specified

torch.std(input, dim, 

keepdim=False, out=None)

Computes the standard deviation across
all elements, or just a dimension if it’s
specified

torch.std_mean(input, 

unbiased=True)

Computes the standard deviation and
mean across all elements, or just a
dimension if it’s specified

torch.sum(input, dim, 

keepdim=False, out=None)

Computes the sum of all elements, or just
a dimension if it’s specified

torch.unique(input, dim, 

keepdim=False, out=None)

Removes duplicates across the entire
tensor, or just a dimension if it’s specified

torch.unique_

consecutive(input, dim, 

keepdim=False, out=None)

Similar to torch.unique() but only
removes consecutive duplicates
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Function Description

torch.var(input, dim, 

keepdim=False, out=None)

Computes the variance across all
elements, or just a dimension if it’s
specified

torch.var_mean(input, 

dim, keepdim=False, 

out=None)

Computes the mean and variance across
all elements, or just a dimension if it’s
specified

Note that many of these functions accept the dim parameter,
which specifies the dimension of reduction for multidimen‐
sional tensors. This is similar to the axis parameter in NumPy.
By default, when dim is not specified, the reduction occurs
across all dimensions. Specifying dim = 1 will compute the
operation across each row. For example, torch.mean(x,1) will
compute the mean for each row in tensor x.

TIP

It’s common to chain methods together. For example,
torch.rand(2,2).max().item() creates a 2 × 2 tensor of
random floats, finds the maximum value, and returns the
value itself from the resulting tensor.

Next, we’ll look at PyTorch’s comparison functions. Comparison
functions usually compare all the values within a tensor, or
compare one tensor’s values to another’s. They can return a
tensor full of Booleans based on each element’s value such as
torch.eq() or torch.is_boolean(). There are also functions to
find the maximum or minimum value, sort tensor values,
return the top subset of tensor elements, and more.

Table 2-7 lists some commonly used comparison functions for
your reference.
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Table 2-7. Comparison operations

Operation type Sample functions

Compare a tensor to other tensors eq(), ge(), gt(), le(), lt(),
ne() or ==, >, >=, <, <=, !=,
respectively

Test tensor status or conditions isclose(), isfinite(),
isinf(), isnan()

Return a single Boolean for the entire
tensor

allclose(), equal()

Find value(s) over the entire tensor or
along a given dimension

argsort(), kthvalue(), max(),
min(), sort(), topk(),

Comparison functions seem pretty straightforward; however,
there are a few key points to keep in mind. Common pitfalls
include the following:

• The torch.eq() function or == returns a tensor of the
same size with a Boolean result for each element. The
torch.equal() function tests if the tensors are the same
size, and if all elements within the tensor are equal then it
returns a single Boolean value.

• The function torch.allclose() also returns a single
Boolean value if all elements are close to a specified value.

The next type of mathematical functions we’ll look at are linear
algebra functions. Linear algebra functions facilitate matrix
operations and are important for deep learning computations.

Many computations, including gradient descent and optimiza‐
tion algorithms, use linear algebra to implement their calcula‐
tions. PyTorch supports a robust set of built-in linear algebra
operations, many of which are based on the Basic Linear Alge‐
bra Subprograms (BLAS) and Linear Algebra Package
(LAPACK) standardized libraries.

Table 2-8 lists some commonly used linear algebra operations.
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Table 2-8. Linear algebra operations

Function Description

torch.matmul() Computes a matrix product of two tensors; supports
broadcasting

torch.chain_mat

mul()

Computes a matrix product of N tensors

torch.mm() Computes a matrix product of two tensors (if
broadcasting is required, use matmul())

torch.addmm() Computes a matrix product of two tensors and adds
it to the input

torch.bmm() Computes a batch of matrix products

torch.addbmm() Computes a batch of matrix products and adds it to
the input

torch.baddbmm() Computes a batch of matrix products and adds it to
the input batch

torch.mv() Computes the product of the matrix and vector

torch.addmv() Computes the product of the matrix and vector and
adds it to the input

torch.matrix_power Returns a tensor raised to the power of n (for square
tensors)

torch.eig() Finds the eigenvalues and eigenvectors of a real
square tensor

torch.inverse() Computes the inverse of a square tensor

torch.det() Computes the determinant of a matrix or batch of
matrices

torch.logdet() Computes the log determinant of a matrix or batch
of matrices

torch.dot() Computes the inner product of two tensors

torch.addr() Computes the outer product of two tensors and
adds it to the input
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Function Description

torch.solve() Returns the solution to a system of linear equations

torch.svd() Performs a single-value decomposition

torch.pca_low

rank()

Performs a linear principle component analysis

torch.cholesky() Computes a Cholesky decomposition

torch.cho

lesky_inverse()

Computes the inverse of a symmetric positive
definite matrix and returns the Cholesky factor

torch.cho

lesky_solve()

Solves a system of linear equations using the
Cholesky factor

The functions in Table 2-8 range from matrix multiplication
and batch calculations functions to solvers. It’s important to
point out that matrix multiplication is not the same as point‐
wise multiplication with torch.mul() or the * operator.

A complete study of linear algebra is beyond the scope of this
book, but you may find it useful to access some of the linear
algebra functions when performing feature reduction or devel‐
oping custom deep learning algorithms. See the PyTorch linear
algebra documentation for a complete list of available functions
and more details on how to use them.

The final type of mathematical operations we’ll consider are
spectral and other math operations. Depending on the domain
of interest, these functions may be useful for data transforms or
analysis. For example, spectral operations like the fast Fourier
transform (FFT) can play an important role in computer vision
or digital signal processing applications.

Table 2-9 lists some built-in operations for spectrum analysis
and other mathematical operations.
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Table 2-9. Spectral and other math operations

Operation type Sample functions

Fast, inverse, and short-time
Fourier transforms

fft(), ifft(), stft()

Real-to-complex FFT and
complex-to-real inverse FFT
(IFFT)

rfft(), irfft()

Windowing algorithms bartlett_window(),
blackman_window(),
hamming_window(), hann_window()

Histogram and bin counts histc(), bincount()

Cumulative operations cummax(), cummin(), cumprod(),
cumsum(), trace() (sum of the diagonal),
einsum() (sum of products using Einstein
summation)

Normalization functions cdist(), renorm()

Cross product, dot product, and
Cartesian product

cross(), tensordot(),
cartesian_prod()

Functions that create a diagonal
tensor with elements of the
input tensor

diag(), diag_embed(), diag_flat(),
diagonal()

Einstein summation einsum()

Matrix reduction and
restructuring functions

flatten(), flip(), rot90(),
repeat_interleave(), meshgrid(),
roll(), combinations()

Functions that return the lower
or upper triangles and their
indices

tril(), tril_indices, triu(),
triu_indices()
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Automatic Differentiation (Autograd)
One function, backward(), is worth calling out in its own sub‐
section because it’s what makes PyTorch so powerful for deep
learning development. The backward() function uses PyTorch’s
automatic differentiation package, torch.autograd, to differen‐
tiate and compute gradients of tensors based on the chain rule.

Here’s a simple example of autodifferentiation. We define a
function, f = sum(x2), where x is a matrix of variables. If we
want to find df / dx for each variable in the matrix, we need to
set the requires_grad = True flag for the tensor x, as shown in
the following code:

x = torch.tensor([[1,2,3],[4,5,6]],
         dtype=torch.float, requires_grad=True)
print(x)
# out:
# tensor([[1., 2., 3.],
#         [4., 5., 6.]], requires_grad=True)

f = x.pow(2).sum()
print(f)
# tensor(91., grad_fn=<SumBackward0>)

f.backward()
print(x.grad) # df/dx = 2x
# tensor([[ 2.,  4.,  6.],
#         [ 8., 10., 12.]])

The f.backward() function performs the differentiation with
respect to f and stores df / dx in the x.grad attribute. A quick
review of calculus differential equations will tell us the deriva‐
tion of f with respect to x, df / dx = 2x. The results of evaluating
df / dx for the values of x are shown as the output.

NOTE

Only tensors of floating-point dtype can require gradients.
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Training NNs requires us to compute the weight gradients on
the backward pass. As our NNs get deeper and more complex,
this feature automates the complex computations. For more
information on how autograd works, see the Autograd tutorial.

This chapter provided a quick reference for creating tensors
and performing operations. Now that you have a good founda‐
tion on tensors, we will focus on how to use tensors and
PyTorch to perform deep learning research. In the next chapter,
we will review the deep learning development process before
jumping into writing code.
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CHAPTER 3

Deep Learning Development
with PyTorch

Now that you have your development environment running
and a good understanding of tensors and their operations, we
can start developing and deploying deep learning models with
PyTorch. This chapter provides a quick reference to the basic
NN development process and the PyTorch code needed to exe‐
cute it.

First we’ll review the overall process, then we’ll dive into each
stage and look at some sample PyTorch code that implements
each function. We’ll build off what you learned in Chapter 2 to
load your data into tensors and apply data transforms that con‐
vert your tensors to suitable inputs for your model.

You’ll build a deep learning model and train the model using a
common training loop structure. Then, you’ll test your model’s
performance and tweak hyperparameters to improve your
results and training speed. Finally, we’ll explore ways to deploy
your model to prototype systems or production. At each stage,
I’ll provide commonly used PyTorch code for you to use as a
reference as you develop your own deep learning models.

Future chapters in this book will provide additional examples
and cover more advanced topics, such as customization,

51



optimization, acceleration, distributed training, and advanced
deployment. For now, we’ll focus on the basic NN development
process.

The Overall Process
Although everyone builds their deep learning models in a dif‐
ferent way, the overall process is pretty much the same. Regard‐
less of whether you are conducting supervised learning with
labeled data, unsupervised learning with unlabeled data, or
semisupervised learning with a mixture of both, a basic pipe‐
line is used to train, test, and deploy your deep learning mod‐
els. I will assume that you have some familiarity with deep
learning model development, but before we get started, let’s
review the basic deep learning training process. Then I’ll show
how you can implement this process in PyTorch.

Figure 3-1 illustrates the most common tasks in deep learning
development. The first stage is the data preparation stage, in
which we will load data from an external source and convert it
to the appropriate format for model training. This data could
be images, videos, speech recordings, audio files, text, general
tabular data, or any combination of these.

First, we load this data and convert it to numeric values in the
form of tensors. The tensors will act as inputs during the model
training stage; however, before they are passed in, the tensors
are usually preprocessed via transforms and grouped into
batches for better training performance. Thus, the data prepa‐
ration stage takes generic data and converts it to batches of ten‐
sors that can be passed into your NN model.

Next, in the model experimentation and development stage, we
will design an NN model, train the model with our training
data, test its performance, and optimize our hyperparameters
to improve performance to a desired level. To do so, we will
separate our dataset into three parts: one for training, one for
validation, and one for testing. We’ll design an NN model and
train its parameters with our training data. PyTorch provides
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elegantly designed modules and classes in the torch.nn module
to help you create and train your NNs. We will define a loss
function and optimizer from a selection of the many built-in
PyTorch functions. Then we’ll perform backpropagation and
update the model parameters in our training loop.

Figure 3-1. The basic deep learning development process
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Within each epoch, we’ll also validate our model by passing in
validation data, measuring performance, and potentially tuning
hyperparameters. Finally, we’ll test our model by passing in test
data and measuring the model’s performance against unseen
data. In practice, validation and test loops may be optional, but
we show them here for completeness.

The last stage of deep learning model development is the model
deployment stage. In this stage, we have a fully trained model—
so what do we do with it? If you are a deep learning research
scientist conducting experiments, you may want to simply save
the model to a file and load it for further research and experi‐
mentation, or you may want to provide access to it via a reposi‐
tory like PyTorch Hub. You may also want to deploy it to an
edge device or local server to demonstrate a prototype or a
proof of concept.

On the other hand, if you are a software developer or systems
engineer, you may want to deploy your model to a product or
service. In this case, you can deploy your model to a produc‐
tion environment on a cloud server or deploy it to an edge
device or mobile phone. When deploying trained models, the
model often requires additional postprocessing. For example,
you may classify a batch of images, but you only want to report
the most confident result. The model deployment stage also
handles any postprocessing that is needed to go from your
model’s output values to the final solution.

Now that we’ve explored the overall development process, let’s
dive into each part and show how PyTorch can help you
develop deep learning models.

Data Preparation
The first stage of deep learning development starts with data
preparation. In this stage, we acquire data to train and test our
NN models and convert it to a tensor of numbers that our
PyTorch models can process. The size of the dataset and the
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data itself are important to developing good models; however,
generating good datasets is beyond the scope of this book.

In this section, I’ll assume that you’ve already determined the
data is good, so I’ll focus on describing how to load the data,
apply transforms, and batch the data using PyTorch’s built-in
capabilities. First I’ll show how you can prepare image data
with the torchvision package, then we’ll explore PyTorch
resources for preparing other types of data.

Data Loading
PyTorch provides powerful built-in classes and utilities, such as
the Dataset, DataLoader, and Sampler classes, for loading vari‐
ous types of data. The Dataset class defines how to access and
preprocess data from a file or data sources. The Sampler class
defines how to sample data from a dataset in order to create
batches, while the DataLoader class combines a dataset with a
sampler and allows you to iterate over a set of batches.

PyTorch libraries such as Torchvision and Torchtext also pro‐
vide classes to support specialized data like computer vision
and natural language data. The torchvision.datasets module
is a good example of how to utilize built-in classes to load data.
The torchvision.datasets module provides a number of sub‐
classes to load image data from popular academic datasets.

One of these popular datasets is CIFAR-10. The CIFAR-10
dataset was collected by Alex Krizhevsky, Vinod Nair, and
Geoffrey Hinton during their research for the Canadian Insti‐
tute for Advanced Research (CIFAR). It consists of 50,000
training images and 10,000 test images of 10 possible objects:
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks. The following code shows how to use CIFAR-10 to cre‐
ate a training dataset:

from torchvision.datasets import CIFAR10

train_data = CIFAR10(root="./train/",
                     train=True,
                     download=True)
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The train parameter determines whether we load the training
data or the testing data, and setting download to True will
download the data for us if we don’t have it already.

Let’s explore the train_data dataset object. We can access
information about the dataset using its methods and attributes
as shown in the following code:

print(train_data) 
# out:
# Dataset CIFAR10
#     Number of datapoints: 50000
#     Root location: ./train/
#     Split: Train

print(len(train_data)) 
# out: 50000

print(train_data.data.shape) # ndarray 
# out: (50000, 32, 32, 3)

print(train_data.targets) # list 
# out: [6, 9, ...,  1, 1]

print(train_data.classes) 
# out: ['airplane', 'automobile', 'bird',
#       'cat', 'deer', 'dog', 'frog',
#       'horse', 'ship', 'truck']

print(train_data.class_to_idx) 
# out:
# {'airplane': 0, 'automobile': 1, 'bird': 2,
#  'cat': 3, 'deer': 4, 'dog': 5, 'frog': 6,
#  'horse': 7, 'ship': 8, 'truck': 9}

Printing the object returns its general information.

Check the number of data samples with len().

The data is a NumPy array of 50,000 32 × 32-pixel color
images.

The targets are a list of 50,000 data labels.
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You can map numeric labels to class names using classes.

You can map class names to index values using
class_to_idx.

Let’s take a closer look at the train_data dataset’s data and
labels. We can access a data sample using an index, as shown in
the following code:

print(type(train_data[0]))
# out: <class 'tuple'>

print(len(train_data[0]))
# out: 2

data, label = train_data[0]

As you can see in the code, train_data[0] returns a tuple with
two elements—the data and the label. Let’s examine the data
first:

print(type(data))
# out: <class 'PIL.Image.Image'>

print(data)
# out:
# <PIL.Image.Image image mode=RGB
#       size=32x32 at 0x7FA61-D6F1748>

The data consists of a PIL image object. PIL is a common
image format that uses the Pillow library to store image pixel
values in the format of height × width × channels. A color
image has three channels (RGB) for red, green, and blue. The
data format is good to know because we may need to convert
this format for our model if the model expects a different for‐
mat (more on this later).

Figure 3-2 shows the PIL image. It’s a little blurry because the
resolution is only 32 × 32, but can you tell what it is?
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Figure 3-2. Sample image

Let’s examine the label:
print(type(label))
# out: <class 'int'>

print(label)
# out: 6

print(train_data.classes[label])
# out: frog

In the code, the label is an integer value representing the class
of the image (e.g., airplane, dog, etc.). We can use the classes
attribute to see that an index of 6 corresponds to a frog.

We can also load the test data into another dataset object called
test_data. Changing the root folder and setting the train flag
to False will do the trick, as shown in the following code:

test_data = CIFAR10(root="./test/",
                    train=False,
                    download=True)

print(test_data)
# out:
# Dataset CIFAR10
#     Number of datapoints: 10000
#     Root location: ./test/
#     Split: Test

print(len(test_data))
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# out: 10000

print(test_data.data.shape) # ndarray
# out: (10000, 32, 32, 3)

The test_data dataset is similar to the train_data dataset.
However, there are only 10,000 images in the test dataset. Try
accessing some of the methods from the dataset class and the
attributes on the test_data dataset yourself.

Data Transforms
In the data loading step, we pulled data from its source and cre‐
ated dataset objects that contain information about the dataset
and the data itself. However, the data might need to be adjusted
before it is passed into the NN model for training and testing.
For example, data values may be normalized to assist training,
augmented to create larger datasets, or converted from one type
of object to a tensor.

These adjustments are accomplished by applying transforms.
The beauty of using transforms in PyTorch is that you can
define a sequence of transforms and apply it when the data is
accessed. Later, in Chapter 5, you’ll see how you can even apply
transforms on a CPU in parallel with your training on a GPU.

In the following code example, we’ll define our transforms and
create our train_data dataset using these transforms:

from torchvision import transforms

train_transforms = transforms.Compose([
  transforms.RandomCrop(32, padding=4),
  transforms.RandomHorizontalFlip(),
  transforms.ToTensor(),
  transforms.Normalize(

      mean=(0.4914, 0.4822, 0.4465), 
      std=(0.2023, 0.1994, 0.2010))])

train_data = CIFAR10(root="./train/",
                     train=True,
                     download=True,

                     transform=train_transforms) 
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The mean and standard deviation values here were prede‐
termined based on the dataset itself.

Set the transform parameter when creating the dataset.

We define a set of transforms using the transforms.Compose()
class. This class accepts a list of transforms and applies them in
sequence. Here we randomly crop and flip images, convert
them to tensors, and normalize the tensor values to predeter‐
mined means and standard deviations.

The transforms are passed to the dataset class during instantia‐
tion and become part of the dataset object. The transforms are
applied whenever the dataset object is accessed, returning a
new result consisting of the transformed data.

We can view the transforms by printing the dataset or its
transforms attribute, as shown in the following code:

print(train_data)
# out:
# Dataset CIFAR10
#     Number of datapoints: 50000
#     Root location: ./train/
#     Split: Train
#     StandardTransform
# Transform: Compose(
#                RandomCrop(size=(32, 32),
#                  padding=4)
#                RandomHorizontalFlip(p=0.5)
#                ToTensor()
#                Normalize(
#                  mean=(0.4914, 0.4822, 0.4465),
#                  std=(0.2023, 0.1994, 0.201))
#            )

print(train_data.transforms)
# out:
# StandardTransform
# Transform: Compose(
#                RandomCrop(size=(32, 32),
#                  padding=4)
#                RandomHorizontalFlip(p=0.5)
#                ToTensor()
#                Normalize(
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#                  mean=(0.4914, 0.4822, 0.4465),
#                  std=(0.2023, 0.1994, 0.201))

We can access the data using indexing, as shown in the next
code block. PyTorch automatically applies the transforms when
the data is accessed, so the output data will be different from
what we saw earlier:

data, label = train_data[0]

print(type(data))
# out: <class 'torch.Tensor'>

print(data.size())
# out: torch.Size([3, 32, 32])

print(data)
# out:
# tensor([[[-0.1416,  ..., -2.4291],
#          [-0.0060,  ..., -2.4291],
#          [-0.7426,  ..., -2.4291],
#          ...,
#          [ 0.5100, ..., -2.2214],
#          [-2.2214, ..., -2.2214],
#          [-2.2214, ..., -2.2214]]])

As you can see, the data output is now a tensor of size 3 × 32 ×
32. It has also been randomly cropped, horizontally flipped,
and normalized. Figure 3-3 shows the image after applying the
transforms.

Figure 3-3. Image after transforms
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The colors may look strange because of the normalization, but
this actually helps NN models do a better job of classifying the
images.

We can define a different set of transforms for testing and apply
them to our test data as well. In the case of test data, we do not
want to crop or flip the image, but we do need to convert the
image to tensors and normalize the tensor values, as shown in
the following code:

test_transforms = transforms.Compose([
  transforms.ToTensor(),
  transforms.Normalize(
      (0.4914, 0.4822, 0.4465),
      (0.2023, 0.1994, 0.2010))])

test_data = torchvision.datasets.CIFAR10(
      root="./test/",
      train=False,
      transform=test_transforms)

print(test_data)
# out:
# Dataset CIFAR10
#     Number of datapoints: 10000
#     Root location: ./test/
#     Split: Test
#     StandardTransform
# Transform: Compose(
#     ToTensor()
#     Normalize(
#       mean=(0.4914, 0.4822, 0.4465),
#       std=(0.2023, 0.1994, 0.201)))

Data Batching
Now that we have defined the transforms and created the data‐
sets, we can access data samples one at a time. However, when
you train your model, you will want to pass in small batches of
data at each iteration, as we will see in “Model Development”
on page 68. Sending data in batches not only allows more effi‐
cient training but also takes advantage of the parallel nature of
GPUs to accelerate training.
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Batch processing can easily be implemented using the
torch.utils.data.DataLoader class. Let’s start with an example
of how Torchvision uses this class, and then we’ll cover it in
more detail.

In the following code, we create a dataloader for train_data
that we can use to load a batch of samples and apply our
transforms:

trainloader = torch.utils.data.DataLoader(
                    train_data,
                    batch_size=16,
                    shuffle=True)

We use a batch size of 16 samples and shuffle our dataset so
that the dataloader retrieves a random sampling of the data.

The dataloader object combines a dataset and a sampler, and
provides an iterable over the given dataset. In other words,
your training loop can use this object to sample your dataset
and apply transforms one batch at a time instead of applying
them for the complete dataset at once. This considerably
improves efficiency and speed when training and testing
models.

The following code shows how to retrieve a batch of samples
from the trainloader:

data_batch, labels_batch = next(iter(trainloader))
print(data_batch.size())
# out: torch.Size([16, 3, 32, 32])

print(labels_batch.size())
# out: torch.Size([16])

We need to use iter() to cast the trainloader to an iterator
and then use next() to iterate over the data one more time.
This is only necessary when accessing one batch. As we’ll see
later, our training loops will access the dataloader directly
without the need for iter() and next(). After checking the
sizes of the data and labels, we see they return batches of size
16.
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We can create a dataloader for our test_data dataset as shown
in the following code:

testloader = torch.utils.data.DataLoader(
                    test_data,
                    batch_size=16,
                    shuffle=False)

Here, we set shuffle to False since there’s usually no need to
shuffle the test data and researchers like to see repeatable test
results.

General Data Preparation (torch.utils.data)
So far, I’ve shown you how to load, transform, and batch image
data using Torchvision. However, you can use PyTorch to pre‐
pare other types of data as well. PyTorch libraries such as
Torchtext and Torchaudio provide dataset and dataloader
classes for text and audio data, and new external libraries are
being developed all the time.

PyTorch also provides a submodule called torch.utils.data
that you can use to create your own dataset and dataloader
classes like the ones you saw in Torchvision. It consists of
Dataset, Sampler, and DataLoader classes.

Dataset classes
PyTorch supports map- and iterable-style dataset classes. A
map-style dataset is derived from the abstract class
torch.utils.data.Dataset. It implements the getitem() and
len() functions, and represents a map from (possibly nonin‐
tegral) indices/keys to data samples. For example, such a data‐
set, when accessed with dataset[idx], could read the idx-th
image and its corresponding label from a folder on the disk.
Map-style datasets are more commonly used than iterable-style
datasets, and all datasets that represent a map made from keys
or data samples should use this subclass.
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TIP

The simplest way to create your own dataset class is to sub‐
class the map-style torch.utils.data.Dataset class and
override the getitem() and len() functions with your
own code.

All subclasses should overwrite getitem(), which fetches a data
sample for a given key. Subclasses can also optionally overwrite
len(), which returns the size of the dataset by many Sampler
implementations and the default options of DataLoader.

An iterable-style dataset, on the other hand, is derived from the
torch.utils.data.IterableDataset abstract class. It imple‐
ments the iter() protocol and represents an iterable over data
samples. This type of dataset is typically used when reading
data from a database or a remote server, as well as data gener‐
ated in real time. Iterable datasets are useful when random
reads are expensive or uncertain, and when the batch size
depends on fetched data.

PyTorch’s torch.utils.data submodule also provides dataset
operations to convert, combine, or split dataset objects. These
operations include the following:

TensorDataset(tensors)

Creates a dataset object from a tensor

ConcatDataset(datasets)

Creates a dataset from multiple datasets

ChainDataset(datasets)

Chains multiple IterableDatasets

Subset(dataset, indices)

Creates a subset of a dataset from specified indices
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Sampler classes
In addition to dataset classes PyTorch also provides sampler
classes, which offer a way to iterate over indices of dataset sam‐
ples. Sampler are derived from the torch.utils.data.Sampler
base class.

Every Sampler subclass needs to implement an iter() method
to provide a way to iterate over indices of dataset elements and
a len() method that returns the length of the returned itera‐
tors. Table 3-1 provides a list of available samplers for your ref‐
erence.

Table 3-1. Dataset samplers (torch.utils.data)

Sampler Description

SequentialSampler(data_source) Samples data in
sequence

RandomSampler(data_source, replace

ment=False, num_samples=None,
generator=None)

Samples data
randomly

SubsetRandomSampler(indices,

generator=None)

Samples data
randomly from a
subset of the
dataset

WeightedRandomSampler(weights,

num_samples, replacement=True,
generator=None)

Samples randomly
from a weighted
distribution

BatchSampler(sampler, batch_size, 

drop_last)

Returns a batch of
samples

distributed.DistributedSampler(dataset,

num_replicas=None, rank=None,
shuffle=True, seed=0)

Samples across
distributed
datasets

Samplers are usually not used directly. They are often passed to
dataloaders to define the way the dataloader samples the
dataset.
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DataLoader classes

The Dataset class returns a dataset object that includes data
and information about the data. The Sampler class returns the
actual data itself in a specified or random fashion. The Data
Loader class combines a dataset with a sampler and returns an
iterable.

The dataset and sampler objects are not iterables, meaning you
cannot run a for loop on them. The dataloader object solves
this problem. We used the DataLoader class to construct a data‐
loader object for our CIFAR-10 example earlier in this chapter.
The DataLoader prototype is shown in the following code:

torch.utils.data.DataLoader(
                dataset,
                batch_size=1,
                shuffle=False,
                sampler=None,
                batch_sampler=None,
                num_workers=0,
                collate_fn=None,
                pin_memory=False,
                drop_last=False,
                timeout=0,
                worker_init_fn=None,
                multiprocessing_context=None,
                generator=None)

The dataset, batch_size, shuffle, and sampler parameters are
the most commonly used. The num_workers parameter is often
used to increase the number of CPU processes that generate
batches in parallel. The rest of the parameters are used only for
advanced cases.

If you write your own dataset class, all you need to do is call the
built-in DataLoader to generate an iterable for your data. There
is no need to create a dataloader class from scratch.

This section provided a quick reference to the data preparation
capabilities of PyTorch. Now that you understand how you can
load, transform, and batch your data with PyTorch, you can
begin to use your data to develop and train deep learning.
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Model Development
Most research and development is focused on developing new
and innovative deep learning models. The model development
process consists of several steps. At this point, I assume that
you have created good datasets and have prepared them for
processing by your model.

The first step in the process is model design, in which you
design one or more model architectures and initialize the mod‐
el’s parameters (e.g., weights and biases.) It’s common practice
to start with an existing design and then modify it or create
your own. I’ll show you how to do both in this section.

The next step is training. During training you’ll pass training
data through your model, measure the error or loss, and adjust
the parameters to improve the results.

During validation, you’ll measure the performance of your
model against validation data that was not used during train‐
ing. This helps to guard against overfitting, where the model
performs well against training data but does not generalize to
other input data.

Finally, the model development process often concludes with
testing. Testing is when you measure the performance of your
trained model against previously unseen data. This section pro‐
vides a quick reference on how to accomplish the steps and
substeps of model development in PyTorch.

Model Design
Model design research has expanded significantly over the past
decade, in all industries and fields. Thousands of papers are
written every year in areas like computer vision, natural lan‐
guage processing, speech recognition, and audio processing to
solve problems such as early cancer detection and innovate
new technologies such as self-driving cars. As a result, there are
many different types of model architectures to choose from,
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depending on the problem you’re trying to solve. You may even
create some of your own!

Using existing and pretrained models
Most users begin model development by selecting an existing
model. Maybe you would like to start off with an existing
design and make minor modifications or experiment with
small improvements before designing your own architecture.
You can also use models or parts of an existing model that have
already been trained with tons of data.

PyTorch provides many resources to leverage existing model
designs and pretrained NNs. One example resource is the
PyTorch-based torchvision library for computer vision. The
torchvision.models subpackage contains definitions of models
for addressing different tasks, including image classification,
pixelwise semantic segmentation, object detection, instance
segmentation, person keypoint detection, and video
classification.

Let’s say we want to use the famous VGG16 model for our
design. VGG16 (also called OxfordNet) is a convolutional NN
architecture named after the Visual Geometry Group from
Oxford, who developed it. It was submitted to the Large Scale
Visual Recognition Challenge in 2014 and achieved 92.7%
top-5 test accuracy on ImageNet, a very large dataset of 14 mil‐
lion hand-annotated images.

We can easily create a pretrained VGG16 model as shown in
the following code:

from torchvision import models

vgg16 = models.vgg16(pretrained=True)

By default, the model will be untrained and have randomly ini‐
tialized weights. However, in our situation we want to use a
pretrained model, so we set pretrained = True. This down‐
loads the weights that were pretrained with the ImageNet data‐
set and initializes our model’s weights with these values.
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You can view the sequence of layers contained in the VGG16
model by printing the model. The VGG16 model consists of
three parts: features, avgpool, and classifier. It’s too large to
print all the layers here, so we’ll just print the classifier part:

print(vgg16.classifier)

# out:
# Sequential(
#   (0): Linear(in_features=25088,
#               out_features=4096, bias=True)
#   (1): ReLU(inplace=True)
#   (2): Dropout(p=0.5, inplace=False)
#   (3): Linear(in_features=4096,
#               out_features=4096, bias=True)
#   (4): ReLU(inplace=True)
#   (5): Dropout(p=0.5, inplace=False)
#   (6): Linear(in_features=4096,
#               out_features=1000, bias=True)
# )

Linear, ReLU, and Dropout are torch.nn modules. torch.nn is
used to create NN layers, activations, loss functions, and other
NN components. Don’t worry about it too much right now;
we’ll cover it in more detail in the next section.

There are many famous untrained and pretrained models avail‐
able, including AlexNet, VGG, ResNet, Inception, and Mobile‐
Net, to name a few. Refer to the Torchvision model documenta‐
tion for a complete list of models and details regarding their
use.

PyTorch Hub is another excellent resource for existing and pre‐
trained PyTorch models. You can load models from another
repository using the torch.hub.load() API. The following
code shows how you would load a model from PyTorch Hub:

waveglow = torch.hub.load(
    'nvidia/DeepLearningExamples:torchhub',
    'nvidia_waveglow')

Here we load a model called WaveGlow that is used to generate
speech from the NVIDIA DeepLearningExamples repository.

70 | Chapter 3: Deep Learning Development with PyTorch

https://pytorch.tips/torchvision-models
https://pytorch.tips/torchvision-models


You can find a list of PyTorch Hub repositories at the main
PyTorch Hub site. To explore all the available API endpoints of
a particular repository you can use the torch.hub.list() func‐
tion on the repository, as shown in the following code:

torch.hub.list(
      'nvidia/DeepLearningExamples:torchhub')

# out:
# ['checkpoint_from_distributed',
#  'nvidia_ncf',
#  'nvidia_ssd',
#  'nvidia_ssd_processing_utils',
#  'nvidia_tacotron2',
#  'nvidia_waveglow',
#  'unwrap_distributed']

This lists all the models available in the nvidia/DeepLearnin‐
gExamples:torchhub repo, including WaveGlow, Tacotron 2,
SSD, and others. Try using hub.list() on other repositories
that support PyTorch Hub to see what other preexisting models
you can find.

Loading preexisting and pretrained models from Python libra‐
ries like Torchvision and from repositories through PyTorch
Hub allows you to build off previous research for your own
work. Later in this chapter, I will show you how to deploy your
models to packages and repositories so that others can access
or build off your own research and development.

The PyTorch NN module (torch.nn)
One of the most powerful features of PyTorch is its Python
module torch.nn, which makes it easy to design and experi‐
ment with new models. The following code illustrates how you
can create a simple model with torch.nn. In this example, we
will create a fully connected model called SimpleNet. It consists
of an input layer, a hidden layer, and an output layer that takes
in 2,048 input values and returns 2 output values for
classification:

import torch.nn as nn
import torch.nn.functional as F
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class SimpleNet(nn.Module):

    def __init__(self): 

        super(SimpleNet, self).__init__() 
        self.fc1 = nn.Linear(2048, 256)
        self.fc2 = nn.Linear(256, 64)
        self.fc3 = nn.Linear(64,2)

    def forward(self, x): 
        x = x.view(-1, 2048)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.softmax(self.fc3(x),dim=1)
        return x

Typically creates layers as class attributes

Calls the base class’s __init__() function to initialize
parameters

Required to define how the model processes data

Creating a model in PyTorch is said to be very “Pythonic,”
meaning it creates objects in the preferred Python fashion. We
first create a new subclass called SimpleNet that inherits from
the nn.Module class, and then we define the __init__() and for
ward() methods. The __init__() function initializes the model
parameters and the forward() function defines how data is
passed through our model.

In __init__(), we call the super() function to execute the par‐
ent nn.Module class’s __init__() method to initialize the class
parameters. Then we define some layers using the nn.Linear
module.

The forward() function defines how data is passed through the
network. In the forward() function, we first use view() to
reshape the input into a 2,048-element vector, then we process
the input through each layer and apply relu() activation
functions. Finally, we apply the softmax() function and return
the output.

72 | Chapter 3: Deep Learning Development with PyTorch



WARNING

PyTorch uses the term module to describe an NN layer or
block. Python uses this term to describe a library package
that you can import. In this book, I’ll stick to the PyTorch
usage and will use the term Python module to describe a
Python library module.

So far, we’ve defined what layers or modules are contained in
our SimpleNet model, how they are connected, and how the
parameters are initialized (through super().init()).

The following code shows how to create the model by instanti‐
ating the model object, called simplenet:

simplenet = SimpleNet() 

print(simplenet)
# out:
# SimpleNet(
#   (fc1): Linear(in_features=2048,
#                 out_features=256, bias=True)
#   (fc2): Linear(in_features=256,
#                 out_features=64, bias=True)
#   (fc3): Linear(in_features=64,
#                 out_features=2, bias=True)
# )

input = torch.rand(2048)

output = simplenet(input) 

Instantiate or create the model.

Run data through the model (forward pass).

If we print the model, we can see how it’s structured. Executing
our model is as simple as calling the model object as a function.
We pass in the inputs, and the model runs the forward pass and
returns the outputs.

This simple model demonstrates the following decisions you
need to make during model design:
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Module definition
How will you define the layers of your NN? How will you
combine these layers into building blocks? In the example,
we chose three linear or fully connected layers.

Activation functions
Which activation functions will you use at the end of each
layer or module? In the example, we chose to use relu
activation for the input and hidden layers and softmax for
the output layer.

Module connections
How will your modules be connected to each other? In the
example, we chose to simply connect each linear layer in
sequence.

Output selection
What output values and formats will be returned? In this
example, we return two values from the softmax()

function.

The simplicity, flexibility, and Pythonic nature of this paradigm
are what make PyTorch so popular for deep learning research.
PyTorch’s torch.nn Python module includes classes for creating
the building blocks, layers, and activation functions required
for NN model design. Let’s walk through the different types of
building blocks available in PyTorch.

Table 3-2 provides a list of NN containers. You can use the con‐
tainer classes to create higher-level sets of building blocks. For
example, you can use Sequential to create a sequence of layers
in one block.

Table 3-2. PyTorch NN containers

Class Description

Module The base class for all NN modules

Sequential A sequential container

ModuleList A container that holds submodules in a list

74 | Chapter 3: Deep Learning Development with PyTorch



Class Description

ModuleDict A container that holds submodules in a dictionary

ParameterList A container that holds parameters in a list

ParameterDict A container that holds parameters in a dictionary

NOTE

nn.Module is the base class for all NN building blocks.
Your NN may consist of a single module or multiple mod‐
ules containing other modules that may also contain mod‐
ules, creating a hierarchy of building blocks.

Table 3-3 lists a few linear layers supported by torch.nn. Linear
is commonly used for fully connected layers.

Table 3-3. PyTorch NN linear layers

Class Description

nn.Identity A placeholder identity operator that is argument-insensitive

nn.Linear A layer that applies a linear transformation to the incoming
data

nn.Bilinear A layer that applies a bilinear transformation to the incoming
data

Table 3-4 lists several convolutional layers supported by
torch.nn. Convolutional layers are used often in deep learning
to apply filters to data at various stages. As you can see in the
table, PyTorch has built-in support for 1D, 2D, and 3D convo‐
lutions as well as transposed and folded variations.

Table 3-4. PyTorch NN convolutional layers

Class Description

nn.Conv1d Applies a 1D convolution over an input signal
composed of several input planes
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Class Description

nn.Conv2d Applies a 2D convolution over an input signal
composed of several input planes

nn.Conv3d Applies a 3D convolution over an input signal
composed of several input planes

nn.ConvTranspose1d Applies a 1D transposed convolution operator over
an input image composed of several input planes

nn.ConvTranspose2d Applies a 2D transposed convolution operator over
an input image composed of several input planes

nn.ConvTranspose3d Applies a 3D transposed convolution operator over
an input image composed of several input planes

nn.Unfold Extracts sliding local blocks from a batched-input
tensor

nn.Fold Combines an array of sliding local blocks into a large
containing tensor

Table 3-5 shows the pooling layers available in torch.nn. Pool‐
ing is often used to downsample or reduce the complexity of
output layers. PyTorch supports 1D, 2D, and 3D pooling and
max or average pooling methods, including their adaptive
variations.

Table 3-5. PyTorch NN pooling layers

Class Description

nn.MaxPool1d Applies a 1D max pooling over an input signal
composed of several input planes

nn.MaxPool2d Applies a 2D max pooling over an input signal
composed of several input planes

nn.MaxPool3d Applies a 3D max pooling over an input signal
composed of several input planes

nn.MaxUnpool1d Computes a partial inverse of MaxPool1d

nn.MaxUnpool2d Computes a partial inverse of MaxPool2d
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Class Description

nn.MaxUnpool3d Computes a partial inverse of MaxPool3d

nn.AvgPool1d Applies a 1D average pooling over an input
signal composed of several input planes

nn.AvgPool2d Applies a 2D average pooling over an input
signal composed of several input planes

nn.AvgPool3d Applies a 3D average pooling over an input
signal composed of several input planes

nn.FractionalMaxPool2d Applies a 2D fractional max pooling over an
input signal composed of several input planes

nn.LPPool1d Applies a 1D power-average pooling over an
input signal composed of several input planes

nn.LPPool2d Applies a 2D power-average pooling over an
input signal composed of several input planes

nn.AdaptiveMaxPool1d Applies a 1D adaptive max pooling over an
input signal composed of several input planes

nn.AdaptiveMaxPool2d Applies a 2D adaptive max pooling over an
input signal composed of several input planes

nn.AdaptiveMaxPool3d Applies a 3D adaptive max pooling over an
input signal composed of several input planes

nn.AdaptiveAvgPool1d Applies a 1D adaptive average pooling over an
input signal composed of several input planes

nn.AdaptiveAvgPool2d Applies a 2D adaptive average pooling over an
input signal composed of several input planes

nn.AdaptiveAvgPool3d Applies a 3D adaptive average pooling over an
input signal composed of several input planes
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Table 3-6 lists the available padding layers. Padding fills in miss‐
ing data when the layer outputs increase in size. PyTorch sup‐
ports 1D, 2D, and 3D padding, and can pad your data with
reflections, replications, zeros, or constants.

Table 3-6. PyTorch NN padding layers

Class Description

nn.ReflectionPad1d Pads the input tensor using the reflection of the
input boundary

nn.ReflectionPad2d Pads the input tensor using the reflection of the
input boundary for 2D inputs

nn.ReplicationPad1d Pads the input tensor using the replication of the
input boundary

nn.ReplicationPad2d Pads the input tensor using the replication of the
input boundary for 2D inputs

nn.ReplicationPad3d Pads the input tensor using the replication of the
input boundary for 3D inputs

nn.ZeroPad2d Pads the input tensor boundaries with zeros

nn.ConstantPad1d Pads the input tensor boundaries with a constant
value

nn.ConstantPad2d Pads the input tensor boundaries with a constant
value for 2D inputs

nn.ConstantPad3d Pads the input tensor boundaries with a constant
value for 3D inputs

Table 3-7 lists the available layers for dropout. Dropout is often
used to reduce complexity, speed up training, and introduce
some regularization to prevent overfitting. PyTorch supports
dropout for 1D, 2D, and 3D layers, and provides support for
alpha dropout as well.
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Table 3-7. PyTorch NN dropout layers

Class Description

nn.Dropout During training, randomly zeros out some of the
elements of the input tensor with probability p using
samples from a Bernoulli distribution

nn.Dropout2d Randomly zeros out entire channels for 2D inputs

nn.Dropout3d Randomly zeros out entire channels for 3D inputs

nn.AlphaDropout Applies alpha dropout over the input

Table 3-8 provides a list of classes that support normalization.
Normalization is performed between some layers to prevent
vanishing or exploding gradients by keeping intermediate layer
inputs within a certain range. It can also help speed up the
training process. PyTorch supports normalization for 1D, 2D,
and 3D inputs and provides normalization methods such as
batch, instance, group, and sync normalization.

Table 3-8. PyTorch NN normalization layers

Class Description

nn.BatchNorm1d Applies batch normalization over a 2D or 3D input
(a mini-batch of 1D inputs with an optional
additional channel dimension), as described in
the paper “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal
Covariate Shift”

nn.BatchNorm2d Applies batch normalization over a 4D input (a
mini-batch of 2D inputs with an additional
channel dimension), as described in the paper
“Batch Normalization”

nn.BatchNorm3d Applies batch normalization over a 5D input (a
mini-batch of 3D inputs with an additional
channel dimension), as described in the paper
“Batch Normalization”
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Class Description

nn.GroupNorm Applies group normalization over a mini-batch of
inputs as described in the paper “Group
Normalization”

nn.SyncBatchNorm Applies batch normalization over an n-
dimensional input (a mini-batch of [n–2]D inputs
with an additional channel dimension), as
described in the paper “Batch Normalization”

nn.InstanceNorm1d Applies instance normalization over a 3D input (a
mini-batch of 1D inputs with an optional
additional channel dimension), as described in
the paper “Instance Normalization: The Missing
Ingredient for Fast Stylization”

nn.InstanceNorm2d Applies instance normalization over a 4D input (a
mini-batch of 2D inputs with an additional
channel dimension), as described in the paper
“Instance Normalization”

nn.InstanceNorm3d Applies instance normalization over a 5D input (a
mini-batch of 3D inputs with an additional
channel dimension), as described in the paper
“Instance Normalization”

nn.LayerNorm Applies layer normalization over a mini-batch of
inputs, as described in the paper “Layer
Normalization”

nn.LocalResponseNorm Applies local response normalization over an
input signal composed of several input planes, in
which channels occupy the second dimension

Table 3-9 shows the recurrent layers used for recurrent neural
networks (RNNs). RNNs are often used to process time series
or sequence-based data. PyTorch has built-in support for RNN,
long short-term memory (LSTM), and gated recurrent unit
(GRU) layers as well as classes for RNN, LSTM, and GRU indi‐
vidual cells.
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Table 3-9. PyTorch NN recurrent layers

Class Description

nn.RNNBase The RNN base class

nn.RNN A layer that applies a multilayer Elman RNN with \Tanh or
ReLU nonlinearity to an input sequence

nn.LSTM A layer that applies a multilayer LSTM RNN to an input
sequence

nn.GRU A layer that applies a multilayer GRU RNN to an input sequence

nn.RNNCell An Elman RNN cell with tanh or ReLU nonlinearity

nn.LSTMCell An LSTM cell

nn.GRUCell A GRU cell

Table 3-10 lists the transformer layers used for transformer net‐
works. Transformer networks are often considered the state of
the art for processing sequence data. PyTorch supports the
complete Transformer model class in addition to providing the
Encoder and Decoder submodules in stack and layer formats.

Table 3-10. PyTorch NN transformer layers

Class Description

nn.Transformer A transformer model

nn.TransformerEncoder A stack of N encoder layers

nn.TransformerDecoder A stack of N decoder layers

nn.TransformerEncoderLayer A layer made up of a self-attention
(attn) and feed-forward network

nn.TransformerDecoderLayer A layer made up of a self-attn,
multihead-attn, and feed-forward
network

Table 3-11 contains a list of sparse layers. PyTorch provides
built-in support for text data embeddings as well as sparse lay‐
ers for cosine similarity and pairwise distance, often used in
recommendation engine algorithms.
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Table 3-11. PyTorch NN sparse layers and distance functions

Class Description

nn.Embedding Stores the embeddings of a fixed dictionary and
size

nn.EmbeddingBag Computes sums or means of “bags” of embeddings
without instantiating the intermediate
embeddings

nn.CosineSimilarity Returns the cosine similarity between x1 and x2

computed along a dimension

nn.PairwiseDistance Computes the batchwise pairwise distance
between the vectors v1 and v2 using the p-norm

Table 3-12 contains a list of vision layers to support computer
vision. They include layers to shuffle pixels and perform several
upsampling algorithms.

Table 3-12. PyTorch NN vision layers

Class Description

nn.PixelShuffle Rearranges elements in a tensor of shape (∗,

C × r2, H, W) to a tensor of shape (∗, C,
H × r, W × r)

nn.Upsample Upsamples the given multichannel 1D
(temporal), 2D (spatial), or 3D (volumetric)
data

nn.UpsamplingNearest2d Applies a 2D nearest neighbor upsampling to
an input signal composed of several input
channels

nn.UpsamplingBilinear2d Applies a 2D bilinear upsampling to an input
signal composed of several input channels

Table 3-13 provides a list of all the activations available in
torch.nn. Activation functions are often applied to layer out‐
puts to introduce nonlinearities into a model. PyTorch sup‐
ports traditional activations such as sigmoid, tanh, softmax,
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and ReLU as well as more recent functions such as leaky ReLU.
More functions are being added as researchers design and
apply new activations in their publications.

Table 3-13. PyTorch NN nonlinear activations

Class Description

nn.ELU Applies the exponential linear unit function
element-wise

nn.Hardshrink Applies the hard shrinkage function
element-wise

nn.Hardsigmoid Applies the hard sigmoid function
element-wise

nn.Hardtanh Applies the hardtanh function element-wise

nn.Hardswish Applies the hardswish function
element-wise

nn.LeakyReLU Applies the leaky rectified linear unit
function element-wise

nn.LogSigmoid Applies the logarithmic sigmoid function
element-wise

nn.MultiheadAttention Allows the model to jointly attend to
information from different representation
subspaces

nn.PReLU Applies the parametric rectified linear unit
function element-wise

nn.ReLU Applies the rectified linear unit function
element-wise

nn.ReLU6 Applies the rectified linear unit function with
a maximum

nn.RReLU Applies the randomized leaky rectified liner
unit function element-wise

nn.SELU Applies the scaled exponential linear unit
function element-wise
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Class Description

nn.CELU Applies the continuously differentiable
exponential linear unit function
element-wise

nn.GELU Applies the Gaussian error linear unit
function

nn.Sigmoid Applies the sigmoid function element-wise

nn.Softplus Applies the softplus function element-wise

nn.Softshrink Applies the soft shrinkage function
element-wise

nn.Softsign Applies the softsign function element-wise

nn.Tanh Applies the hyperbolic tangent function
element-wise

nn.Tanhshrink Applies the hyperbolic tangent function with
shrinkage element-wise

nn.Threshold Establishes the threshold of each element of
the input tensor

nn.Softmin Applies the softmin function to an n-
dimensional input tensor to rescale them so
the elements of the n-dimensional output
tensor lie in the range [0, 1] and sum to 1

nn.Softmax Applies the softmax function to an n-
dimensional input tensor to rescale them so
the elements of the n-dimensional output
tensor lie in the range [0,1] and sum to 1

nn.Softmax2d Applies the softmax function to features in
each spatial location

nn.LogSoftmax Applies the log(softmax(x)) function to an n-
dimensional input tensor
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Class Description

nn.AdaptiveLogSoftmax

WithLoss

Gives an efficient softmax approximation, as
described in “Efficient Softmax
Approximation for GPUs” by Edouard Grave
et al.

As you can see, the PyTorch torch.nn module supports a
robust set of NN layers and activation functions. You can use
its classes to create everything from simple sequential models
to complex multiple hierarchical networks, generative adversa‐
rial networks (GANs), transformer networks, RNNs, and more.

Now that you know how to design your model, let’s explore
how you can train and test your own NN model designs with
PyTorch.

Training
During model design, you defined your NN modules, their
parameters, and how they are connected to each other. In
PyTorch, your model design is implemented as a model object
derived from the torch.nn.Module class. You can call the object
to pass data into the model and generate outputs based on the
model architecture and the current values of its parameters.

The next step in model development is to train your model
with your training data. Training a model involves nothing
more than estimating the model’s parameters, passing in data,
and adjusting the parameters to achieve a more accurate repre‐
sentation of how the data is generally modeled.

In other words, you set the parameters to some values, pass
through data, and then compare the model’s outputs with true
outputs to measure the error. The goal is to change the parame‐
ters and repeat the process until the error is minimized and the
model’s outputs are the same as the true outputs.

Model Development | 85



Fundamental training loop
One of the key advantages of PyTorch over other machine
learning frameworks is its flexibility, especially when creating
customized training loops. In this chapter, we’ll explore a fun‐
damental training loop commonly used for supervised
learning.

In this example, we will train the LeNet5 model with the
CIFAR-10 dataset that we used earlier in this chapter. The
LeNet5 model is a simple convolutional NN developed by Yann
LeCun and his team at Bell Labs in the 1990s to classify hand-
written digits. (Unbeknownst to me at the time, I actually
worked for Bell Labs in the same building in Holmdel, NJ,
while this work was being performed.)

A modernized version of the LeNet5 model can be created
using the following code:

from torch import nn
import torch.nn.functional as F

class LeNet5(nn.Module): 
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)),
                        (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1,
                   int(x.nelement() / x.shape[0]))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

device = ('cuda' if torch.cuda.is_available()

  else 'cpu') 

model = LeNet5().to(device=device) 

86 | Chapter 3: Deep Learning Development with PyTorch



Define the model class.

Use a GPU if it’s available.

Create the model and move it to a GPU (if available).

As shown in the preceding code, our LeNet5 model uses two
convolutional layers and three fully connected or linear layers.
It has been modernized with max pooling and ReLU activa‐
tions. We’ll also utilize a GPU for training in this example, if we
can, to speed up training. Here, we create the model object,
called model.

Next, we need to define the loss function (which is also called
the criterion) and the optimizer algorithm. The loss function
determines how we measure the performance of our model and
computes the loss or error between predictions and truth. We’ll
attempt to minimize the loss by adjusting the model parame‐
ters during training. The optimizer defines how we update our
model’s parameters during training.

To define the loss function and the optimizer, we use the
torch.optim and torch.nn packages as shown in the following
code:

from torch import optim
from torch import nn

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), 
                      lr=0.001,
                      momentum=0.9)

Be sure to pass in the model.parameters() for your model.

For this example, we use the CrossEntropyLoss() function and
the stochastic gradient descent (SGD) optimizer. Cross entropy
loss is frequently used for classification problems. The SGD
algorithm is also commonly used as an optimizer function.
Choosing a loss function and an optimizer is beyond the scope
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of this book; however, we’ll examine many built-in PyTorch
loss functions and optimizers later in this chapter.

WARNING

PyTorch optimizers require that you pass in the model
parameters using the parameters() method (i.e.,
model.parameters()). It’s a common mistake to forget
the ().

The following PyTorch code demonstrates the fundamental
training loop:

N_EPOCHS = 10

for epoch in range(N_EPOCHS): 

    epoch_loss = 0.0
    for inputs, labels in trainloader:

        inputs = inputs.to(device) 
        labels = labels.to(device)

        optimizer.zero_grad() 

        outputs = model(inputs) 

        loss = criterion(outputs, labels) 

        loss.backward() 

        optimizer.step() 

        epoch_loss += loss.item() 
    print("Epoch: {} Loss: {}".format(epoch,
           epoch_loss/len(trainloader)))

# out: (results will vary and make take minutes)
# Epoch: 0 Loss: 1.8982970092773437
# Epoch: 1 Loss: 1.6062103009033204
# Epoch: 2 Loss: 1.484384165763855
# Epoch: 3 Loss: 1.3944422281837463
# Epoch: 4 Loss: 1.334191104450226
# Epoch: 5 Loss: 1.2834235876464843
# Epoch: 6 Loss: 1.2407222446250916
# Epoch: 7 Loss: 1.2081411465930938
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# Epoch: 8 Loss: 1.1832368299865723
# Epoch: 9 Loss: 1.1534993273162841

Outer training loop; loop over 10 epochs.

Move inputs and labels to GPU if available.

Zero out gradients before each backpropagation pass, or
they’ll accumulate.

Perform forward pass.

Compute loss.

Perform backpropagation; compute gradients.

Adjust parameters based on gradients.

Accumulate batch loss so we can average over the epoch.

The training loop consists of two loops. In the outer loop, we
will process the entire set of training data during every iteration
or epoch. However, instead of waiting to process the entire
dataset before updating the model’s parameters, we process
smaller batches of data, one batch at a time. The inner loop
loops over each batch.

WARNING

By default, PyTorch accumulates the gradients during each
call to loss.backward() (i.e., the backward pass). This is
convenient while training some types of NNs, such as
RNNs; however, it is not desired for convolutional neural
networks (CNNs). In most cases, you will need to call
optimizer.zero_grad() to zero the gradients before
doing backpropagation so the optimizer updates the model
parameters correctly.
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For each batch, we pass the batch (called inputs) into the
model. It runs the forward pass and returns the computed out‐
puts. Next, we compare the model outputs (called outputs)
with the true values from the training dataset (called labels)
using criterion() to compute the error or loss.

Next, we adjust the model parameters (i.e., the weights and bia‐
ses of the NN) to reduce the loss. To do so, we first perform
backpropagation with loss.backward() to compute the gradi‐
ents and then run the optimizer with optimizer.step() to
update the parameters based on the computed gradients.

This is the fundamental process used for training NN models.
Implementations may vary, but you can use this example as a
quick reference when creating your own training loops. When
designing the training loop, you will need to decide how data
will be processed or batched, what loss function to use, and
what optimizer algorithm to run.

You can use one of PyTorch’s built-in loss functions and opti‐
mizer algorithms, or you can create your own.

Loss functions

PyTorch includes many built-in loss functions in the torch.nn
Python module. Table 3-14 provides a list of available loss
functions.

Table 3-14. Loss functions

Loss function Description

nn.L1Loss() Creates a criterion that measures
the mean absolute error (MAE)
between each element in the input
x and target y

nn.MSELoss() Creates a criterion that measures
the mean squared error (squared L2
norm) between each element in the
input x and target y
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Loss function Description

nn.CrossEntropyLoss() Combines nn.LogSoftmax()
and nn.NLLLoss() in a single
class

nn.CTCLoss() Calculates the connectionist
temporal classification loss

nn.NLLLoss() Calculates the negative log
likelihood loss

nn.PoissonNLLLoss() Calculates the negative log
likelihood loss with a Poisson
distribution of the target

nn.KLDivLoss() Measures the Kullback–Leibler
divergence loss

nn.BCELoss() Creates a criterion that measures
the binary cross entropy between
the target and the output

nn.BCEWithLogitsLoss() Combines a sigmoid layer and the
nn.BCELoss() in a single class

nn.MarginRankingLoss() Creates a criterion that measures
the loss when given inputs x1, x2,
two 1D mini-batch tensors, and a
label 1D mini-batch tensor y
(containing 1 or –1)

nn.HingeEmbeddingLoss() Measures the loss when given an
input tensor x and a label tensor y
(containing 1 or –1)

nn.MultiLabelMarginLoss() Creates a criterion that optimizes a
multiclass classification hinge loss
(i.e., a margin-based loss) between
input x (a 2D mini-batch tensor)
and output y (a 2D tensor of target
class indices)
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Loss function Description

nn.SmoothL1Loss() Creates a criterion that uses a
squared term if the absolute
element-wise error falls below 1 or
an L1 term otherwise

nn.SoftMarginLoss() Creates a criterion that optimizes a
two-class classification logistic loss
between input tensor x and target
tensor y (containing 1 or –1)

nn.MultiLabelSoftMarginLoss() Creates a criterion that optimizes a
multilabel one-versus-all loss based
on the maximum entropy

nn.CosineEmbeddingLoss() Creates a criterion that measures
the loss given input tensors x1, x2

and a tensor labeled y with values 1
or –1

nn.MultiMarginLoss() Creates a criterion that optimizes a
multiclass classification hinge loss

nn.TripletMarginLoss() Creates a criterion that measures
the triplet loss when given input
tensors x1, x2, x3 and a margin with
a value greater than 0

WARNING

The CrossEntropyLoss() function includes the softmax
calculation, which is usually performed in the last step of
an NN classifier model. When using CrossEntropyLoss(),
do not include Softmax() in the output layer of your
model definition.
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Optimizer algorithms
PyTorch also includes many built-in optimizer algorithms in
the torch.optim Python submodule. Table 3-15 lists the avail‐
able optimizer algorithms and their descriptions.

Table 3-15. Optimizer algorithms

Algorithm Description

Adadelta() An adaptive learning rate method

Adagrad() An adaptive gradient algorithm

Adam() A method for stochastic optimization

AdamW() An Adam variant proposed in “Decoupled Weight Decay
Regularization”

SparseAdam() A version of Adam suitable for sparse tensors

Adamax() A variant of Adam based on the infinity norm

ASGD() Averaged stochastic gradient descent

LBFGS() A limited-memory implementation of the BFGS algorithm,
heavily inspired by minFunc

RMSprop() Root mean square propagation

Rprop() Resilient backpropagation

SGD() Stochastic gradient descent

The torch.optim Python submodule supports most commonly
used algorithms. The interface is general enough so new ones
can also be easily integrated in the future. Visit the torch.optim
documentation for more details on how to configure the algo‐
rithms and adjust their learning rates.
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Validation
Now that we have trained our model and attempted to mini‐
mize the loss, how can we evaluate its performance? How do
we know that our model will generalize and work with data it
has never seen before?

Model development often includes validation and testing loops
to ensure that overfitting does not occur and that the model
will perform well against unseen data. Let’s address validation
first. Here, I’ll provide you with a quick reference for how you
can add validation to your training loops with PyTorch.

Typically, we will reserve a portion of the training data for vali‐
dation. The validation data will not be used to train the NN;
instead, we’ll use it to test the performance of the model at the
end of each epoch.

Validation is good practice when training your models. It’s
commonly performed when adjusting hyperparameters. For
example, maybe we want to slow down the learning rate after
five epochs.

Before we perform validation, we need to split our training
dataset into a training dataset and a validation dataset, as
shown in the following code:

from torch.utils.data import random_split

train_set, val_set = random_split(
                      train_data,
                      [40000, 10000])

trainloader = torch.utils.data.DataLoader(
                    train_set,
                    batch_size=16,
                    shuffle=True)

valloader = torch.utils.data.DataLoader(
                    val_set,
                    batch_size=16,
                    shuffle=True)

print(len(trainloader))
# out: 2500
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print(len(valloader))
# out: 625

We use the random_split() function from torch.utils.data to
reserve 10,000 of our 50,000 training images for validation.
Once we create our train_set and val_set, we create our data‐
loaders for each one.

We then define our model, loss function (or criterion), and
optimizer, as shown here:

from torch import optim
from torch import nn

model = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),
                      lr=0.001,
                      momentum=0.9)

The following code shows the previous fundamental training
example with validation added:

N_EPOCHS = 10
for epoch in range(N_EPOCHS):

    # Training
    train_loss = 0.0

    model.train() 
    for inputs, labels in trainloader:
        inputs = inputs.to(device)
        labels = labels.to(device)

        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        train_loss += loss.item()

    # Validation
    val_loss = 0.0

    model.eval() 
    for inputs, labels in valloader:
        inputs = inputs.to(device)
        labels = labels.to(device)
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        outputs = model(inputs)
        loss = criterion(outputs, labels)

        val_loss += loss.item()

    print(
      "Epoch: {} Train Loss: {} Val Loss: {}".format(
                  epoch,
                  train_loss/len(trainloader),
                  val_loss/len(valloader)))

Configure the model for training.

Configure the model for testing.

Validation occurs at every epoch after the training data has
been processed. During validation, the model is passed data
that was not used in training and that has not yet been seen by
the model. We only perform the forward pass during
validation.

NOTE

Running the .train() or .eval() method on your model
object puts the model in training or testing mode, respec‐
tively. Calling these methods is only necessary if your
model operates differently for training and evaluation. For
example, dropout and batch normalization are used in
training but not in validation or testing. It’s good practice
to call .train() and .eval() in your loops.

If the loss decreases for validation data, then the model is doing
well. However, if the training loss decreases but the validation
loss does not, then there’s a good chance the model is overfit‐
ting. Look at your results from the previous training loop. You
should have similar results to the following:

# out: (results may vary and take a few minutes)
# Epoch: 0 Train Loss: 1.987607608 Val Loss: 1.740786979
# Epoch: 1 Train Loss: 1.649753892 Val Loss: 1.587019552
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# Epoch: 2 Train Loss: 1.511723689 Val Loss: 1.435539366
# Epoch: 3 Train Loss: 1.408525426 Val Loss: 1.361453659
# Epoch: 4 Train Loss: 1.339505518 Val Loss: 1.293459154
# Epoch: 5 Train Loss: 1.290560259 Val Loss: 1.245048282
# Epoch: 6 Train Loss: 1.259268565 Val Loss: 1.285989610
# Epoch: 7 Train Loss: 1.235161985 Val Loss: 1.253840940
# Epoch: 8 Train Loss: 1.207051850 Val Loss: 1.215700019
# Epoch: 9 Train Loss: 1.189215132 Val Loss: 1.183332257

As you can see, our model is training well and does not seem to
be overfitting, since both the training loss and the validation
loss are decreasing. If we train the model for more epochs, we
may get even better results.

We’re not quite finished, though. Our model may still be over‐
fitting. We might have just gotten lucky with our choice of
hyperparameters, leading to good validation results. As a fur‐
ther test against overfitting, we will run some test data through
our model.

The model has never seen the test data during training, nor has
the test data had any influence on the hyperparameters. Let’s
see how we perform against the test dataset.

Testing
CIFAR-10 provides its own test dataset, and we created
test_data and a testloader earlier in the chapter. Let’s run the
test data through our test loop, as shown in the following code:

num_correct = 0.0
for x_test_batch, y_test_batch in testloader:

  model.eval() 
  y_test_batch = y_test_batch.to(device)
  x_test_batch = x_test_batch.to(device)

  y_pred_batch = model(x_test_batch) 

  _, predicted = torch.max(y_pred_batch, 1) 
  num_correct += (predicted ==

    y_test_batch).float().sum() 

accuracy = num_correct/(len(testloader) \

  *testloader.batch_size) 

print(len(testloader), testloader.batch_size)
# out: 625 16
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print("Test Accuracy: {}".format(accuracy))
# out: Test Accuracy: 0.6322000026702881

Set the model to evaluation mode for testing.

Predict the outcomes for each batch.

Select the class index with the highest probability.

Compare the prediction to the true label and count the
number of correct predictions.

Compute the percentage of correct predictions (accuracy).

Our initial test results after 10 epochs of training show a 63%
accuracy rate against the test data. That’s not a bad start; see if
you can improve the accuracy by training over more epochs.

You now know how to create training, validation, and test
loops using PyTorch. Feel free to use this code as a reference
when creating your own loops.

Now that you have a fully trained model, let’s explore what you
can do with it in the model deployment stage.

Model Deployment
Depending upon your goals, there are many options for saving
or deploying your trained models. If you are conducting deep
learning research, you may want to save your models in such a
way that you can repeat your experiments or access them later
for presentations and publishing papers. You may also wish to
publish your models as part of a Python package like Torchvi‐
sion or release them to a repository like PyTorch Hub so that
other researchers can access your work.

On the development side, you may want to deploy your trained
NN model to a production environment or integrate your
model with a product or service. This could be a prototype sys‐
tem, edge device, or mobile device. You may also want to
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deploy it to a local production server or a cloud server that
provides an API endpoint that a system can use. Whatever your
goal, PyTorch provides capabilities to help you deploy your
models as you wish.

Saving Models
One of the simplest things you can do is save your trained
model for future use. When you want to run your model
against new inputs, you can simply load it and call the model
with the new values.

The following code illustrates the recommended way to save
and load a trained model. It uses the state_dict() method,
which creates a dictionary object that maps each layer to its
parameter tensor. In other words, we only need to save the
model’s learned parameters. We already have the model’s
design defined in our model class, so we don’t need to save the
architecture. When we load the model, we use the constructor
to create a “blank model,” and then we use load_state_dict()
to set the parameters for each layer:

torch.save(model.state_dict(), "./lenet5_model.pt")

model = LeNet5().to(device)
model.load_state_dict(torch.load("./lenet5_model.pt"))

Note that load_state_dict() requires a dictionary object, not a
path to a saved state_dict object. You must use torch.load()
to deserialize the saved state_dict file before passing it to
load_state_dict().

NOTE

A common PyTorch convention is to save models using
either a .pt or .pth file extension.
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You can save and load the entire model using torch.save(PATH)
and model = torch.load(PATH) too. Although this is more
intuitive, it is not recommended because the serialization pro‐
cess is bound to the exact file path and directory structure used
to define the model class. Your code can break if you refactor
your class code and try to load the model in other projects. Sav‐
ing and loading the state_dict object instead will give you
more flexibility to restore the model later.

Deploying to PyTorch Hub
PyTorch Hub is a pretrained model repository designed to
facilitate research reproducibility. Earlier in this chapter, I
showed you how to load a preexisting or pretrained model
from PyTorch Hub. Now, I’ll show you how to publish your
pretrained models, including model definitions and pretrained
weights, to a GitHub repository by adding a simple hubconf.py
file. The hubconf.py file defines the code dependencies and pro‐
vides one or more endpoints to the PyTorch API.

In most cases just importing the right function will be suffi‐
cient, but you can define the entry point explicitly. The follow‐
ing code shows how you would load a model from PyTorch
Hub using the VGG16 endpoint:

import torch
vgg16 = torch.hub.load('pytorch/vision',
  'vgg16', pretrained=True)

Now, if you had created VGG16 and wanted to deploy it to
PyTorch Hub, all you would need to do is include the following
hubconf.py file in the root of your repository. The hubconf.py
configuration file sets torch as a dependency. Any function
defined in this file will act as an endpoint, so simply importing
the VGG16 function does the job:

dependencies = ['torch']
from torchvision.models.vgg import vgg16

If you want to explicitly define the endpoint, you can write a
function like the one in the following code:
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dependencies = ['torch']
from torchvision.models.vgg import vgg16 as _vgg16

# vgg16 is the name of the entrypoint
def vgg16(pretrained=False, **kwargs):
    """ # This docstring shows up in hub.help():
    VGG16 model
    pretrained (bool): kwargs,
      load pretrained weights into the model
    """
    # Call the model; load pretrained weights
    model = _vgg16(pretrained=pretrained, **kwargs)
    return model

And that’s it! Researchers around the world will rejoice as they
easily load your pretrained models from PyTorch Hub.

Deploying to Production
Saving models to files and repositories may be fine when you’re
conducting research; however, to solve most problems, we
must integrate our models into products and services. This is
often called “deploying to production.” There are many ways to
do this, and PyTorch has built-in capabilities to support them.
Deploying to production is a comprehensive topic that will be
discussed in depth in Chapter 7.

This chapter covered a lot of ground, exploring the deep learn‐
ing development process and providing a quick reference to the
PyTorch capabilities for implementing each step. The next
chapter presents additional reference designs that you can use
for projects involving transfer learning, sentiment analysis, and
generative learning .
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CHAPTER 4

Neural Network Development
Reference Designs

In the previous chapter we covered NN development process at
a high level, and you learned how to implement each stage in
PyTorch. The examples in that chapter focused on solving an
image classification problem with the CIFAR-10 dataset and a
simple fully connected network. CIFAR-10 image classification
is a good academic example to illustrate the NN development
process, but there’s a lot more to developing deep learning
models with PyTorch.

This chapter presents some additional reference designs for
NN development with PyTorch. Reference designs are code
examples that you can use as a reference to solve similar types
of problems.

Indeed, the set of reference designs in this chapter merely
scratches the surface when it comes to the possibilities of deep
learning; however, I’ll attempt to provide you with enough
variety to assist you in the development of your own solutions.
We will use three examples to process a variety of data, design
different model architectures, and explore other approaches to
the learning process.
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The first example uses PyTorch to perform transfer learning to
classify images of bees and ants with a small dataset and a pre‐
trained network. The second example uses PyTorch to perform
sentiment analysis using text data to train an NLP model that
predicts the positive or negative sentiment of movie reviews.
And the third example uses PyTorch to demonstrate generative
learning by training a generative adversarial network (GAN) to
generate images of articles of clothing.

In each example, I’ll provide PyTorch code so that you can use
this chapter as a quick reference when writing code for your
own designs. Let’s begin by seeing how PyTorch can solve a
computer vision problem using transfer learning.

Image Classification with Transfer Learning
The subject of image classification has been studied in depth,
and many famous models, like the AlexNet and VGG models
we saw earlier, are readily available through PyTorch. However,
these models have been trained with the ImageNet dataset.
Although ImageNet contains 1,000 different image classes, it
may not contain the classes that you need to solve your image
classification problem.

In this case, you can apply transfer learning, a process in which
we fine-tune pretrained models with a much smaller dataset of
new images. For our next example, we will train a model to
classify images of bees and ants—classes not contained in
ImageNet. Bees and ants look very similar and can be difficult
to distinguish.

To train our new classifier, we will fine-tune another famous
model, called ResNet18, by loading the pretrained model and
training it with 120 new training images of bees and ants—a
much smaller set compared to the millions of images in
ImageNet.

104 | Chapter 4: Neural Network Development Reference Designs



Data Processing
Let’s begin by loading our data, defining our transforms, and
configuring our dataloaders for batch sampling. As we did ear‐
lier, we’ll leverage functions from the Torchvision library for
creating the datasets, loading the data, and applying the data
transforms.

First let’s import the required libraries for this example:
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models
from torchvision import transforms

Then we’ll download the data that we’ll use for training and
validation:

from io import BytesIO
from urllib.request import urlopen
from zipfile import ZipFile

zipurl = 'https://pytorch.tips/bee-zip'
with urlopen(zipurl) as zipresp:
  with ZipFile(BytesIO(zipresp.read())) as zfile:
     zfile.extractall('./data')

Here, we use the io, urlib, and zipfile libraries to download
and unzip a file to our local filesystem. After running the
previous code, you should have your training and validation
images in your local data/ folder. They are located in
data/hymenoptera_data/train and data/hymenoptera_data/val,
respectively.

Next let’s define our transforms, load the data, and configure
our batch samplers.
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First we’ll define our transforms:
train_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(
        [0.485, 0.456,0.406],
        [0.229, 0.224, 0.225])])

val_transforms = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(
        [0.485, 0.456, 0.406],
        [0.229, 0.224, 0.225])])

Notice that we randomly resize, crop, and flip images for train‐
ing but not for validation. The “magic” numbers used in the
Normalize transforms are precomputed values for the means
and standard deviations.

Now let’s define the datasets:
train_dataset = datasets.ImageFolder(
            root='data/hymenoptera_data/train',
            transform=train_transforms)

val_dataset = datasets.ImageFolder(
            root='data/hymenoptera_data/val',
            transform=val_transforms)

In the previous code we used the ImageFolder dataset to pull
images from our data folders and set the transforms to the ones
we defined earlier. Next, we define our dataloaders for batch
iteration:

train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=4,
            shuffle=True,
            num_workers=4)

val_loader = torch.utils.data.DataLoader(
            val_dataset,
            batch_size=4,
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            shuffle=True,
            num_workers=4)

We’re using a batch size of 4, and we set num_workers to 4 to
configure four CPU processes to handle the parallel processing.

Now that we have prepared our training and validation data,
we can design our model.

Model Design
For this example we’ll use a ResNet18 model that has been pre‐
trained with ImageNet data. However, ResNet18 is designed to
detect 1,000 classes, and in our case, we only need 2 classes—
bees and ants. We can modify the final layer to detect 2 classes
instead of 1,000 as shown in the following code:

model = models.resnet18(pretrained=True)

print(model.fc)
# out:
# Linear(in_features=512, out_features=1000, bias=True)

num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
print(model.fc)
# out:
# Linear(in_features=512, out_features=2, bias=True)

We first load a pretrained ResNet18 model using the function
torchvision.models.resnet18(). Next, we read the number of
features before the final layer with model.fc.in_features. Then
we change the final layer by directly setting model.fc to a fully
connected layer with two outputs.

We are going to use the pretrained model as a starting point
and fine-tune its parameters with new data. Since we replaced
the final linear layer, its parameters are now randomly
initialized.

Now we have a ResNet18 model with all weights pretrained
with ImageNet images except for the last layer. Next, we need
to train our model with images of bees and ants.
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TIP

Torchvision provides many famous pretrained models for
computer vision and image processing, including the
following:

• AlexNet

• VGG

• ResNet

• SqueezeNet

• DenseNet

• Inception v3

• GoogLeNet

• ShuffleNet v2

• MobileNet v2

• ResNeXt

• Wide ResNet

• MNASNet

For more information, explore the torchvision.models
class or visit the Torchvision models documentation.

Training and Validation
Before we fine-tune our model, let’s configure our training with
the following code:

from torch.optim.lr_scheduler import StepLR

device = torch.device("cuda:0" if

  torch.cuda.is_available() else "cpu") 

model = model.to(device)

criterion = nn.CrossEntropyLoss() 
optimizer = optim.SGD(model.parameters(),
                      lr=0.001,
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                      momentum=0.9) 
exp_lr_scheduler = StepLR(optimizer,
                          step_size=7,

                          gamma=0.1) 

Move the model to a GPU if available.

Define our loss function.

Define our optimizer algorithm.

Use a learning rate scheduler.

The code should look familiar, with the exception of the learn‐
ing rate scheduler. Here we will use a scheduler from PyTorch
to adjust the learning rate of our SGD optimizer after several
epochs. Using a learning rate scheduler will help our NN adjust
its weights more precisely as training goes on.

The following code illustrates the entire training loop, includ‐
ing validation:

num_epochs=25

for epoch in range(num_epochs):

  model.train() 
  running_loss = 0.0
  running_corrects = 0

  for inputs, labels in train_loader:
    inputs = inputs.to(device)
    labels = labels.to(device)

    optimizer.zero_grad()
    outputs = model(inputs)
    _, preds = torch.max(outputs,1)
    loss = criterion(outputs, labels)

    loss.backward()
    optimizer.step()

    running_loss += loss.item()/inputs.size(0)
    running_corrects += \
      torch.sum(preds == labels.data) \
        /inputs.size(0)
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  exp_lr_scheduler.step() 
  train_epoch_loss = \
    running_loss / len(train_loader)
  train_epoch_acc = \
    running_corrects / len(train_loader)

  model.eval() 
  running_loss = 0.0
  running_corrects = 0

  for inputs, labels in val_loader:
      inputs = inputs.to(device)
      labels = labels.to(device)
      outputs = model(inputs)
      _, preds = torch.max(outputs,1)
      loss = criterion(outputs, labels)

      running_loss += loss.item()/inputs.size(0)
      running_corrects += \
        torch.sum(preds == labels.data) \
            /inputs.size(0)

  epoch_loss = running_loss / len(val_loader)
  epoch_acc = \
    running_corrects.double() / len(val_loader)
  print("Train: Loss: {:.4f} Acc: {:.4f}"
    " Val: Loss: {:.4f}"
    " Acc: {:.4f}".format(train_epoch_loss,
                          train_epoch_acc,
                          epoch_loss,
                          epoch_acc))

Training loop.

Schedule the learning rate for next the epoch of training.

Validation loop.

We should see the training and validation loss decrease while
the accuracies improve. The results may bounce around a little.
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Testing and Deployment
Let’s test our model and deploy it by saving the model to a file.
To test our model, we’ll display a batch of images and show
how our model classified them, as shown in the following code:

import matplotlib.pyplot as plt

def imshow(inp, title=None): 

    inp = inp.numpy().transpose((1, 2, 0)) 
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])

    inp = std * inp + mean 
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)

inputs, classes = next(iter(val_loader)) 
out = torchvision.utils.make_grid(inputs)
class_names = val_dataset.classes

outputs = model(inputs.to(device)) 

_, preds = torch.max(outputs,1) 

imshow(out, title=[class_names[x] for x in preds]) 

Define a new function to plot images from our tensor
images.

Switch from C × H × W to H × W × C image formats for
plotting.

Undo the normalization we do during transforms so we
can properly view images.

Grab a batch of images from our validation dataset.

Perform classification using our fine-tuned ResNet18.

Take the “winning” class.

Display the input images and their predicted classes.
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Since we have such a small dataset, we simply test the model by
visualizing the output to make sure the images match the
labels. Figure 4-1 shows an example test. Your results will vary
since the val_loader will return a randomly sampled batch of
images.

Figure 4-1. Results of image classification

When we are done, we save the model:
torch.save(model.state_dict(), "./resnet18.pt")

You can use this reference design for other cases of transfer
learning, not only with image classification but with other
types of data as well. As long as you can find a suitable pre‐
trained model, you will be able to modify the model and retrain
only a portion of it with a small amount of data.

This example was based on the "Transfer Learning for Computer
Vision Tutorial" by Sasank Chilamkurthy. You can find more
details in the tutorial.

Next, we’ll venture into the field of NLP and explore a reference
design that processes text data.

Sentiment Analysis with Torchtext
Another popular deep learning application is sentiment analy‐
sis, in which people classify a block of text data. In this exam‐
ple, we will train an NN to predict whether a movie review is
either positive or negative using the well-known Internet
Movie Database (IMDb) dataset. Sentiment analysis of IMDb
data is a common beginner example for learning NLP.
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Data Processing
The IMDb dataset consists of 25,000 movie reviews from IMDb
that are labeled by sentiment (e.g., positive or negative). The
PyTorch project includes a library called Torchtext that pro‐
vides convenient capabilities for performing deep learning on
text data. To begin our example reference design, we will use
Torchtext to load and preprocess the IMDb dataset.

Before we load the dataset, we will define a function called
generate_bigrams() that we’ll use to preprocess our text review
data. The model that we’ll use for this example computes n-
grams of an input sentence and appends them to the end. We’ll
use bi-grams, which are pairs of words or tokens that appear in
a sentence.

The following code shows our preprocessing function,
generate_bigrams(), and provides an example of how it works:

def generate_bigrams(x):
  n_grams = set(zip(*[x[i:] for i in range(2)]))
  for n_gram in n_grams:
    x.append(' '.join(n_gram))
  return x

generate_bigrams([
        'This', 'movie', 'is', 'awesome'])
# out:
# ['This', 'movie', 'is', 'awesome', 'This movie',
#  'movie is', 'is awesome']

Now that we have defined our preprocessing function, we can
build our IMDb datasets as shown in the following code:

from torchtext.datasets import IMDB
from torch.utils.data.dataset import random_split

train_iter, test_iter = IMDB(

    split=('train', 'test')) 

train_dataset = list(train_iter) 
test_data = list(test_iter)

num_train = int(len(train_dataset) * 0.70)
train_data, valid_data = \
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    random_split(train_dataset,
        [num_train,

         len(train_dataset) - num_train]) 

Load data from IMDb dataset.

Redefine iterators as lists.

Split training data into two sets, 70% for training and 30%
for validation.

In the code, we load the training and test datasets using the
IMDB class. We then use the random_split() function to break
the training data into two smaller sets for training and
validation.

WARNING

The Torchtext API changed significantly in PyTorch 1.8.
Be sure you are using at least Torchtext 0.9 when running
the code.

Let’s take a quick look at the data:
print(len(train_data), len(valid_data),
  len(test_data))
# out:17500 7500 25000

data_index = 21
print(train_data[data_index][0])
# out: (your results may vary)
#   pos

print(train_data[data_index][1])
# out: (your results may vary)
# ['This', 'film', 'moved', 'me', 'beyond', ...

As you can see, our datasets have 17,500 reviews for training,
7,500 for validation, and 25,000 for testing. We also printed out
the 21st review and its sentiment, as shown in the output. The
splits are randomly sampled, so your results may be different.
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Next we need to convert our text data into numerical data so
that an NN can process it. We do this by creating preprocessing
functions and a data pipeline. The data pipeline will use our
generate_bigrams() function, a tokenizer, and a vocabulary, as
shown in the following code:

from torchtext.data.utils import get_tokenizer
from collections import Counter
from torchtext.vocab import Vocab

tokenizer = get_tokenizer('spacy') 
counter = Counter()
for (label, line) in train_data:
    counter.update(generate_bigrams(

        tokenizer(line))) 
vocab = Vocab(counter,
              max_size = 25000,
              vectors = "glove.6B.100d",

              unk_init = torch.Tensor.normal_,) 

Define our tokenizer (how to break up text).

Make a list of all the tokens used in our training data and
count how many times each occurs.

Create a vocabulary (list of possible tokens) and define
how tokens are converted to numbers.

In the code, we define the instructions for converting text to
tensors. For the review text, we specify spaCy as the tokenizer.
spaCy is a popular Python package for NLP and includes its
own tokenizer. A tokenizer breaks text into components like
words and punctuation marks.

We also create a vocabulary and an embedding. A vocabulary is
just a set of words that we can use. If we find a word in the
movie review that is not contained in the vocabulary, we set the
word to a special word called “unknown.” We limit our dictio‐
nary to 25,000 words, much smaller than the full set of words
in the English language.

We also specify our vocabulary vectors, which causes us to
download a pretrained embedding called GloVe (Global
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Vectors for Word Representation) with 100 dimensions. It may
take several minutes to download the GloVe data and create a
vocabulary.

An embedding is a method to map a word or series of words to
a numeric vector. Defining a vocabulary and an embedding is a
complex topic and is beyond the scope of this book. For this
example, we’ll just build a vocabulary from our training data
and download the popular pretrained GloVe embedding.

Now that we have defined our tokenizer and vocabulary, we
can build our data pipelines for the review and label text data,
as shown in the following code:

text_pipeline = lambda x: [vocab[token]
    for token in generate_bigrams(tokenizer(x))]

label_pipeline = lambda x: 1 if x=='pos' else 0

print(text_pipeline('the movie was horrible'))
# out:

print(label_pipeline('neg'))
# out:

We use lambda functions to pass text data through the pipeline
so that PyTorch dataloaders can convert each text review to a
100-element vector.

Now that we have defined our datasets and preprocessing, we
can create our dataloaders. Our dataloaders load batches of
data from a sampling of the dataset and preprocess the data, as
in the following code:
from torch.utils.data import DataLoader
from torch.nn.utils.rnn import pad_sequence

device = torch.device("cuda" if
    torch.cuda.is_available() else "cpu")

def collate_batch(batch):
    label_list, text_list = [], []
    for (_label, _text) in batch:
        label_list.append(label_pipeline(_label))
        processed_text = torch.tensor(
                           text_pipeline(_text))
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        text_list.append(processed_text)
    return (torch.tensor(label_list,
          dtype=torch.float64).to(device),
          pad_sequence(text_list,
                       padding_value=1.0).to(device))

batch_size = 64
def batch_sampler():
    indices = [(i, len(tokenizer(s[1])))
                for i, s in enumerate(train_dataset)]
    random.shuffle(indices)
    pooled_indices = []
    # create pool of indices with similar lengths
    for i in range(0, len(indices), batch_size * 100):
        pooled_indices.extend(sorted(
          indices[i:i + batch_size * 100], key=lambda x: x[1]))

    pooled_indices = [x[0] for x in pooled_indices]

    # yield indices for current batch
    for i in range(0, len(pooled_indices),
      batch_size):
        yield pooled_indices[i:i + batch_size]

BATCH_SIZE = 64

train_dataloader = DataLoader(train_data,
                  # batch_sampler=batch_sampler(),
                  collate_fn=collate_batch,
                  batch_size=BATCH_SIZE,
                  shuffle=True)
                  # collate_fn=collate_batch)
valid_dataloader = DataLoader(valid_data,
                  batch_size=BATCH_SIZE,
                  shuffle=True,
                  collate_fn=collate_batch)
test_dataloader = DataLoader(test_data,
                  batch_size=BATCH_SIZE,
                  shuffle=True,
                  collate_fn=collate_batch)

In the code, we set the batch size to 64 and use a GPU if avail‐
able. We also define a collation function called col

late_batch() and pass it into our dataloaders to execute our
data pipelines.

Now that we have configured our pipelines and dataloaders,
let’s define our model.
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Model Design
For this example we will use a model called FastText from the
paper “Bag of Tricks for Efficient Text Classification” by
Armand Joulin et al. While many sentiment analysis models
use RNNs, this model uses a simpler approach instead.

The following code implements the FastText model:
import torch.nn as nn
import torch.nn.functional as F

class FastText(nn.Module):
    def __init__(self,
                 vocab_size,
                 embedding_dim,
                 output_dim,
                 pad_idx):
        super().__init__()
        self.embedding = nn.Embedding(
            vocab_size,
            embedding_dim,
            padding_idx=pad_idx)
        self.fc = nn.Linear(embedding_dim,
                            output_dim)

    def forward(self, text):
        embedded = self.embedding(text)
        embedded = embedded.permute(1, 0, 2)
        pooled = F.avg_pool2d(
            embedded,
            (embedded.shape[1], 1)).squeeze(1)
        return self.fc(pooled)

As you can see, the model calculates the word embedding for
each word using the nn.Embedded layer, and then it calculates
the average of all the word embeddings with the avg_pool2d()
function. Finally, it feeds the average through a linear layer.
Refer to the paper for more details on this model.

Let’s build our model with its appropriate parameters using the
following code:

model = FastText(
            vocab_size = len(vocab),
            embedding_dim = 100,
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            output_dim = 1,
            pad_idx = vocab['<PAD>'])

Rather than train our embedding layer from scratch, we’ll initi‐
alize the layer’s weights with pretrained embeddings. This pro‐
cess is similar to how we used pretrained weights in the trans‐
fer learning example in “Image Classification with Transfer
Learning” on page 104:

pretrained_embeddings = vocab.vectors 
model.embedding.weight.data.copy_(

                    pretrained_embeddings) 

EMBEDDING_DIM = 100

unk_idx = vocab['<UNK>'] 
pad_idx = vocab['<PAD>']
model.embedding.weight.data[unk_idx] = \

      torch.zeros(EMBEDDING_DIM)          
model.embedding.weight.data[pad_idx] = \
      torch.zeros(EMBEDDING_DIM)

Load the pretrained embedding from our vocabulary.

Initialize the embedding layer’s weights.

Initialize the embedding weights of an unknown token to
zero.

Initialize the embedding weights of a pad token to zero.

Now that it’s initialized properly, we can train our model.

Training and Validation
The training and validation process should look familiar. It’s
similar to the one we’ve used in previous examples. First we
configure our loss function and our optimizer algorithm, as
shown in the following code:

import torch.optim as optim

optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()
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model = model.to(device)
criterion = criterion.to(device)

In this example, we are using the Adam optimizer and the BCE
WithLogitsLoss() loss function. The Adam optimizer is a
replacement for SGD and performs better for sparse or noisy
gradients. The BCEWithLogitsLoss() function is commonly
used for binary classification. We also move our model to a
GPU if available.

Next we run our training and validation loops, as shown in the
following code:

for epoch in range(5):
  epoch_loss = 0
  epoch_acc = 0

  model.train()
  for label, text, _ in train_dataloader:
      optimizer.zero_grad()
      predictions = model(text).squeeze(1)
      loss = criterion(predictions, label)

      rounded_preds = torch.round(
          torch.sigmoid(predictions))
      correct = \
        (rounded_preds == label).float()
      acc = correct.sum() / len(correct)

      loss.backward()
      optimizer.step()
      epoch_loss += loss.item()
      epoch_acc += acc.item()

  print("Epoch %d Train: Loss: %.4f Acc: %.4f" %
          (epoch,
          epoch_loss / len(train_dataloader),
          epoch_acc / len(train_dataloader)))

  epoch_loss = 0
  epoch_acc = 0
  model.eval()
  with torch.no_grad():
    for label, text, _ in valid_dataloader:
      predictions = model(text).squeeze(1)
      loss = criterion(predictions, label)

      rounded_preds = torch.round(
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          torch.sigmoid(predictions))
      correct = \
        (rounded_preds == label).float()
      acc = correct.sum() / len(correct)

      epoch_loss += loss.item()
      epoch_acc += acc.item()

  print("Epoch %d Valid: Loss: %.4f Acc: %.4f" %
          (epoch,
          epoch_loss / len(valid_dataloader),
          epoch_acc / len(valid_dataloader)))

# out: (your results may vary)
# Epoch 0 Train: Loss: 0.6523 Acc: 0.7165
# Epoch 0 Valid: Loss: 0.5259 Acc: 0.7474
# Epoch 1 Train: Loss: 0.5935 Acc: 0.7765
# Epoch 1 Valid: Loss: 0.4571 Acc: 0.7933
# Epoch 2 Train: Loss: 0.5230 Acc: 0.8257
# Epoch 2 Valid: Loss: 0.4103 Acc: 0.8245
# Epoch 3 Train: Loss: 0.4559 Acc: 0.8598
# Epoch 3 Valid: Loss: 0.3828 Acc: 0.8549
# Epoch 4 Train: Loss: 0.4004 Acc: 0.8813
# Epoch 4 Valid: Loss: 0.3781 Acc: 0.8675

We should see validation accuracies around 85–90% with only
five epochs of training. Let’s see how our model performs
against the test dataset.

Testing and Deployment
Earlier, we constructed our test_iterator based on the IMDb
test dataset. Recall that none of the data in the test dataset has
been used for training or validation.

Our test loop is shown in the following code:
test_loss = 0
test_acc = 0

model.eval() 

with torch.no_grad(): 
  for label, text, _ in test_dataloader:
    predictions = model(text).squeeze(1)
    loss = criterion(predictions, label)

    rounded_preds = torch.round(
        torch.sigmoid(predictions))
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    correct = \
      (rounded_preds == label).float()
    acc = correct.sum() / len(correct)

    test_loss += loss.item()
    test_acc += acc.item()

print("Test: Loss: %.4f Acc: %.4f" %
        (test_loss / len(test_dataloader),
        test_acc / len(test_dataloader)))
# out: (your results will vary)
#   Test: Loss: 0.3821 Acc: 0.8599

Not necessary for this model, but good practice.

In the preceding code, we process one batch at a time and
cumulate the accuracy over the entire test dataset. You should
get 85–90% accuracy on the test set as well.

Next we’ll predict the sentiment of our own reviews, using the
following code:

import spacy
nlp = spacy.load('en_core_web_sm')

def predict_sentiment(model, sentence):
    model.eval()
    text = torch.tensor(text_pipeline(
      sentence)).unsqueeze(1).to(device)
    prediction = torch.sigmoid(model(text))
    return prediction.item()

sentiment = predict_sentiment(model,
                  "Don't waste your time")
print(sentiment)
# out: 4.763594888613835e-34

sentiment = predict_sentiment(model,
                  "You gotta see this movie!")
print(sentiment)
# out: 0.941755473613739

A result close to 0 corresponds to a negative review, while an
output close to 1 indicates a positive review. As you can see, the
model correctly predicted the sentiment of the sample review.
Try it with some of your own movie reviews!
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Finally, we’ll save our model for deployment as shown in the
following code:

torch.save(model.state_dict(), 'fasttext-model.pt')

In this example, you learned how to preprocess text data and
designed a FastText model for sentiment analysis. You also
trained the model, evaluated its performance, and saved the
model for deployment. You can use this design pattern and ref‐
erence code to solve other sentiment analysis problems in your
own work.

This example was based on the “Faster Sentiment Analysis”
tutorial by Ben Trevett. You can find more details and other
great Torchtext tutorials in his PyTorch Sentiment Analysis
GitHub repository.

Let’s move on to our final reference design, in which we will
use deep learning and PyTorch to generate image data.

Generative Learning—Generating Fashion-
MNIST Images with DCGAN
One of the most interesting areas of deep learning is generative
learning, in which NNs are used to create data. Sometimes
these NNs can create images, music, text, and time series data
so well that it is difficult to tell the difference between real data
and the generated data. Generative learning is used to create
images of people and places that don’t exist, increase image res‐
olution, predict frames in video, augment datasets, generate
news articles, and convert styles of art and music.

In this section, I’ll show you how to use PyTorch for generative
learning. The development process is similar to the previous
examples; however, here we’ll use an unsupervised approach in
which the data is not labeled.

In addition, we’ll design and train a GAN, which is quite differ‐
ent from the models and training loops of previous examples.
Testing and evaluating the GAN involves a slightly different
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process as well. The overall development sequence is consistent
with the process in Chapter 2, but each part will be unique to
generative learning.

In this example, we will train a GAN to generate images similar
to the training images used in the Fashion-MNIST dataset.
Fashion-MNIST is a popular academic dataset used for image
classification that includes images of articles of clothing. Let’s
access the Fashion-MNIST data to get an idea of what these
images look like, and then we’ll create some synthetic images
based on what we’ve seen.

Data Processing
Unlike models used for supervised learning, where the model
learns the relationships between data and labels, generative
models look to learn the distribution of the training data so as
to generate data similar to the training data at hand. Therefore,
in this example we only need training data, because if we build
a good model and train it long enough, the model should begin
to produce good synthetic data.

First let’s import the required libraries, define some constants,
and set our device:

import torch
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

CODING_SIZE = 100
BATCH_SIZE = 32
IMAGE_SIZE = 64

device = torch.device("cuda:0" if
  torch.cuda.is_available() else "cpu")

The following code loads the training data, defines the trans‐
forms, and creates a dataloader for batch iteration:

transform = transforms.Compose([
    transforms.Resize(IMAGE_SIZE),
    transforms.ToTensor(),
])
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dataset = datasets.FashionMNIST(
                './',
                train=True,
                download=True,
                transform=transform)

dataloader = DataLoader(
                dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                num_workers=8)

This code should look familiar to you. We are once again using
Torchvision functions to define the transforms, create a dataset,
and set up a dataloader that will sample the dataset, apply
transforms, and return a batch of images for our model.

We can display a batch of images with the following code:
from torchvision.utils import make_grid
import matplotlib.pyplot as plt

data_batch, labels_batch = next(iter(dataloader))
grid_img = make_grid(data_batch, nrow=8)
plt.imshow(grid_img.permute(1, 2, 0))

Torchvision provides a nice utility called make_grid to display a
grid of images. Figure 4-2 shows an example batch of Fashion-
MNIST images.

Figure 4-2. Fashion-MNIST images

Let’s see what model we’ll use for our data generation task.
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Model Design
To generate new image data, we’ll use a GAN. The goal of the
GAN model is to generate “fake” data based on the training
data’s distribution. The GAN accomplishes this goal with two
distinct modules: the generator and the discriminator.

The job of the generator is to generate fake images that look
real. The job of the discriminator is to correctly identify
whether an image is fake. Although the design of GANs is
beyond the scope of this book, I’ll provide a sample reference
design using a deep convolutional GAN, or DCGAN.

NOTE

GANs were first described in the famous paper by Ian
Goodfellow et al. in 2014 titled “Generative Adversarial
Nets”. Guidelines for building more stable convolutional
GANs were proposed by Alec Radford et al. in the 2015
paper “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks”. This
paper describes the DCGAN used in this example.

The generator is designed to create an image from an input
vector of 100 random values. Here’s the code:

import torch.nn as nn

class Generator(nn.Module):
    def __init__(self, coding_sz):
        super(Generator, self).__init__()
        self.net = nn.Sequential(
            nn.ConvTranspose2d(coding_sz,
                               1024, 4, 1, 0),
            nn.BatchNorm2d(1024),
            nn.ReLU(),
            nn.ConvTranspose2d(1024,
                               512, 4, 2, 1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.ConvTranspose2d(512,
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                               256, 4, 2, 1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.ConvTranspose2d(256,
                               128, 4, 2, 1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.ConvTranspose2d(128,
                               1, 4, 2, 1),
            nn.Tanh()
        )

    def forward(self, input):
        return self.net(input)

netG = Generator(CODING_SIZE).to(device)

This example generator uses 2D convolutional transpose layers
with batch normalization and ReLU activations. The layers are
defined in the __init__() function. It works like our image
classification models, except in reverse order.

That is, instead of reducing an image to a smaller representa‐
tion, it takes a random vector and creates a full image from it.
We also instantiate the Generator module as netG.

Next, we create the Discriminator module, as shown in the fol‐
lowing code:

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator,
              self).__init__()
        self.net = nn.Sequential(
            nn.Conv2d(1, 128, 4, 2, 1),
            nn.LeakyReLU(0.2),
            nn.Conv2d(128, 256, 4, 2, 1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2),
            nn.Conv2d(256, 512, 4, 2, 1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2),
            nn.Conv2d(512, 1024, 4, 2, 1),
            nn.BatchNorm2d(1024),
            nn.LeakyReLU(0.2),
            nn.Conv2d(1024, 1, 4, 1, 0),
            nn.Sigmoid()
        )
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    def forward(self, input):
        return self.net(input)

netD = Discriminator().to(device)

The discriminator is a binary classification network that deter‐
mines the probability that the input image is real. This example
discriminator NN uses 2D convolutional layers with batch nor‐
malization and leaky ReLU activation functions. We instantiate
the Discriminator as netD.

The authors of the DCGAN paper found that it helps to initial‐
ize the weights as shown in the following code:

def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)

netG.apply(weights_init)
netD.apply(weights_init)

Now that we have designed our two modules, we can set up
and train the GAN.

Training
Training a GAN is somewhat more complicated than the previ‐
ous training examples. In each epoch, we will first train the dis‐
criminator with a real batch of data, then use the generator to
create a fake batch, and then train the discriminator with the
generated fake batch of data. Lastly, we will train the generator
NN to produce better fakes.

This is a good example of how powerful PyTorch is when creat‐
ing custom training loops. It provides the flexibility to develop
and implement new ideas with ease.
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Before we start training, we need to define the loss function
and optimizers that will be used to train the generator and the
discriminator:

from torch import optim

criterion = nn.BCELoss()

optimizerG = optim.Adam(netG.parameters(),
                        lr=0.0002,
                        betas=(0.5, 0.999))
optimizerD = optim.Adam(netD.parameters(),
                        lr=0.0001,
                        betas=(0.5, 0.999))

In the preceding code, we define a label for real versus fake
images. Then we use the binary cross entropy (BCE) loss func‐
tion, which is commonly used for binary classification.
Remember the discriminator is performing binary classifica‐
tion by classifying an image as real or fake. We use the com‐
monly used Adam optimizer for updating the model
parameters.

Let’s define values for the real and fake labels and create tensors
for computing the loss:

real_labels = torch.full((BATCH_SIZE,),
                       1.,
                       dtype=torch.float,
                       device=device)

fake_labels = torch.full((BATCH_SIZE,),
                       0.,
                       dtype=torch.float,
                       device=device)

Before we start training, we will create lists for storing the
errors and define a test vector to show the results later:

G_losses = []
D_losses = []
D_real = []
D_fake = []

z = torch.randn((
    BATCH_SIZE, 100)).view(-1, 100, 1, 1).to(device)
test_out_images = []
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Now we can execute the training loop. If the GAN is stable, it
should improve as more epochs are trained. The training loop
is shown in the following code:

N_EPOCHS = 5

for epoch in range(N_EPOCHS):
  print(f'Epoch: {epoch}')
  for i, batch in enumerate(dataloader):
    if (i%200==0):
      print(f'batch: {i} of {len(dataloader)}')

    # Train Discriminator with an all-real batch.
    netD.zero_grad()
    real_images = batch[0].to(device) *2. - 1.

    output = netD(real_images).view(-1) 
    errD_real = criterion(output, real_labels)
    D_x = output.mean().item()

    # Train Discriminator with an all-fake batch.
    noise = torch.randn((BATCH_SIZE,
                         CODING_SIZE))
    noise = noise.view(-1,100,1,1).to(device)
    fake_images = netG(noise)

    output = netD(fake_images).view(-1) 
    errD_fake = criterion(output, fake_labels)
    D_G_z1 = output.mean().item()
    errD = errD_real + errD_fake

    errD.backward(retain_graph=True) 
    optimizerD.step()

    # Train Generator to generate better fakes.
    netG.zero_grad()

    output = netD(fake_images).view(-1) 

    errG = criterion(output, real_labels) 

    errG.backward() 
    D_G_z2 = output.mean().item()
    optimizerG.step()

    # Save losses for plotting later.
    G_losses.append(errG.item())
    D_losses.append(errD.item())

    D_real.append(D_x)
    D_fake.append(D_G_z2)
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  test_images = netG(z).to('cpu').detach() 
  test_out_images.append(test_images)

Pass real images to the Discriminator.

Pass fake images to the Discriminator.

Run backpropagation and update the Discriminator.

Pass fake images to the updated Discriminator.

The Generator loss is based on cases in which the[.keep-
together] Discriminator is wrong.

Run backpropagation and update the Generator.

Create a batch of images and save them after each epoch.

As we’ve done in the previous examples, we loop through all
the data, one batch at a time, using the dataloader during each
epoch. First we train the discriminator with a batch of real
images so it can compute the output, calculate the loss, and
compute the gradients. Then we train the discriminator with a
batch of fake images.

The fake images are created by the generator from a vector of
random values. Again, we compute the discriminator output,
calculate the loss, and compute the gradients. Next, we add the
gradients from all the real and all the fake batches and apply
backpropagation.

We compute the outputs from the freshly trained discriminator
using the same fake data, and compute the loss or error of the
generator. Using this loss, we compute the gradients and apply
backpropagation on the generator itself.

Lastly, we’ll keep track of the loss after each epoch to see if the
GAN’s training is consistently improving and stable. Figure 4-3
shows the loss curve for both the generator and the discrimina‐
tor during training.
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Figure 4-3. GAN training curves

The loss curves plot the generator and the discriminator loss
for each batch over all epochs, so the loss bounces around
depending on the computed loss of the batch. We can see
though that the loss in both cases has been reduced from the
beginning of training. If we trained over more epochs, we’d
look for these loss values to approach zero.

In general, GANs are tricky to train, and the learning rate,
betas, and other optimizer hyperparameters can have a major
impact.

Let’s examine the average results of the discriminator for each
batch over all the epochs, as shown in Figure 4-4.

Figure 4-4. Discriminator results
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If the GAN was perfect, the discriminator would not be able to
correctly identify fake images as fake or real images as real, and
we would expect the average error to be 0.5 in both cases. The
results show that some batches are close to 0.5, but we can cer‐
tainly do better.

Now that we have trained our network, let’s see how well it does
at creating fake images of clothing.

Testing and Deployment
During supervised learning, we usually set aside a test dataset
that has not been used to train or validate the model. In genera‐
tive learning, there are no labels produced by the generator. We
could pass our generated images into a Fashion-MNIST classi‐
fier, but there’s no way for us to know if the errors are caused by
the classifier or the GAN unless we hand-label the outputs.

For now, let’s test and evaluate our GAN by comparing the
results from the first epoch with the generated images from the
last epoch. We create a test vector, z, for testing and use the
computed generator results at the end of each epoch in our
training loop code.

Figure 4-5 shows the generated images from the first epoch,
while Figure 4-6 shows the results after training only five
epochs.

Figure 4-5. Generator results (first epoch)
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Figure 4-6. Generator results (last epoch)

You can see that the generator has improved some. Look at the
boot at the end of the second row or the shirt at the end of the
third row. Our GAN is not perfect, but it seems to be improv‐
ing after just five epochs. Training over more epochs or
improving our design might produce even better results.

Finally, we can save our trained model for deployment and use
it to generate more synthetic Fashion-MNIST images using the
following code:

torch.save(netG.state_dict(), './gan.pt')

We expanded our PyTorch deep learning capabilities by design‐
ing and training a GAN in this generative learning reference
design. You can use this reference design to create and train
other GAN models and test their performance at generating
new data.

In this chapter, we covered additional examples to show a vari‐
ety of data processing, model design, and training approaches
with PyTorch—but what if you have an amazing idea for some
new, innovative NN? Or what if you come up with a new opti‐
mization algorithm or loss function that nobody’s seen before?
In the next chapter, I’ll show you how to create your own cus‐
tom modules and functions so you can expand your deep
learning research and experiment with new ideas.
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CHAPTER 5

Customizing PyTorch

Up until now, you have been using built-in PyTorch classes,
functions, and libraries to design and train various predefined
models, model layers, and activation functions. But what if you
have a novel idea or you’re conducting cutting-edge deep learn‐
ing research? Perhaps you’ve invented a totally new layer archi‐
tecture or activation function. Maybe you’ve developed a new
optimization algorithm or a special loss function that no one’s
ever seen before.

In this chapter, I’ll show you how to create your own custom
deep learning components and algorithms in PyTorch. We’ll
begin by exploring how to create custom layers and activation
functions, and then we’ll see how to combine these compo‐
nents into custom model architectures. Next, I’ll show you how
to create your own loss functions and optimizer algorithms.
Finally, we’ll look at how to create custom loops for training,
validation, and testing.

PyTorch offers flexibility: you can extend an existing library or
you can combine your customizations into your own library or
package. By creating custom components you can solve new
deep learning problems, speed up training, and discover inno‐
vative ways to perform deep learning.
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Let’s get started by creating some custom deep learning layers
and activation functions.

Custom Layers and Activations
PyTorch offers an extensive set of built-in layers and activation
functions. However, what makes PyTorch so popular, especially
in the research community, is how easy it is to create custom
layers and activations. The ability to do so can facilitate experi‐
mentation and accelerate your research.

If we take a look at the PyTorch source code, we’ll see that lay‐
ers and activations are created using a functional definition and
a class implementation. The functional definition specifies how
the outputs are created based on the inputs. It is defined in the
nn.functional module. The class implementation is used to cre‐
ate an object that calls this function at its core, but it also
includes added features derived from the nn.Module class.

For example, let’s look at how the fully connected nn.Linear
layer is implemented. The following code shows a simplified
version of the functional definition, nn.functional.linear():

import torch

def linear(input, weight, bias=None):

    if input.dim() == 2 and bias is not None:
        # fused op is marginally faster
        ret = torch.addmm(bias, input, weight.t())
    else:
        output = input.matmul(weight.t())
        if bias is not None:
            output += bias
        ret = output
    return ret

The linear() function multiplies the input tensor by the
weight matrix, optionally adds the bias vector, and returns the
results in a tensor. You can see that the code is optimized for
performance. When the input has two dimensions and there is
no bias, you should use the fused-matrix add function,
torch.addmm(), because it’s faster in this case.
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Keeping the mathematical computations in a separate func‐
tional definition has the benefit of keeping optimizations sepa‐
rate from the layer nn.Module. The functional definitions can
also be used as standalone functions when writing code in
general.

However, we’ll often use the nn.Module class to subclass our
NNs. When we create an nn.Module subclass, we gain all the
built-in benefits of the nn.Module object. In this case, we derive
the nn.Linear class from nn.Module, as shown in the following
code:

import torch.nn as nn
from torch import Tensor

class Linear(nn.Module):

    def __init__(self, in_features,

                 out_features, bias): 
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(
            torch.Tensor(out_features,
                         in_features))
        if bias:
            self.bias = Parameter(
                torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        init.kaiming_uniform_(self.weight,
                              a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = \
              init._calculate_fan_in_and_fan_out(
                  self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input: Tensor) -> Tensor: 
        return F.linear(input,
                        self.weight,

                        self.bias) 
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Initialize input and output sizes, weights, and biases.

Define the forward pass.

Use the functional definition of linear().

The nn.Linear code includes two necessary methods for any
nn.Module subclass. One is __init__(), which initializes the
class attributes, namely the inputs, outputs, weights, and biases
in this case. The other is the forward() method, which defines
the processing during the forward pass.

As you can see in the preceding code, the forward() method
often calls the nn.functional definition associated with the
layer. This convention is used often in PyTorch code for layers.

The convention for creating a custom layer is to first create a
function that implements the mathematical operations and
then create an nn.Module subclass that uses this function to
implement the layer class. Using this approach makes it very
easy to experiment with new layer designs in your PyTorch
model development.

Custom Layer Example (Complex Linear)
Next, we’ll look at how to create a custom layer. In this exam‐
ple, we will create our own linear layer for a special type of
number called a complex number. Complex numbers are often
used in physics and signal processing and consist of a pair of
numbers—a “real” component and an “imaginary” component.
Both components are just floating-point numbers.

PyTorch is adding support for complex data types; however,
they are still in beta at the time of writing of this book. There‐
fore, we’ll implement them using two floating-point tensors,
one for the real components and one for the imaginary
components.
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In this case, the inputs, weights, biases, and outputs will all be
complex numbers and will consist of two tensors instead of
one. Complex multiplication yields the following equation
(where j is the complex number 1 ):

inr + ini * j * wr + wi * j + br + bi * j
= inr * wr − ini * wi + br + inr * wi + ini * wr + bi * j

First we will create a functional version of our complex linear
layer, as shown in the following code:

def complex_linear(in_r, in_i, w_r, w_i, b_i, b_r):
    out_r = (in_r.matmul(w_r.t())
              - in_i.matmul(w_i.t()) + b_r)
    out_i = (in_r.matmul(w_i.t())
              - in_i.matmul(w_r.t()) + b_i)

    return out_r, out_i

As you can see, the function applies the complex multiplication
formula to tensor arrays. Next we create our class version of
ComplexLinear based on the nn.Module, as shown in the follow‐
ing code:

class ComplexLinear(nn.Module):
    def __init__(self, in_features, out_features):
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight_r = \
          Parameter(torch.randn(out_features,
                                in_features))
        self.weight_i = \
          Parameter(torch.randn(out_features,
                                in_features))
        self.bias_r = Parameter(
                        torch.randn(out_features))
        self.bias_i = Parameter(
                        torch.randn(out_features))

    def forward(self, in_r, in_i):
        return F.complex_linear(in_r, in_i,
                 self.weight_r, self.weight_i,
                 self.bias_r, self.bias_i)
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In our class, we define separate weights and biases for the real
and imaginary components in our __init__() function. Note
that the options for the number of in_features and out_fea
tures do not change because the number of real and imaginary
components are the same. Our forward() function simply calls
the functional definition of our complex multiply and add
operation.

Note that we could also use PyTorch’s existing nn.Linear layer
to build our layer, as shown in the following code:

class ComplexLinearSimple(nn.Module):
    def __init__(self, in_features, out_features):
        super(ComplexLinearSimple, self).__init__()
        self.fc_r = Linear(in_features,
                           out_features)
        self.fc_i = Linear(in_features,
                           out_features)

    def forward(self,in_r, in_i):
        return (self.fc_r(in_r) - self.fc_i(in_i),
               self.fc_r(in_i)+self.fc_i(in_r))

In this code, we get all the added benefits from nn.Linear for
free, and we do not need to implement a new functional defini‐
tion. When you create your own custom layers, check PyTorch’s
built-in layers to see if you can reuse existing classes.

Even though this example was pretty simple, you can use the
same approach to create more complex layers. In addition, the
same approach can also be used to create custom activation
functions.

Activation functions are very similar to NN layers in that they
return outputs by performing mathematical operations on a set
of inputs. They differ in that the operations are performed
element-wise, and they do not include parameters like weights
and biases that are adjusted during training. For this reason,
activation functions can be performed solely with functional
versions.
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For example, let’s take a look at the ReLU activation function.
The ReLU function is zero for negative values and linear for
positive values:

def my_relu(input, thresh=0.0):
    return torch.where(
              input > thresh,
              input,
              torch.zeros_like(input))

When the activation function has configurable parameters, it’s
common to create a class version of it. We can add the capabil‐
ity to adjust the threshold and value of the ReLU function by
creating a ReLU class, as shown in the following code:

class MyReLU(nn.Module):
  def __init__(self, thresh = 0.0):
      super(MyReLU, self).__init__()
      self.thresh = thresh

  def forward(self, input):
      return my_relu(input, self.thresh)

When building an NN, it is common to use the functional ver‐
sion of the activation function, but a class version can also be
used if available. The following code snippets show how to use
both versions of the ReLU activation included in torch.nn.

Here’s the functional version:

import torch.nn.functional as F 

class SimpleNet(nn.Module):
  def __init__(self, D_in, H, D_out):
    super(SimpleNet, self).__init__()
    self.fc1 = nn.Linear(D_in, H)
    self.fc2 = nn.Linear(H, D_out)

  def forward(self, x):

    x = F.relu(self.fc1(x)) 
    return self.fc2(x)

A common way to import the functional package.

The functional version of ReLU is used here.
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Here’s the class version:
class SimpleNet(nn.Module):
  def __init__(self, D_in, H, D_out):
    super(SimpleNet, self).__init__()

    self.net = nn.Sequential( 
        nn.Linear(D_in, H),

        nn.ReLU(), 
        nn.Linear(H, D_out)
    )

  def forward(self, x):
    return self.net(x)

We are using nn.Sequential() since all components are
classes.

We are using the class version of ReLU.

Custom Activation Example (Complex ReLU)
We can create our own custom ComplexReLU activation func‐
tion to handle complex values from the ComplexLinear layer
that we created earlier. The following code shows the functional
and class versions:

def complex_relu(in_r, in_i): 
    return (F.relu(in_r), F.relu(in_i))

class ComplexReLU(nn.Module): 
  def __init__(self):
      super(ComplexReLU, self).__init__()

  def forward(self, in_r, in_i):
      return complex_relu(in_r, in_i)

Functional version

Class version

Now that you’ve learned how to create your own layers and
activations, let’s see how you can create your own custom
model architectures.
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Custom Model Architectures
In Chapters 2 and 3, we used built-in models and created our
own models from built-in PyTorch layers. In this section, we’ll
explore how you can create a library of models similar to
torchvision.models and build flexible model classes that adjust
the architecture based on configuration parameters provided
by the user.

The torchvision.models package provides an AlexNet model
class and an alexnet() convenience function to facilitate its
use. Let’s look at the AlexNet class first:

class AlexNet(nn.Module):

    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11,
                      stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5,
                      padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3,
                      padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3,
                      padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3,
                      padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )
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    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

Like all layers, activations, and models, the AlexNet class is
derived from the nn.Module class. The AlexNet class is a good
example of how to create and combine submodules into an
NN.

The library defines three subnetworks—features, avgpool, and
classifier. Each subnetwork is made up of PyTorch layers and
activations, and they are connected in sequence. AlexNet’s
forward() function describes the forward pass; that is, how the
inputs are processed to form the outputs.

In this case, the PyTorch torchvision.models code provides a
convenience function called alexnet() to instantiate or create
the model with some options. The options here are pretrained
and progress; they determine whether to load the model with
pretrained parameters and whether to display a progress bar:

from torch.hub import load_state_dict_from_url
model_urls = {
    'alexnet':
    'https://pytorch.tips/alexnet-download',
}

def alexnet(pretrained=False,
            progress=True, **kwargs):
    model = AlexNet(**kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(
              model_urls['alexnet'],
              progress=progress)
        model.load_state_dict(state_dict)
    return model

The **kwargs parameter allows you to pass additional options
to the AlexNet model. In this case, you can change the number
of classes to 10 with alexnet(n_classes = 10). The function
will instantiate the AlexNet model with n_classes = 10 and
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return the model object. If pretrained is True, the function will
load the weights from the specified URL.

By following a similar approach, you can create your own
model architectures. Create a top-level model that is derived
from nn.Module. Define your __init__() and forward() func‐
tions and implement your NN based on subnetworks, layers,
and activations. Your subnetworks, layers, and activations can
even be custom ones that you created yourself.

As you can see, the nn.Module class makes creating custom
models easy. In addition to the Module class, the torch.nn pack‐
age includes built-in loss functions. Let’s take a look at how you
can create your own loss functions.

Custom Loss Functions
If you recall from Chapter 3, before we can train our NN
model, we need to define our loss function. The loss function,
or cost function, defines a metric which we wish to minimize
by adjusting the weights of our model during training.

At first it might appear that the loss function is just a functional
definition, but remember, the loss function is a function of the
parameters of the NN module.

Therefore, loss functions actually behave like an extra layer that
takes the NN outputs as inputs and produces a metric as its
output. When we perform backpropagation, we’re performing
backpropagation on the loss function, not the NN.

This allows us to call the class directly to compute the loss
given the NN outputs and true values. Then we can compute
the gradients of all the NN parameters in one call, namely to
perform backpropagation. The following code shows how this
can be implemented in code:

loss_fcn = nn.MSELoss() 
loss = loss_fcn(outputs, targets)
loss.backward()
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Sometimes called criterion

First we instantiate the loss function, itself and then we call the
function passing in the outputs (from our model) and the tar‐
gets (from our data). Finally, we call the backward() method to
perform backpropagation and compute the gradients of all the
model parameters with respect to the loss.

Similar to layers discussed earlier, loss functions are imple‐
mented using a functional definition and a class implementa‐
tion derived from the nn.Module class.

Simplified versions of the functional definition and the class
implementations for mse_loss are shown in the following code:

def mse_loss(input, target):
    return ((input-target)**2).mean()

class MSELoss(nn.Module):
    def __init__(self):
        super(MSELoss, self).__init__()

    def forward(self, input, target):
        return F.mse_loss(input, target)

Let’s create our own loss function, MSE Loss for Complex
Numbers. To create our own custom loss function, we’ll first
define a functional definition that describes the loss function
mathematically. Then we’ll create the loss function class, as
shown in the following code:

def complex_mse_loss(input_r, input_i,
                     target_r, target_i):
  return (((input_r-target_r)**2).mean(),
          ((input_i-target_i)**2).mean())

class ComplexMSELoss(nn.Module):
    def __init__(self, real_only=False):
        super(ComplexMSELoss, self).__init__()
        self.real_only = real_only

    def forward(self, input_r, input_i,
                target_r, target_i):
        if (self.real_only):
          return F.mse_loss(input_r, target_r)
        else:
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          return complex_mse_loss(
              input_r, input_i,
              target_r, target_i)

This time, we created an optional setting in the class called
real_only. When we instantiate the loss function with
real_only = True, the functional mse_loss() will be used
instead of complex_mse_loss().

As you can see, PyTorch offers exceptional flexibility in build‐
ing custom model architectures and loss functions. Before we
get to training, there’s one more function you can customize:
the optimizer. Let’s see how you can create custom optimizers.

Custom Optimizer Algorithms
The optimizer plays an important part in training your NN
model. An optimizer is an algorithm that updates the model’s
parameters during training. When we perform backpropaga‐
tion using loss.backward(), we determine whether the param‐
eters should be increased or decreased to minimize the loss.
The optimizer uses the gradients to determine how much the
parameters should be changed during each step and changes
them.

PyTorch has its own submodule called torch.optim that con‐
tains many built-in optimizer algorithms, as we saw in Chap‐
ter 3. To create an optimizer, we pass in our model’s parameters
and any optimizer-specific options. For example, the following
code creates an SGD optimizer with a learning rate of 0.01 and
momentum value of 0.9:

from torch import optim

optimizer = optim.SGD(model.parameters(),
                      lr=0.01, momentum=0.9)

In PyTorch we can also specify different options for different
parameters. This is useful when you want to specify different
learning rates for the different layers of your model. Each set of
parameters is called a parameter group. We can specify differ‐
ent options using dictionaries, as shown in the following code:
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optim.SGD([
        {'params':
          model.features.parameters()},
        {'params':
          model.classifier.parameters(),
          'lr': 1e-3}
    ], lr=1e-2, momentum=0.9)

Assuming we are using the AlexNet model, the preceding code
sets the learning rate to 1e-3 for the classifier layer and uses the
default learning rate of 1e-2 for the features layer.

PyTorch provides a torch.optim.Optimizer base class to make
it easy to create your own custom optimizers. Here is a simpli‐
fied version of the Optimizer base class:

from collections import defaultdict

class Optimizer(object):

    def __init__(self, params, defaults):
        self.defaults = defaults

        self.state = defaultdict(dict) 

        self.param_groups = [] 

        param_groups = list(params)
        if len(param_groups) == 0:
            raise ValueError(
                """optimizer got an
                empty parameter list""")
        if not isinstance(param_groups[0], dict):
            param_groups = [{'params': param_groups}]

        for param_group in param_groups:
            self.add_param_group(param_group)

    def __getstate__(self):
        return {
            'defaults': self.defaults,
            'state': self.state,
            'param_groups': self.param_groups,
        }

    def __setstate__(self, state):
        self.__dict__.update(state)

    def zero_grad(self): 
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        for group in self.param_groups:
            for p in group['params']:
                if p.grad is not None:
                    p.grad.detach_()
                    p.grad.zero_()

    def step(self, closure): 
        raise NotImplementedError

Define state as needed.

Define param_groups as needed.

Define zero_grad() as needed.

You’ll need to write your own step().

There are two main attributes or components to the optimizer:
state and param_groups. The state atribute is a dictionary that
can vary across different optimizers. It is mainly used to main‐
tain values between each call to the step() function. The
param_groups attribute is also a dictionary. It contains the
parameters themselves and the associated options for each
group.

The important methods in the Optimizer base class are
zero_grad() and step(). The zero_grad() method is used to
zero or reset the gradients during each training iteration. The
step() method is used to execute the optimizer algorithm,
compute the change for each parameter, and update the param‐
eters within the model object. The zero_grad() method is
already implemented for you. However, you must create your
own step() method when creating your custom optimizer.

Let’s demonstrate the process by creating our own simple ver‐
sion of SGD. Our SDG optimizer will have one option—the
learning rate (LR). During each optimizer step we will multiply
the gradient by the LR and add it to the parameter (i.e., adjust
the model’s weights):
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from torch.optim import Optimizer

class SimpleSGD(Optimizer):

    def __init__(self, params, lr='required'):
        if lr is not 'required' and lr < 0.0:
          raise ValueError(
            "Invalid learning rate: {}".format(lr))

        defaults = dict(lr=lr)
        super(SimpleSGD, self).__init__(
            params, defaults)

    def step(self):
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad
                p.add_(d_p, alpha=-group['lr'])

        return

The __init__() function sets the default option values and
initializes the parameter groups based on the input parameters.
Notice that we don’t have to write any code to do this since
super(SGD, self).init(params, defaults) invokes the
base class initialization method. All we really need to do is
write the step() method. For each parameter group, we update
the parameters by first multiplying the parameters by the
group’s LR and then subtracting the product from the
parameter itself. This is accomplished by calling p.add_(d_p,
alpha=-group['lr']).

Here’s an example of how we would use our new optimizer:
optimizer = SimpleSGD(model.parameters(),
                      lr=0.001)

We could also define a different LR for different layers in the
model using the following code. Here we assume we’re using
AlexNet again as the model with layers called feature and
classifier:

optimizer = SimpleSGD([
                {'params':
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                 model.features.parameters()},
                {'params':
                 model.classifier.parameters(),
                 'lr': 1e-3}
            ], lr=1e-2)

Now that you can create your own optimizers for training your
models, let’s see how you can create your own custom training,
validation, and test loops.

Custom Training, Validation, and Test Loops
All through this book, we’ve been using custom training, vali‐
dation, and test loops. That’s because in PyTorch all training,
validation, and test loops are manually created by the
programmer.

Unlike in Keras, there’s no fit() or eval() method that exerci‐
ses a loop. Instead, PyTorch requires that you write your own
loops. This is actually a benefit in many cases because you’d like
to control what happens during training.

In fact, the reference design in “Generative Learning—Generat‐
ing Fashion-MNIST Images with DCGAN” on page 123 dem‐
onstrates how you can create a more complex training loop.

In this section, we’ll explore a conventional way of writing
loops and discuss common ways that developers customize
their loops. Let’s review some code commonly used for train‐
ing, validation, and testing loops:

for epoch in range(n_epochs):

    # Training
    for data in train_dataloader:
        input, targets = data
        optimizer.zero_grad()
        output = model(input)
        train_loss = criterion(output, targets)
        train_loss.backward()
        optimizer.step()

    # Validation
    with torch.no_grad():
      for input, targets in val_dataloader:
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          output = model(input)
          val_loss = criterion(output, targets)

# Testing
with torch.no_grad():
  for input, targets in test_dataloader:
      output = model(input)
      test_loss = criterion(output, targets)

This code should look familiar since we’ve used it often
throughout the book. We assume that n_epochs, model,
criterion, optimizer, and train_, val_, and test_dataloader
have already been defined. For each epoch, we perform the
training and validation loops. The training loop processes each
batch one at a time, sends the batch input through the model,
and computes the loss. We then perform backpropagation to
compute the gradients and execute the optimizer to update the
model’s parameters.

The validation loop disables the gradient computation and
passes the validation data through the network one batch at a
time. The test loop passes the test data through the model one
batch at a time and computes the loss for the test data.

Let’s add some additional capabilities to our loops. The possi‐
bilities are endless, but this example will demonstrate some
simple tasks like printing information, reconfiguring a model,
and adjusting a hyperparameter in the middle of training. Let’s
walk through the following code to see how this is done:

for epoch in range(n_epochs):

    total_train_loss = 0.0 

    total_val_loss = 0.0  

    if (epoch == epoch//2):
      optimizer = optim.SGD(model.parameters(),

                            lr=0.001) 
    # Training

    model.train() 
    for data in train_dataloader:
        input, targets = data
        optimizer.zero_grad()
        output = model(input)
        train_loss = criterion(output, targets)
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        train_loss.backward()
        optimizer.step()

        total_train_loss += train_loss 

    # Validation

    model.eval() 
    with torch.no_grad():
      for input, targets in val_dataloader:
          output = model(input)
          val_loss = criterion(output, targets)

          total_val_loss += val_loss 

    print("""Epoch: {}
          Train Loss: {}
          Val Loss {}""".format(
         epoch, total_train_loss,

         total_val_loss)) 

# Testing
model.eval()
with torch.no_grad():
  for input, targets in test_dataloader:
      output = model(input)
      test_loss = criterion(output, targets)

Examples of printing epoch, training, and validation loss

Examples of reconfiguring a model (best practice)

Example of modifying a hyperparameter during training

In the preceding code, we added some variables to keep track
of the running training and validation loss and we printed
them for every epoch. Next we use the train() or eval()
method to configure the model for training or evaluation,
respectively. This only applies if the model’s forward() function
behaves differently for training and evaluation.

For example, some models may use dropout during training,
but dropout should not be applied during validation or testing.
In this case, we can reconfigure the model by calling
model.train() or model.eval() before its execution.
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Lastly, we modified the LR in our optimizer halfway through
training. This enables us to train at a faster rate at first while
fine-tuning our parameter updates after training on half of the
epochs.

This example is a simple demonstration of how to customize
your loops. Training, validation, and testing loops can be more
complex as you train multiple networks simultaneously, use
multimodal data, or design more complex networks that can
even train other networks. PyTorch offers the flexibility to
design special and innovative processes for training, validation,
and testing.

TIP

PyTorch Lightning is a third-party PyTorch package that
provides boilerplate templates for training, validation, and
testing loops. The package provides a framework that
allows you to create customized loops without having to
repeatedly type the boilerplate code for each model imple‐
mentation. We’ll discuss PyTorch Lightning in Chapter 8.
You can also find more information at the PyTorch Light‐
ning website.

In this chapter, you learned how to create your own custom
components for developing deep learning models in PyTorch.
As your models grow more and more complex, you may find
that the time you need to train your model may become quite
long—perhaps days or even weeks. In the next chapter, you’ll
see how to use built-in PyTorch capabilities to accelerate and
optimize your training process to significantly reduce your
overall model development time.
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CHAPTER 6

PyTorch Acceleration and
Optimization

In the previous chapters, you learned how to use the built-in
capabilities of PyTorch and extend those capabilities by creat‐
ing your own custom components for deep learning. Doing so
enables you to quickly design new models and algorithms to
train them.

However, when dealing with very large datasets or more com‐
plex models, training your models on a single CPU or GPU can
take an extremely long time—it may take days or even weeks to
get preliminary results. Longer training times can become frus‐
trating, especially when you want to conduct many experi‐
ments using different hyperparameter configurations.

In this chapter, we’ll explore state-of-the-art techniques to
accelerate and optimize your model development with
PyTorch. First, we’ll look at using tensor processing units
(TPUs) instead of GPU devices and consider instances in
which using TPUs can improve performance. Next, I’ll show
you how to use PyTorch’s built-in capabilities for parallel pro‐
cessing and distributed training. This will provide a quick ref‐
erence for training models across multiple GPUs and multiple
machines so you can quickly scale your training when more
hardware resources are available. After exploring ways to
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accelerate training, we’ll look at how to optimize your models
using advanced techniques like hyperparameter tuning, quanti‐
zation, and pruning.

The chapter will also provide reference code to make getting
started easy, and references to the key packages and libraries
we’ve used. Once you create your models and training loops,
you can return to this chapter for tips on how to accelerate and
optimize your training process.

Let’s begin by exploring how to run your models on TPUs.

PyTorch on a TPU
As deep learning and AI are increasingly deployed, companies
are developing custom hardware chips or ASICs aimed at opti‐
mizing model performance in hardware. Google developed its
own ASIC for NN acceleration called the TPU. Since the TPU
was designed for NNs, it does not have some of the downfalls
of the GPU, which was designed for graphics processing. Goo‐
gle’s TPU is now available for you to use as part of Google
Cloud TPU. You can also run Google Colab with a TPU.

In the previous chapters, I showed you how to test and train
your deep models using a GPU. You should continue to use
CPUs and GPUs for training if the following conditions apply
to your use case:

• You have small- or medium-size models with small batch
sizes.

• Your models do not take long to train.
• Moving data in and out is your main bottleneck.
• Your calculations are frequently branching or mostly done

element-wise, or you use sparse memory access.
• You need to use high precision. Doubles are not suitable

for TPUs.
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On the other hand, there are several reasons why you may want
to use a TPU instead of a GPU for training. TPUs are very fast
at performing dense vector and matrix computations. They are
optimized for specific workloads. You should strongly consider
using TPUs when the following apply to your use case:

• Your model is dominated by matrix computations.
• Your model has long training times.
• You want to run multiple iterations of your entire training

loop on TPUs.

Running on a TPU is very similar to running on a CPU or a
GPU. Let’s revisit how we would train the model on a GPU in
the following code:

device = torch.device("cuda" if

  torch.cuda.is_available() else "cpu") 

model.to(device) 
for epoch in range(n_epochs):
  for data in trainloader:
    input, labels = data

    input = input.to(device) 

    labels = labels.to(device) 
    optimizer.zero_grad()

    output = model(input)

    loss = criterion(input, labels)
    loss.backward()
    optimizer.step()

Configure the device to a GPU if it’s available.

Send the model to the device.

Send inputs and labels to the GPU.

Namely, we move the model, inputs, and labels to the GPU, and
the rest is done for us. Training your network on a TPU is
almost the same as training it on a GPU except you will need to
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use the PyTorch/XLA (Accelerated Linear Algebra) package as
TPUs are not currently supported natively by PyTorch.

Let’s train our model on a Cloud TPU using Google Colab.
Open a new Colab notebook and select Change Runtime Type
from the Runtime menu. Then select TPU from the “Hardware
accelerator” drop-down menu, as shown in Figure 6-1. Google
Colab provides a free Cloud TPU system, including a remote
CPU host and four TPU chips with two cores each.

Figure 6-1. Using a TPU in Google Colab

Since Colab does not have PyTorch/XLA installed by default
we’ll need to install that first, using the following commands.
This installs the latest “nightly” version, but you can select
another version if needed:
&#33;curl 'https://raw.githubusercontent.com/pytorch' \
  '/xla/master/contrib/scripts/env-setup.py' \
  -o pytorch-xla-env-setup.py

&#33;python pytorch-xla-env-setup.py --version &#34;nightly&#34; 

<1>These are commands that are intended to run in a note‐
book. Omit the “!” to run them on the command line.

Once PyTorch/XLA is installed, we can import the package and
move our data to the TPU:

import torch_xla.core.xla_model as xm

device = xm.xla_device()
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Notice that we do not use torch.cuda.is_available() here,
since it only works for GPUs. Unfortunately, there is no
is_available() method for TPUs. If your environment is not
configured for TPUs, you will get an error.

Once the device is set, the rest of the code is exactly the same:
model.to(device)
for epoch in range(n_epochs):
  for data in trainloader:
    input, labels = data
    input = input.to(device)
    labels = labels.to(device)
    optimizer.zero_grad()

    output = model(input)

    loss = criterion(input, labels)
    loss.backward()
    optimizer.step()

print(output.device) 
# out: xla:1

If Colab is configured for TPUs, you should see xla:1.

PyTorch/XLA is a general library for XLA operations and may
support other specialized ASICs in addition to TPUs. For more
information on PyTorch/XLA, visit the PyTorch/XLA GitHub
repository.

There are still many limitations for running on TPUs, and GPU
support is more widespread. Therefore, most PyTorch develop‐
ers will benchmark their code using a single GPU at first and
then explore using a single TPU or multiple GPUs to accelerate
their code.

We’ve already covered using a single GPU earlier in this book.
In the next section, I’ll show you how to train your models on
machines with multiple GPUs.
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PyTorch on Multiple GPUs (Single Machine)
When accelerating your training and development, it’s impor‐
tant to make the most of the hardware resources you have
available. If you have a local machine or a network server with
access to multiple GPUs, this section will show you how to fully
utilize the GPUs on your system. In addition, you may want to
scale your GPU resources by using cloud GPUs on a single
instance. This is usually the first level of scaling before consid‐
ering a distributed training approach.

Running your code across multiple GPUs is often called parallel
processing. There are two approaches to parallel processing:
data parallel processing and model parallel processing. During
data parallel processing, the data batches are split between mul‐
tiple GPUs while each GPU runs a copy of the model. During
model parallel processing, the model is split up between multi‐
ple GPUs and the data batches are pipelined into each portion.

Data parallel processing is more commonly used in practice.
Model parallel processing is often reserved for cases in which
the model does not fit on a single GPU. I’ll show you how to
perform both types of processing in this section.

Data Parallel Processing
Figure 6-2 illustrates how data parallel processing works. In
this process, each data batch is split into N parts (N is the num‐
ber of GPUs available on the host). N is typically a power of
two. Each GPU holds a copy of the model, and the gradients
and loss are computed for each portion of the batch. The gradi‐
ents and loss are combined at the end of each iteration. This
approach is good for larger batch sizes and use cases in which
the model will fit on a single GPU.

Data parallel processing can be implemented in PyTorch using
a single-process, multithreaded approach or by using a multiproc‐
ess approach. The single-process, multithreaded approach
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requires only one additional line of code but does not perform
well in many cases.

Figure 6-2. Data parallel processing

Unfortunately, multithreading performs poorly due to Python’s
Global Interpreter Lock (GIL) contention across threads, the
per-iteration replication of the model, and the additional over‐
head introduced by scattering inputs and gathering outputs.
You may want to try this approach because it’s so simple, but in
most cases, you will probably use the multiprocess approach.

The multithreaded approach using nn.DataParallel
The multithreaded approach to data parallel processing is
natively supported by PyTorch’s nn module. All you need to do
is wrap your model in nn.DataParallel before sending it to the
GPU, as shown in the following code. Here we assume you
have already instantiated your model:

if torch.cuda.device_count() > 1:
  print("This machine has",
        torch.cuda.device_count(),
        "GPUs available.")
  model = nn.DataParallel(model)

model.to("cuda")

First we check to make sure we have multiple GPUs, and then
we use nn.DataParallel() to set up data parallel processing
before sending the model to the GPU with to(device).
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This multithreaded approach is the simplest way to run on
multiple GPUs; however, the multiprocess approach usually
performs better, even on a single machine. In addition, the
multiprocess approach can also be used to run across multiple
machines, as we’ll see later in this chapter.

The multiprocess approach using DDP (preferred)
Training your models across multiple GPUs is best accom‐
plished using a multiprocess approach. PyTorch supports this
with its nn.parallel.DistributedDataProcessing module. Dis‐
tributed data processing (DDP) can be used with multiple pro‐
cesses on a single machine or with multiple processes across
multiple machines. We’ll start with a single machine.

There are four steps you need to do to modify your code:

1. Initialize a process group using torch.distributed.
2. Create a local model using torch.nn.to().
3. Wrap the model with DDP using torch.nn.parallel.
4. Spawn processes using torch.multiprocessing.

The following code demonstrates how you can convert your
model for DDP training. We’ll break it down into steps. First,
import the necessary libraries:

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel \
  import DistributedDataParallel as DDP

Notice that we’re using three new libraries—torch.distributed,
torch.multiprocessing, and torch.nn.parallel. The following code
shows you how to create a distributed training loop:

def dist_training_loop(rank,
                       world_size,
                       dataloader,
                       model,
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                       loss_fn,
                       optimizer):
    dist.init_process_group("gloo",
                    rank=rank,

                    world_size=world_size) 

    model = model.to(rank) 
    ddp_model = DDP(model,

                    device_ids=[rank]) 
    optimizer = optimizer(
                  ddp_model.parameters(),
                  lr=0.001)

    for epochs in range(n_epochs):
      for input, labels in dataloader:
        input = input.to(rank)

        labels = labels.to(rank) 
        optimizer.zero_grad()

        outputs = ddp_model(input) 
        loss = loss_fn(outputs, labels)
        loss.backward()
        optimizer.step()

    dist.destroy_process_group()

Set up a process group with world_size processes.

Move the model to a GPU with the ID of rank.

Wrap the model in DDP.

Move inputs and labels to the GPU with the ID of rank.

Call the DDP model for the forward pass.

DDP broadcasts the model states from the rank0 process to all
the other processes, so we don’t have to worry about the differ‐
ent processes having models with different initialized weights.

DDP handles the lower-level interprocess communications that
allow you to treat the model as if it was a local model. During
the backward pass, DDP automatically synchronizes the
gradients and places the synchronized gradient tensor in
params.grad when loss.backward() returns.
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Now that we have the process defined, we need to create these
processes using the spawn() function, as shown in the following
code:

if __name__=="__main__":
  world_size = 2
  mp.spawn(dist_training_loop,
      args=(world_size,),
      nprocs=world_size,
      join=True)

Here, we run the code as main to spawn two processes, each
with its own GPU. And that’s how you run data parallel pro‐
cessing on multiple GPUs on a single machine.

WARNING

GPU devices cannot be shared across processes.

If your model does not fit into a single GPU or you are using
smaller batch sizes, you may consider using model parallel pro‐
cessing instead of data parallel processing. We’ll look at that
next.

Model Parallel Processing
Figure 6-3 illustrates how model parallel processing works. In
this process, the model is split across N GPUs on the same
machine. If we process data batches in sequence, the next GPU
will always be waiting for the previous GPU to finish, and this
defeats the purpose of parallel processing. Therefore, we need
to pipeline the data processing so that every GPU is running at
any given moment. When we pipeline the data, only the first N
batches are run in sequence, and then each subsequent run
activates all the GPUs.
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Figure 6-3. Model parallel processing

Implementing model parallel processing is not as simple as
data parallel processing, and it requires you to rewrite your
models. You’ll need to define how your models are split across
multiple GPUs and how the data will be pipelined in the for‐
ward pass. This is typically done by writing a subclass for your
model with a multi-GPU implementation for a specific number
of GPUs.

The following code demonstrates a two-GPU implementation
of AlexNet:

class TwoGPUAlexNet(AlexNet):
  def __init__(self):
    super(ModelParallelAlexNet, self).__init__(
              num_classes=num_classes,
              *args,
              **kwargs)
    self.features.to('cuda:0')
    self.avgpool.to('cuda:0')
    self.classifier.to('cuda:1')
    self.split_size = split_size

  def forward(self, x):
      splits = iter(x.split(self.split_size,
                    dim=0))
      s_next = next(splits)
      s_prev = self.seq1(s_next).to('cuda:1')
      ret = []

      for s_next in splits:
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        s_prev = self.seq2(s_prev) 
        ret.append(self.fc(
            s_prev.view(s_prev.size(0), -1)))

        s_prev = self.seq1(s_next).to('cuda:1') 

      s_prev = self.seq2(s_prev)
      ret.append(self.fc(
            s_prev.view(s_prev.size(0), -1)))

      return torch.cat(ret)

s_prev runs on cuda:1.

s_next runs on cuda:0, which can run concurrently with
s_prev.

Because we are deriving a subclass from the AlexNet class, we
inherit its model structure, so there’s no need to create our lay‐
ers. Instead, we need to describe which pieces of the model go
on GPU0 and which pieces go on GPU1 in the __init__() con‐
structor. Then we need to pipeline the data through each GPU
in the forward() method to implement GPU pipelining. When
you train your model, you will need to put labels on the last
GPU, as shown in the following code:

model = TwoGPUAlexNet()
loss_fn = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)

for epochs in range(n_epochs):
  for input, labels in dataloader;
    input = input.to("cuda:0")

    labels = labels.to("cuda:1") 
    optimizer.zero_grad()
    outputs = model(input)
    loss_fn(outputs, labels).backward()
    optimizer.step()

Send inputs to GPU0 and labels to GPU1.

As you can see, the training loop requires changing one line of
code to make sure the labels are on the last GPU since that’s
where the outputs will be before calculating the loss.
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Data parallel processing and model parallel processing are two
effective paradigms for leveraging multiple GPUs for acceler‐
ated training. Wouldn’t it be great if we could combine the two
approaches and achieve even better results? Let’s see how to
implement the combined approach.

Combined Data Parallel Processing and Model
Parallel Processing
You can combine data parallel processing with model parallel
processing to further improve performance. In this case, you
will wrap your model using DDP to distribute your data
batches among multiple processes. Each process will use multi‐
ple GPUs, and your model will be partitioned among each of
those GPUs.

There are only two changes we need to make:

1. Change our multi-GPU model class to accept devices as
inputs.

2. Omit setting the output device during the forward pass.
DDP will determine where the input and output data will
be placed.

The following code shows how to modify the multi-GPU
model:

class Simple2GPUModel(nn.Module):
    def __init__(self, dev0, dev1):
        super(Simple2GPUModel,
              self).__init__()
        self.dev0 = dev0
        self.dev1 = dev1
        self.net1 = torch.nn.Linear(
                      10, 10).to(dev0)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(
                      10, 5).to(dev1)

    def forward(self, x):
        x = x.to(self.dev0)
        x = self.relu(self.net1(x))
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        x = x.to(self.dev1)
        return self.net2(x)

In the __init__() constructor we pass in the GPU device
objects, dev0 and dev1, and describe which parts of the model
reside in which GPUs. This allows us to instantiate new models
on different processes, each with two GPUs. The forward()
method moves the data from one GPU to the next at the proper
point in the model.

The training loop changes are shown in the following code:
def model_parallel_training(rank, world_size):
    print(f"Running DDP with a model parallel")
    setup(rank, world_size)

    # set up mp_model and devices for this process
    dev0 = rank * 2
    dev1 = rank * 2 + 1
    mp_model = Simple2GPUModel(dev0, dev1)

    ddp_mp_model = DDP(mp_model) 

    loss_fn = nn.MSELoss()
    optimizer = optim.SGD(
            ddp_mp_model.parameters(), lr=0.001)

    for epochs in range(n_epochs):
      for input, labels in dataloader:
        input = input.to(dev0),

        labels = labels,to(dev1) 
        optimizer.zero_grad()

        outputs = ddp_mp_model(input) 
        loss = loss_fn(outputs, labels)
        loss.backward()
        optimizer.step()

    cleanup()

Wrap the model in DDP.

Move the inputs and labels to the appropriate device IDs.

The output is on dev1.

To recap, you have a few options when using PyTorch across
multiple GPUs. You can use the reference code in this section
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to implement data parallel, model parallel, or combined paral‐
lel processing to accelerate your model training and inference.
So far, we’ve only discussed multiple GPUs on a single machine
or a cloud instance.

In many cases, parallel processing across multiple GPUs on a
single machine can reduce training times by half or more—all
you need to do is upgrade your GPU card or utilize a larger
cloud GPU instance. However, if you are training very complex
models or using extremely large datasets, you may want to use
multiple machines or cloud instances to speed up your
training.

The good news is that DDP on multiple machines is not much
different than DDP on a single machine. The next section
shows how this is done.

Distributed Training (Multiple Machines)
If training your NN models on a single machine does not meet
your needs and you have access to a cluster of servers, you can
use PyTorch’s distributed processing capabilities to scale your
training across multiple machines. PyTorch’s distributed sub‐
package, torch.distributed, provides a rich set of capabilities
to suit a variety of training architectures and hardware
platforms.

The torch.distributed subpackage consists of three compo‐
nents: DDP, RPC-based distributed training (RPC), and collec‐
tive communication (c10d). We used DDP in the previous sec‐
tion to run multiple processes on a single machine, and it’s best
suited for the data parallel processing paradigm. RPC was cre‐
ated to support more general training architectures and can be
used for distributed architectures other than the data parallel
processing paradigm.

The c10d component is a communications library used to
transfer tensors across processes. c10d is used by both the DDP
and RPC components as a backend, and PyTorch provides a
c10d API so you can use it in custom distributed applications.
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In this book, we’ll focus on using DDP for distributed training.
However, if you have a more advanced use case, you may want
to use RPC or c10d. You can find out more about these by
reading the PyTorch documentation.

For distributed training with DDP, we will follow the same
DDP procedure as we did for a single machine with multiple
processes. However, in this case, we will run each process on a
separate machine or instance.

To run across multiple machines, we run DDP with a launch
script that specifies our configuration. The launch script is con‐
tained in torch.distributed and can be executed as shown in
the following code. Let’s assume you have two nodes, Node 0
and Node 1. Node 0 is the master node and has an IP address
of 192.168.1.1 and a free port at 1234. On Node 0, you would
run the following script:

 >>> python -m torch.distributed.launch
         --nproc_per_node=NUM_GPUS
         --nnodes=2

         --node_rank=0 
         --master_addr="192.168.1.1"
         --master_port=1234
         TRAINING_SCRIPT.py (--arg1 --arg2 --arg3)

node_rank is set to Node 0.

On Node 1, you would run this next script. Notice that this
node’s rank is 1:

>>> python -m torch.distributed.launch
        --nproc_per_node=NUM_GPUS
        --nnodes=2

        --node_rank=1 
        --master_addr="192.168.1.1"
        --master_port=1234
        TRAINING_SCRIPT.py (--arg1 --arg2 --arg3)

node_rank is set to Node 1.
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If you’d like to explore the optional parameters in this script,
run the following command:

>>> python -m torch.distributed.launch --help

Remember, if you are not using a DDP paradigm, you should
consider using the RPC or c10d API for your use case. Parallel
processing and distributed training can significantly speed up
model performance and reduce development time. In the next
section, we’ll consider other ways to improve NN performance
by implementing techniques that optimize the model itself.

Model Optimization
Model optimization is an advanced topic that focuses on the
underlying implementation of NN models and how they are
trained. As research in this space continues to evolve, PyTorch
has added various capabilities for model optimization. In this
section, we’ll explore three areas of optimization—hyperpara‐
meter tuning, quantization, and pruning—and provide refer‐
ence code for you to use in your own designs.

Hyperparameter Tuning
Deep learning model development often involves selecting
many variables that are used to design a model and how it’s
trained. These variables are called hyperparameters and can
include architecture variations like the number of layers, layer
depth, and kernel sizes, as well as optional stages like pooling
or batch normalization. Hyperparameters may also include var‐
iations of loss functions or optimization parameters, such as
LRs or weight decay rates.

In this section, I’ll show you how to use a package called Ray
Tune to manage your hyperparameter optimization. Research‐
ers often test a small set of hyperparameters manually. How‐
ever, Ray Tune allows you to configure your hyperparameters
and determines which settings are best for performance.
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Ray Tune supports state-of-the-art hyperparameter search
algorithms and distributed training. It is constantly being
updated with new capabilities. Let’s see how we can use Ray
Tune to perform hyperparameter tuning.

Remember the LeNet5 model we trained for image classifica‐
tion back in Chapter 3? Let’s experiment with different model
configurations and training parameters to see if we can use
hyperparameter tuning to improve our model.

In order to use Ray Tune, we need to make the following
changes to our model:

1. Define our hyperparameters and their search space.
2. Write a function to wrap our training loop.
3. Run Ray Tune hyperparameter tuning.

Let’s redefine our model so that we can configure the number
of nodes in the fully connected layers, as shown in the follow‐
ing code:

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self, nodes_1=120, nodes_2=84):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)

        self.fc1 = nn.Linear(16 * 5 * 5, nodes_1) 

        self.fc2 = nn.Linear(nodes_1, nodes_2) 
        self.fc3 = nn.Linear(nodes_2, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
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Configure nodes in fc1.

Configure nodes in fc2.

So far we have two hyperparameters, nodes_1 and nodes_2. Let’s
also define two more hyperparameters, lr and batch_size, so
we can vary the learning rate and batch size used in our train‐
ing.

In the following code, we import the ray package and define
the hyperparameter configuration:

from ray import tune
import numpy as np

config = {
  "nodes_1": tune.sample_from(
      lambda _: 2 ** np.random.randint(2, 9)),
  "nodes_2": tune.sample_from(
      lambda _: 2 ** np.random.randint(2, 9)),
  "lr": tune.loguniform(1e-4, 1e-1),
  "batch_size": tune.choice([2, 4, 8, 16])
  }

During each run, the values for these parameters are chosen
from the specified search space. You can use the method
tune.sample_from() and a lambda function to define a search
space, or you can use built-in sampling functions. In this case,
layer_1 and layer_2 are each set to a random value from 2 to 9
using sample_from().

The lr and batch_size use built-in functions in which lr is
randomly chosen to be a double from 1e-4 to 1e-1 with uni‐
form distribution, and batch_size is randomly chosen to be
either 2, 4, 8, or 16.

Next we need to wrap our training loop with a function that
takes the configuration dictionary as an input. This training
loop function will be called by Ray Tune.

Before we write our training loop, let’s define a function that
loads the CIFAR-10 data so we can reuse the data from the
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same directory during training. The following code is similar to
the data-loading code we used in Chapter 3:

import torch
import torchvision
from torchvision import transforms

def load_data(data_dir="./data"):
  train_transforms = transforms.Compose([
      transforms.RandomCrop(32, padding=4),
      transforms.RandomHorizontalFlip(),
      transforms.ToTensor(),
      transforms.Normalize(
          (0.4914, 0.4822, 0.4465),
          (0.2023, 0.1994, 0.2010))])

  test_transforms = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(
        (0.4914, 0.4822, 0.4465),
        (0.2023, 0.1994, 0.2010))])

  trainset = torchvision.datasets.CIFAR10(
      root=data_dir, train=True,
      download=True, transform=train_transforms)

  testset = torchvision.datasets.CIFAR10(
      root=data_dir, train=False,
      download=True, transform=test_transforms)

  return trainset, testset

Now we can wrap our training loop into a function,
train_model(), as shown in the following code. This is a large
snippet of code; however, it should be familiar to you:

from torch import optim
from torch import nn
from torch.utils.data import random_split

def train_model(config):
  device = torch.device("cuda" if
    torch.cuda.is_available() else "cpu")

  model = Net(config['nodes_1'],

      config['nodes_2']).to(device=device) 

  criterion = nn.CrossEntropyLoss()
  optimizer = optim.SGD(model.parameters(),
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                        lr=config['lr'],

                        momentum=0.9) 

  trainset, testset = load_data()

  test_abs = int(len(trainset) * 0.8)
  train_subset, val_subset = random_split(
      trainset,
      [test_abs, len(trainset) - test_abs])

  trainloader = torch.utils.data.DataLoader(
      train_subset,
      batch_size=int(config["batch_size"]),

      shuffle=True) 

  valloader = torch.utils.data.DataLoader(
      val_subset,
      batch_size=int(config["batch_size"]),

      shuffle=True) 

  for epoch in range(10):
      train_loss = 0.0
      epoch_steps = 0
      for data in trainloader:
          inputs, labels = data
          inputs = inputs.to(device)
          labels = labels.to(device)

          optimizer.zero_grad()

          outputs = model(inputs)
          loss = criterion(outputs, labels)
          loss.backward()
          optimizer.step()
          train_loss += loss.item()

      val_loss = 0.0
      total = 0
      correct = 0
      for data in valloader:
          with torch.no_grad():
              inputs, labels = data
              inputs = inputs.to(device)
              labels = labels.to(device)

              outputs = model(inputs)
              _, predicted = torch.max(
                          outputs.data, 1)
              total += labels.size(0)
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              correct += \
                (predicted == labels).sum().item()

              loss = criterion(outputs, labels)
              val_loss += loss.cpu().numpy()

      print(f'epoch: {epoch} ',
            f'train_loss: ',
            f'{train_loss/len(trainloader)}',
            f'val_loss: ',
            f'{val_loss/len(valloader)}',
            f'val_acc: {correct/total}')
      tune.report(loss=(val_loss / len(valloader)),
                  accuracy=correct / total)

Make the model layers configurable.

Make the learning rate configurable.

Make the batch size configurable.

Next we want to run Ray Tune, but we first need to determine
the scheduler and the reporter that we want to use. The schedu‐
ler determines how Ray Tune searches and selects the hyper‐
parameters, while the reporter specifies how we’d like to view
the results. Let’s set them up in the following code:

from ray.tune import CLIReporter
from ray.tune.schedulers import ASHAScheduler

scheduler = ASHAScheduler(
    metric="loss",
    mode="min",
    max_t=10,
    grace_period=1,
    reduction_factor=2)

reporter = CLIReporter(
    metric_columns=["loss",
                    "accuracy",
                    "training_iteration"])

For the scheduler, we’ll use the asynchronous successive halv‐
ing algorithm (ASHA) for hyperparameter searches and
instruct it to minimize loss. For the reporter, we’ll configure a
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CLI reporter to report the loss, accuracy, training iteration, and
selected hyperparameters on the CLI for each run.

Finally we can run Ray Tune using the run() method as shown
in the following code:

from functools import partial

result = tune.run(
    partial(train_model),
    resources_per_trial={"cpu": 2, "gpu": 1},
    config=config,
    num_samples=10,
    scheduler=scheduler,
    progress_reporter=reporter)

We provision the resources and specify the configuration. We
pass in our configuration dictionary, specify the number of
samples or runs, and pass in our scheduler and reporter
functions.

Ray Tune will report the results. The get_best_trial() method
returns an object that contains information about the best trial.
We can print out the hyperparameter settings that yielded the
best results, as shown in the following code:

best_trial = result.get_best_trial(
    "loss", "min", "last")
print("Best trial config: {}".format(
    best_trial.config))
print("Best trial final validation loss:",
      "{}".format(
          best_trial.last_result["loss"]))
print("Best trial final validation accuracy:",
      "{}".format(
          best_trial.last_result["accuracy"]))

You may find other features of the Ray Tune API useful.
Table 6-1 lists the available schedulers in tune.schedulers.
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Table 6-1. Ray Tune schedulers

Scheduling method Description

ASHA Scheduler that runs the asynchronous
successive halving algorithm

HyperBand Scheduler that runs the HyperBand early
stopping algorithm

Median Stopping Rule Scheduler based on the median stopping rule,
as described in “Google Vizier: A Service for
Black-Box Optimization”.

Population Based Training Scheduler based on the Population Based
Training algorithm

Population Based Training
Replay

Scheduler that replays a Population Based
Training run

BOHB Scheduler that uses Bayesian optimization and
HyperBand

FIFOScheduler Simple scheduler that just runs trials in
submission order

TrialScheduler Scheduler based on trials

Shim Instantiation Scheduler based on the provided string

More information can be found in the Ray Tune documenta‐
tion. As you can see, Ray Tune has a rich set of capabilities, but
there are other hyperparameter packages that support PyTorch
as well. These include Allegro Trains and Optuna.

Hyperparameter tuning can significantly improve the perfor‐
mance of an NN model by finding the settings that work best.
Next, we’ll explore another technique to optimize a model:
quantization.

Quantization
NNs are implemented as computational graphs, and their com‐
putations often use 32-bit (or in some cases, 64-bit) floating-
point numbers. However, we can enable our computations to
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use lower-precision numbers and still achieve comparable
results by applying quantization.

Quantization refers to techniques for computing and accessing
memory with lower-precision data. These techniques can
decrease model size, reduce memory bandwidth, and perform
faster inference due to savings in memory bandwidth and
faster computing with int8 arithmetic.

A quick quantization method is to reduce all computation pre‐
cision by half. Let’s consider our LeNet5 model example again,
as shown in the following code:

import torch
from torch import nn
import torch.nn.functional as F

class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(
            F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(
            F.relu(self.conv2(x)), 2)
        x = x.view(-1,
                   int(x.nelement() / x.shape[0]))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

model = LeNet5()

By default, all computations and memory are implemented as
float32. We can inspect the data types of our model’s parame‐
ters using the following code:

for n, p in model.named_parameters():
  print(n, ": ", p.dtype)
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# out:
# conv1.weight :  torch.float32
# conv1.bias :  torch.float32
# conv2.weight :  torch.float32
# conv2.bias :  torch.float32
# fc1.weight :  torch.float32
# fc1.bias :  torch.float32
# fc2.weight :  torch.float32
# fc2.bias :  torch.float32
# fc3.weight :  torch.float32
# fc3.bias :  torch.float32

As expected, our data types are float32. However, we can
reduce the model to half precision in one line of code using the
half() method:

model = model.half()

for n, p in model.named_parameters():
  print(n, ": ", p.dtype)

# out:
# conv1.weight :  torch.float16
# conv1.bias :  torch.float16
# conv2.weight :  torch.float16
# conv2.bias :  torch.float16
# fc1.weight :  torch.float16
# fc1.bias :  torch.float16
# fc2.weight :  torch.float16
# fc2.bias :  torch.float16
# fc3.weight :  torch.float16
# fc3.bias :  torch.float16

Now our computation and memory values are float16 . Using
half() is often a quick and easy way to quantize your models.
It’s worth a try to see if the performance is adequate for your
use case.
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However, in many cases, we don’t want to quantize every com‐
putation in the same way, and we may need to quantize beyond
float16 values. For these other cases, PyTorch provides three
additional modes of quantization: dynamic quantization, post-
training static quantization, and quantization-aware training
(QAT).

Dynamic quantization is used when throughput is limited by
compute or memory bandwidth for weights. This is often true
for LSTM, RNN, Bidirectional Encoder Representations from
Transformers (BERT), or Transformer networks. Static quanti‐
zation is used when throughput is limited by memory band‐
width for activations and often applies for CNNs. QAT is used
when accuracy requirements cannot be achieved by static
quantization.

Let’s provide some reference code for each type. All types con‐
vert weights to int8. They vary in handle activations and mem‐
ory access.

Dynamic quantization is the easiest type. It converts the activa‐
tions to int8 on the fly. Computations use efficient int8 values,
but the activations are read and written to memory in floating-
point format.

The following code shows you how to quantize a model with
dynamic quantization:

import torch.quantization

quantized_model = \
  torch.quantization.quantize_dynamic(
      model,
      {torch.nn.Linear},
      dtype=torch.qint8)

All we need to do is pass in our model and specify the quan‐
tized layers and the quantization level.
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WARNING

Quantization depends on the backend being used to run
quantized models. Currently, quantized operators are
supported for CPU inference only in the following back‐
ends: x86 (fbgemm) and ARM (qnnpack). However, quan‐
tization-aware training occurs in full floating point and can
run on either GPUs or CPUs.

Post-training static quantization can be used to further reduce
latency by observing the distributions of different activations
during training and by deciding how those activations should
be quantized at the time of inference. This type of quantization
allows us to pass quantized values between operations without
converting back and forth between floats and ints in memory:

static_quant_model = LeNet5()
static_quant_model.qconfig = \
  torch.quantization.get_default_qconfig('fbgemm')

torch.quantization.prepare(
    static_quant_model, inplace=True)
torch.quantization.convert(
    static_quant_model, inplace=True)

Post-training static quantization requires configuration and
training to prepare it before its use. We configure the backend
to use x86 (fbgemm) and call torch.quantization.prepare to
insert observers to calibrate the model and collect statistics.
Then we convert the model to a quantized version.

Quantization-aware training typically results in the best accu‐
racy. In this case, all weights and activations are “fake quan‐
tized” during the forward and backward pass of training. Float
values are rounded to the int8 equivalent, but the computations
are still done in floating point. That is, the weight adjustments
are made “aware” that they will be quantized during training.
The following code shows how to quantize a model with QAT:
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qat_model = LeNet5()
qat_mode.qconfig = \
  torch.quantization.get_default_qat_qconfig('fbgemm')

torch.quantization.prepare_qat(
    qat_model, inplace=True)
torch.quantization.convert(
    qat_model, inplace=True)

Again we need to configure the backend and prepare the
model, and then we call convert() to quantize the model.

PyTorch’s quantization capabilities are continuing to evolve,
and they currently exist in beta. Please refer to the PyTorch
documentation for the latest information on how to use the
Quantization package.

Pruning
Modern deep learning models can have millions of parameters
and can be difficult to deploy. However, models are over-
parameterized, and parameters can often be reduced without
affecting the accuracy or model performance much. Pruning is
a technique that reduces the number of model parameters with
minimal effect on performance. This allows you to deploy
models with less memory, lower power usage, and reduced
hardware resources.

Pruning model example

Pruning can be applied to an nn.module. Since an nn.module
may consist of a single layer, multiple layers, or an entire
model, pruning can be applied to a single layer, multiple layers,
or the entire model itself. Let’s consider our example LeNet5
model:

from torch import nn
import torch.nn.functional as F

class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
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        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(
            F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(
            F.relu(self.conv2(x)), 2)
        x = x.view(-1,
                   int(x.nelement() / x.shape[0]))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

Our LeNet5 model has five submodules—conv1, conv2, fc1,
fc2, and fc3. The model parameters consist of its weights and
biases and can be shown using the named_parameters()

method. Let’s look at the parameters of the conv1 layer:
device = torch.device("cuda" if
  torch.cuda.is_available() else "cpu")
model = LeNet5().to(device)

print(list(model.conv1.named_parameters()))
# out:
# [('weight', Parameter containing:
# tensor([[[[0.0560, 0.0066, ..., 0.0183, 0.0783]]]],
#        device='cuda:0',
#        requires_grad=True)),
#  ('bias', Parameter containing:
# tensor([0.0754, -0.0356, ..., -0.0111, 0.0984],
#        device='cuda:0',
#        requires_grad=True))]

Local and global pruning
Local pruning is when we only prune a specific piece of our
model. With this technique we can apply local pruning to a sin‐
gle layer or module. Just call your pruning method, passing in
the layer, and set its options as shown in the following code:

import torch.nn.utils.prune as prune

prune.random_unstructured(model.conv1,
                          name="weight",
                          amount=0.25)
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This example applies random unstructured pruning to the
parameters named weight in the conv1 layer in our model. This
only prunes the weight parameters. We can prune the bias
parameters as well with the following code:

prune.random_unstructured(model.conv1,
                          name="bias",
                          amount=0.25)

Pruning can be applied iteratively, so you can further prune the
same parameters using other pruning methods across different
dimensions.

You can prune modules and parameters differently. For exam‐
ple, you may want to prune by module or layer type and apply
pruning to convolutional layers differently than linear layers.
The following code illustrates one way to do so:

model = LeNet5().to(device)

for name, module in model.named_modules():
    if isinstance(module, torch.nn.Conv2d):
        prune.random_unstructured(module,
                              name='weight',

                              amount=0.3) 
    elif isinstance(module, torch.nn.Linear):
        prune.random_unstructured(module,
                              name='weight',

                              amount=0.5) 

Prune all 2D convolutional layers by 30%.

Prune all linear layers by 50%.

Another use of the pruning API is to apply global pruning, in
which we apply a pruning method to the entire model. For
example, we could prune 25% of our model’s parameters glob‐
ally, which would probably result in different pruning rates for
each layer. The following code illustrates one way to apply
global pruning:

model = LeNet5().to(device)

parameters_to_prune = (
    (model.conv1, 'weight'),

Model Optimization | 185



    (model.conv2, 'weight'),
    (model.fc1, 'weight'),
    (model.fc2, 'weight'),
    (model.fc3, 'weight'),
)

prune.global_unstructured(
    parameters_to_prune,
    pruning_method=prune.L1Unstructured,
    amount=0.25)

Here we prune 25% of all the parameters in the entire model.

Pruning API
PyTorch provides built-in support for pruning in its
torch.nn.utils.prune module. Table 6-2 lists the available
functions in the pruning API.

Table 6-2. Pruning functions

Function Description

is_pruned(module) Checks whether the module is
pruned

remove(module, name) Removes the pruning
reparameterization from a
module and the pruning method
from the forward hook

custom_from_mask(module, 

name, mask)

Prunes the tensor corresponding
to the parameter called name in
module by applying the
precomputed mask in mask

global_unstructured(params, 

pruning_method)

Globally prunes tensors
corresponding to all parameters in
params by applying the
specified pruning_method
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Function Description

ln_structured(module, name, 

amount, n, dim)

Prunes the tensor corresponding
to the parameter called name in
module by removing the
specified amount of (currently
unpruned) channels along the
specified dim with the lowest Ln-
norm

random_structured(module, 

name, amount, dim)

Prunes the tensor corresponding
to the parameter called name in
module by removing the
specified amount of (currently
unpruned) channels along the
specified dim selected at random

l1_unstructured(module, name, 

amount)

Prunes the tensor corresponding
to the parameter called name in
module by removing the
specified amount of (currently
unpruned) units with the lowest
L1-norm

random_unstructured(module, 

name, amount)

Prunes tensor corresponding to
the parameter called name in
module by removing the
specified amount of (currently
unpruned) units selected at
random

Custom pruning methods
If you can’t find a pruning method that suits your needs, you
can create your own pruning method. To do so, create a sub‐
class from the BasePruningMethod class provided in
torch.nn.utils.prune. In most cases, you can leave the call(),
apply_mask(), apply(), prune(), and remove() methods as they
are.
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However, you will need to write your own __init__() con‐
structor and compute_mask() method to describe how your
pruning method computes the mask. In addition, you’ll need to
specify the type of pruning (structured, unstructured, or
global). The following code shows an example:

class MyPruningMethod(prune.BasePruningMethod):
  PRUNING_TYPE = 'unstructured'

  def compute_mask(self, t, default_mask):
    mask = default_mask.clone()
    mask.view(-1)[::2] = 0
    return mask

def my_unstructured(module, name):
  MyPruningMethod.apply(module, name)
  return module

First we define the class. This example prunes every other
parameter, as defined by the code in compute_mask(). The
PRUNING_TYPE is used to configure the pruning type as
unstructured. Then we include and apply a function that
instantiates the method. You would apply this pruning to your
model in the following way:

model = LeNet5().to(device)
my_unstructured(model.fc1, name='bias')

You’ve now created your own custom pruning method and can
apply it locally or globally.

This chapter showed you how to accelerate your training and
optimize your models using PyTorch. The next step is to
deploy your models and innovations into the world. In the next
chapter, you’ll learn how to deploy your models to the cloud
and to mobile and edge devices, and I’ll provide some reference
code to build quick applications to showcase your designs.

188 | Chapter 6: PyTorch Acceleration and Optimization



CHAPTER 7

Deploying PyTorch to Production

Most of this book so far has focused on model design and
training. Earlier chapters showed you how to use the built-in
capabilities of PyTorch to design your models and create cus‐
tom NN modules, loss functions, optimizers, and other algo‐
rithms. In the previous chapter, we looked at how to use dis‐
tributed training and model optimizations to accelerate your
model training times and minimize the resources needed for
running your models.

At this point, you have everything you need to create some
well-trained, cutting-edge NN models—but don’t let your
innovations sit in isolation. Now it’s time to deploy your mod‐
els into the world through applications.

In the past, going from research to production was a challeng‐
ing task that required a team of software engineers to move
PyTorch models to a framework and integrate them nto a
(often non-Python) production environment. Today, PyTorch
includes built-in tools and external libraries to support rapid
deployment to a variety of production environments.

In this chapter, we focus on deploying your model for infer‐
ence, not training, and we’ll explore how to deploy your trained
PyTorch models into a variety of applications. First, I’ll
describe the various built-in capabilities and tools within
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PyTorch that you can use for deployment. Tools like Torch‐
Serve and TorchScript allow you to easily deploy your PyTorch
models to the cloud and to mobile or edge devices.

Depending on the application and environment, you may have
several options for deployment, each with its own trade-offs.
I’ll show you examples of how you can deploy your PyTorch
models in multiple cloud and edge environments. You’ll learn
how to deploy to web servers for development and production
at scale, to iOS and Android mobile devices, and to Internet of
Things (IoT) devices based on ARM processors, GPUs, and
field-programmable gate array (FPGA) hardware.

The chapter will also provide reference code, including refer‐
ences to the key APIs and libraries we use, to make getting
started easy. When it comes time to deploy your models, you
can refer back to this chapter for a quick reference so you
can demonstrate your applications in cloud or mobile
environments.

Let’s begin by reviewing the resources that PyTorch provides to
assist you in deploying your models.

PyTorch Deployment Tools and Libraries
PyTorch includes built-in tools and capabilities to facilitate
deploying your model to production environments and edge
devices. In this section, we’ll explore those tools, and in the rest
of the chapter we’ll apply them to various environments.

PyTorch’s deployment capabilities include its natural Python
API, as well as the TorchServe, TorchScript, ONNX, and
mobile libraries. Since PyTorch’s natural API is Python-based,
PyTorch models can be deployed as is in any environment that
supports Python.

Table 7-1 summarizes the various resources available for
deployment and indicates how to appropriately use each one.
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Table 7-1. PyTorch resources for deployment

Resource Use

Python API Perform fast prototyping, training, and experimentation;
program Python runtimes.

TorchScript Improve performance and portability (e.g., load and run a
model in C++); program non-Python runtimes or strict latency
and performance requirements.

TorchServe A fast production environment tool with model store, A/B
testing, monitoring, and RESTful API.

ONNX Deploy to systems with ONNX runtimes or FPGA devices.

Mobile
libraries

Deploy to iOS and Android devices.

The following sections provide a reference and some sample
code for each deployment resource. In each case, we’ll use the
same example model, described next.

Common Example Model
For each of the deployment resource examples and applica‐
tions, as well as the reference code provided in this chapter, we
will use the same model. For our examples, we’ll deploy an
image classifier using a VGG16 model pretrained with Image‐
Net data. That way, each section can focus on the deployment
approach used and not the model itself. For each approach, you
can replace the VGG16 model with one of your own and follow
the same workflow to achieve results with your own designs.

The following code instantiates the model for use throughout
this chapter:

from torchvision.models import vgg16

model = vgg16(pretrained=True)
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We’ve used the VGG16 model before. To give you an idea of the
model’s complexity, let’s print out the number of trainable
parameters using the following code:

import numpy as np

model_parameters = filter(lambda p:
      p.requires_grad, model.parameters())

params = sum([np.prod(p.size()) for
      p in model_parameters])
print(params)

# out: 138357544

The VGG16 model has 138,357,544 trainable parameters. As
we go through each approach, keep in mind the performance at
this level of complexity. You can use this as a rough benchmark
when comparing the complexity of your models.

After we instantiate the VGG16 model, it requires minimal
effort to deploy it in a Python application. In fact, we’ve already
done this when we tested our models in previous chapters. Let’s
review the process one more time before we jump into other
approaches.

Python API
The Python API is not a new resource. It’s the same one we’ve
been using throughout the book. I mention it here to point out
that you can deploy your PyTorch models without any changes
to your code. In this case, you simply call your model in evalua‐
tion mode with your desired inputs from any Python applica‐
tion, as shown in the following code:

import system
import torch

if __name__ == "__main__":
  model = MyModel()
  model.load_state_dict(torch.load(PATH))
  model.eval()
  outputs = model(inputs)
  print(outputs)
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The code loads the model, passes in the input, and prints out
the output. This is a simple standalone Python application.
You’ll see how to deploy a model to a Python web server using
a RESTful API and Flask later in this chapter. Using a Flask web
server, you can build a quick browser application that demon‐
strates your model’s capability.

Python is not always used in production environments due to
its slower performance and lack of true multithreading. If your
production environment uses another language (e.g., C++,
Java, Rust, or Go), you can convert your models to TorchScript
code.

TorchScript
TorchScript is a way to serialize and optimize your PyTorch
model code so that your PyTorch models can be saved and exe‐
cuted in non-Python runtime environments with no depend‐
ency on Python. TorchScript is commonly used to run PyTorch
models in C++ and with any language that supports C++
bindings.

TorchScript represents a PyTorch model in a format that can be
understood, compiled, and serialized by the TorchScript com‐
piler. The TorchScript compiler creates a serialized, optimized
version of your model that can be used in C++ applications. To
load your TorchScript model in C++, you would use the
PyTorch C++ API library called LibTorch.

There are two ways to convert your PyTorch models to Torch‐
Script. The first one is called tracing, which is a process in
which you pass in an example input and perform the conver‐
sion with one line of code. It’s used in most cases. The second is
called scripting, and it’s used when your model has more com‐
plex control code. For example, if your model has conditional
if statements that depend on the input itself, you’ll want to use
scripting. Let’s take a look at some reference code for each case.
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Since our VGG16 example model does not have any control
flow, we can use tracing to convert our model to TorchScript, as
shown in the following code:

import torch

model = vgg16(pretrained=True)
example_input = torch.rand(1, 3, 224, 224)
torchscript_model = torch.jit.trace(model,
                            example_input)
torchscript_model.save("traced_vgg16_model.pt")

The code creates a Python callable model, torchscript_model,
that can be evaluated using a normal PyTorch approach such as
output = torchscript_model(inputs). Once we save the
model, we can use it in a C++ application.

NOTE

The “normal” method of evaluating a model in PyTorch is
often called eager mode since it’s the quickest way to eval‐
uate your models for development.

If our model used control flow, we would need to use the anno‐
tation method to convert it to TorchScript. Let’s consider the
following model:

import torch.nn as nn

class ControlFlowModel(nn.Module):
  def __init__(self, N):
    super(ControlFlowModel, self).__init__()
    self.fc = nn.Linear(N,100)

  def forward(self, input):
    if input.sum() > 0:
      output = input
    else:
      output = -input
    return output

model = ControlFlowModel(10)
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torchcript_model = torch.jit.script(model)
torchscript_model.save("scripted_vgg16_model.pt")

In this example, the ControlFlowModel outputs and weights
depend on the input values. In this case, we need to use
torch.jit.script(), and then we can save the model to Torch‐
Script just like we did with tracing.

Now we can use our model in a C++ application, as shown in
the following C++ code:

include <torch/script.h>

#include <iostream>
#include <memory>

int main(int argc, const char* argv[]) {
  if (argc != 2) {
    std::cerr << "usage: example-app" >> \
      "<path-to-exported-script-module>\n";
    return -1;
  }

  torch::jit::script::Module model;
  model = torch::jit::load(argv[1]);

  std::vector<torch::jit::IValue> inputs;
  inputs.push_back( \
      torch::ones({1, 3, 224, 224}));

  at::Tensor output = model.forward(inputs).toTensor();
  std::cout \
    << output.slice(/*dim=*/1, \
        /*start=*/0, /*end=*/5) \
    << '\n';
  }

}

We pass in the filename of the TorchScript module to the pro‐
gram and load the model using torch::jit::load(). Then we
create a sample input vector, run it through our TorchScript
model, and convert the outputs to tensors, printing them to
stdout.
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The TorchScript API provides additional functions to support
converting your models to TorchScript. Table 7-2 lists the sup‐
ported functions.

Table 7-2. TorchScript API functions

Function Description

script(obj[, optimize, 

_frames_up, _rcb])

Inspects the source code, compiles
it as TorchScript code using the
TorchScript compiler, and returns a
ScriptModule or Script
Function

trace(func, example_inputs[, 

optimize, ...])

Traces a function and returns an
executable or ScriptFunction
that will be optimized using just-in-
time compilation

script_if_tracing(fn) Compiles fn when it is first called
during tracing

trace_module(mod, inputs[, 

optimize, ...])

Traces a module and returns an
executable ScriptModule that
will be optimized using just-in-time
compilation

fork(func, *args, **kwargs) Creates an asynchronous task
executing func and a reference to
the value of the result of this
execution

wait(future) Forces the completion of a
torch.jit.Future[T]

asynchronous task, returning the
result of the task

ScriptModule() Wraps a script into a C++
torch::jit::Module

ScriptFunction() Works the same as ScriptMod
ule() but represents a single
function and does not have any
attributes or parameters

196 | Chapter 7: Deploying PyTorch to Production



Function Description

freeze(mod[, pre

served_attrs])

Clones a ScriptModule and
attempts to inline the cloned
module’s submodules, parameters,
and attributes as constants in the
TorchScript IR Graph

save(m, f[, _extra_files]) Saves an offline version of the
module for use in a separate
process

load(f[, map_location, 

_extra_files])

Loads a ScriptModule or
ScriptFunction previously
saved with torch.jit.save()

ignore([drop]) Indicates to the compiler that a
function or method should be
ignored and left as a Python
function

unused(fn) Indicates to the compiler that a
function or method should be
ignored and replaced with the
raising of an exception

isinstance(obj, target_type) Provides for container-type
refinement in TorchScript

In this section, we used TorchScript to increase the perfor‐
mance of our model when it’s used in a C++ application or in a
language that binds to C++. However, deploying PyTorch mod‐
els at scale requires additional capabilities, like packaging mod‐
els, configuring runtime environments, exposing API end‐
points, logging and monitoring, and managing multiple model
versions. Fortunately, PyTorch provides a tool called Torch‐
Serve to facilitate these tasks and rapidly deploy your models
for inference at scale.
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TorchServe
TorchServe is an open-source model-serving framework that
makes it easy to deploy trained PyTorch models. It was devel‐
oped by AWS engineers and jointly released with Facebook in
April 2020, and it is actively maintained by AWS. TorchServe
supports all the features needed to deploy models to produc‐
tion at scale, including multimodel serving, model versioning
for A/B testing, logging and metrics for monitoring, and a
RESTful API for integration with other systems. Figure 7-1
illustrates how TorchServe works.

Figure 7-1. TorchServe architecture

The client application interfaces with TorchServe through mul‐
tiple APIs. The Inference API provides the main inference
requests and predictions. The client application sends input
data through the RESTful API request and receives the predic‐
tion results. The Management API allows you to register and
manage your deployed models. You can register, unregister, set
default models, configure A/B testing, check status, and specify
the number of workers for a model. The Metrics API allows
you to monitor each model’s performance.

TorchServe runs all model instances and captures server logs. It
processes the frontend APIs and manages the model storage to
disk. TorchServe also provides a number of default handlers for
common applications like object detection and text classifica‐
tion. The handlers take care of converting data from the API
into a format that your model will process. This helps speed up
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deployment since you don’t have to write custom code for these
common applications.

WARNING

TorchServe is experimental and subject to change.

To deploy your models via TorchServe, you will need to follow
a few steps. First you need to install TorchServe’s tools. Then
you’ll package your model using the model archiver tool. Once
your models are archived, you’ll then run the TorchServe web
server. Once the web server is running, you can use its APIs to
request predictions, manage your models, perform monitoring,
or access server logs. Let’s take a look at how to perform each
step.

Install TorchServe and torch-model-archiver
AWS provides preinstalled machines with TorchServe in Ama‐
zon SageMaker or Amazon EC2 instances. If you’re using a dif‐
ferent cloud provider, check with them to see if preinstalled
instances exist before getting started. If you’re using a local
server or need to install TorchServe, see the TorchServe instal‐
lation instructions.

A simple approach to try is to install with conda or pip, as
shown in the following command lines:

$ conda install torchserve torch-model-archiver -c pytorch

$ pip install torchserve torch-model-archiver

If you run into issues, refer to the TorchServe installation
instructions at the preceding link.

PyTorch Deployment Tools and Libraries | 199

https://pytorch.tips/torchserve-install
https://pytorch.tips/torchserve-install


Package a model archive
TorchServe has the ability to package all model artifacts into
a single-model archive file. To do so, we will use the
torch-model-archiver command-line tool that we installed in
the previous step. It packages model checkpoints as well as the
state_dict into a .mar file that the TorchServe server uses to
serve the model.

You can use the torch-model-archiver to archive your Torch‐
Script models as well as the standard “eager-mode” implemen‐
tations, as shown in the following code.

For a TorchScript moel, the command line is as follows:
$ torch-model-archiver --model-name vgg16
  --version 1.0 --serialized-file model.pt --handler
  image_classifier

We set the model as our example VGG16 model and use the
saved serialized file, model.pt. In this case, we can use the
default image_classifier handler as well.

For the standard eager-mode model we would use the follow‐
ing command:
$ torch-model-archiver --model-name vgg16
  --version 1.0 --model-file model.py --serialized-file model.pt
  --handler image_classifier

This is similar to the previous command, but we also need to
specify the model file, model.py.

The complete set of options for the torch-model-archiver tool
is shown in the following code:

$ torch-model-archiver -h
usage: torch-model-archiver [-h]
        --model-name MODEL_NAME
        --version MODEL_VERSION_NUMBER
        --model-file MODEL_FILE_PATH
        --serialized-file MODEL_SERIALIZED_PATH
        --handler HANDLER
        [--runtime {python,python2,python3}]
        [--export-path EXPORT_PATH] [-f]
        [--requirements-file]
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Table 7-3. Model archiver tool options

Options Description

-h, --help Help message. After the help message is
displayed, the program will exit.

--model-name 

MODEL_NAME

Exported model name. Exported file will be
named as <model-name>.mar and saved in
the current working directory if no
--export-path is specified, else it will be
saved under the export path.

--serialized-file

SERIALIZED_FILE

Path to a _.pt_ or _.pth_ file containing
state_dict in case of eager mode or an
executable ScriptModule in case of
TorchScript.

--model-file 

MODEL_FILE

Path to Python file containing the model
architecture. This parameter is mandatory for
eager-mode models. The model architecture
file must contain only one class definition
extended from torch.nn.modules.

--handler HANDLER TorchServe’s default handler name or Python
file path to handle custom TorchServe inference
logic.

--extra-files 

EXTRA_FILES

Comma-separated path to extra dependency
files.

--runtime {python, 

python2, python3}

The runtime specifies which language to run
your inference code on. The default runtime is
RuntimeType.PYTHON, but at present the
following runtimes are supported: python,
python2, and python3.

--export-path 

EXPORT_PATH

Path where the exported _.mar_ file will be
saved. This is an optional parameter. If
--export-path is not specified, the file will
be saved in the current working directory.
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Options Description

--archive-format 

{tgz, no-archive, 

default}

The format in which the model artifacts are
archived. tgz creates the model archive in
<model-name>.tar.gz format. If platform
hosting requires model artifacts to be in .tar.gz,
use this option. no-archive creates a
nonarchived version of model artifacts at
<export-path>/<model-name>. As a result of
this choice, a MANIFEST file will be created at
that location without archiving these model
files. default creates the model archive in
<model-name>.mar format. This is the default
archiving format. Models archived in this
format will be readily hostable on TorchServe.

-f,--force When the -f or --force flag is specified, an
existing .mar file with the same name as that
provided in --model-name in the path
specified by --export-path will be
overwritten.

-v, --version Model’s version.

-r,
--requirements-file

Path to a requirements.txt file containing a list
of model-specific Python packages to be
installed by TorchServe for seamless model
serving.

We can save our model archive .mar file in the /models folder.
We’ll use this as our model store. Next, let’s run the TorchServe
web server.

Run TorchServe
TorchServe includes a built-in web server that is run from the
command line. It wraps one or more PyTorch models in a set of
REST APIs and provides controls for configuring the port,
host, and logging. The following command starts the web
server with all models in the model store located in the /models
folder:
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$ torchserve --model-store /models --start
  --models all

A complete set of options is shown in Table 7-4.

Table 7-4. TorchServe options

Options Description

--model-store +MODEL_STORE
+ +(mandatory)+

Specifies the model store location where
models can be loaded

-h, --help Shows the help message and exits

-v, --version Returns the TorchServe version

--start Starts the model server

--stop Stops the model server

--ts-config +TS_CONFIG+ Indicates the configuration file for
TorchServe

--models +MODEL_PATH1
MODEL_NAME=MODEL_PATH2…
[MODEL_PATH1
MODEL_NAME=MODEL_PATH2…
…]+

Indicates the models to be loaded using
[model_name=]model_location

format; locations can be an HTTP URL, a
model archive file, or a directory that
contains model archive files in
MODEL_STORE

--log-config +LOG_CONFIG+ Indicates the log4j configuration file for
TorchServe

--ncs, --no-config-
snapshots

Disables the snapshot feature

Now that the TorchServe web server is running, you can use
the Inference API to send data and request predictions.

Request predictions
You use the Inference API to pass data and request predictions.
The Inference API listens on port 8080 and is only accessible
from localhost by default. To change the default setting, refer to
the TorchServe documentation. To get predictions from the
server, we use the Inference API’s Service.Predictions gRPC
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API and make a REST call to /predictions/<model_name>, as
shown using curl in the following command line:

$curl http://localhost:8080/predictions/vgg16
  -T hot_dog.jpg

The code assumes we have an image file, hot_dog.jpg. The
JSON-formatted response would look something like this:

{
    "class": "n02175045 hot dog",
    "probability": 0.788482002828
}

You can also use the Inference API to do a health check using
the following request:

$ curl http://localhost:8080/ping

The response will look like the following if the server is
running:

{
  "health": "healthy!"
}

For a full list of inference APIs use the following command:
$ curl -X OPTIONS http://localhost:8080

Logging and monitoring
You can configure metrics using the Metrics API and monitor
and log your models’ performance when deployed. The Metrics
API listens on port 8082 and is only accessible from localhost
by default, but you can change the default when configuring
your TorchServe server. The following command illustrates
how to access metrics:
$ curl http://127.0.0.1:8082/metrics

# HELP ts_inference_latency_microseconds
#    Cumulative inference

# TYPE ts_inference_latency_microseconds counter
ts_inference_latency_microseconds{
  uuid="d5f84dfb-fae8-4f92-b217-2f385ca7470b",...
ts_inference_latency_microseconds{
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  uuid="d5f84dfb-fae8-4f92-b217-2f385ca7470b",model_name="noop"...

# HELP ts_inference_requests_total Total number of inference ...

# TYPE ts_inference_requests_total counter
ts_inference_requests_total{
  uuid="d5f84dfb-fae8-4f92-b217-2f385ca7470b",...
ts_inference_requests_total{
  uuid="d5f84dfb-fae8-4f92-b217-2f385ca7470b",model_name="noop"...

# HELP ts_queue_latency_microseconds Cumulative queue duration ...

# TYPE ts_queue_latency_microseconds counter
ts_queue_latency_microseconds{
  uuid="d5f84dfb-fae8-4f92-b217-2f385ca7470b",...
ts_queue_latency_microseconds{
  uuid="d5f84dfb-fae8-4f92-b217-2f385ca7470b",model_name="noop"...

The default metrics endpoint returns Prometheus-formatted
metrics. Prometheus is a free software application used for
event monitoring and alerting that records real-time metrics in
a time series database built using an HTTP pull model. You can
query metrics using curl requests or point a Prometheus
Server to the endpoint and use Grafana for dashboards. See the
Metrics API documentation for more details.

Metrics are logged to a file. TorchServe also supports other
types of server logging, including access logs and TorchServe
logs. Access logs record the inference requests and the time it
takes to complete the requests. As defined in the properties file,
the access logs are collected in the <log_location>/access_log.log
file. TorchServe logs collect all the logs from TorchServe and its
backend workers.

TorchServe supports capabilities beyond the default settings for
metrics and logging. Metrics and logging can be configured in
many different ways. In addition, you can create custom logs.
For more information on metric and logging customization
and other advanced features of TorchServe, refer to the Torch‐
Serve documentation.
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NOTE

The NVIDIA Triton Inference Server is becoming more
popular and is also used to deploy AI models at scale in
production. Although not part of the PyTorch project, you
may want to consider the Triton Inference Server as an
alternative to TorchServe, especially when deploying to
NVIDIA GPUs.
The Triton Inference Server is open source software and
can load models from local storage, GCP, or AWS S3. Tri‐
ton supports running multiple models on single or multi‐
ple GPUs, low latency and shared memory, and model
ensembles. Some possible advantages of Triton over Torch‐
Serve include:

• Triton is out of beta.

• It is the fastest way to infer on NVIDIA hardware
(common).

• It can use int4 quantization.

• You can port directly from PyTorch without ONNX.

Available as a Docker container, Triton Inference Server
also integrates with Kubernetes for orchestration, metrics,
and auto-scaling. For more information, visit the NVIDIA
Triton Inference Server documentation.

ONNX
If your platform doesn’t support PyTorch and you cannot use
TorchScript/C++ or TorchServe for your deployment, it may be
possible that your deployment platform supports the Open
Neural Network Exchange (ONNX) format. The ONNX format
defines a common set of operators and a common file format
so that deep learning engineers can use models across a variety
of frameworks, tools, runtimes, and compilers.
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ONNX was developed by Facebook and Microsoft to allow
model interoperability between PyTorch and other frame‐
works, such as Caffe2 and Microsoft Cognitive Toolkit (CTK).
ONNX is currently supported by inference runtimes from a
number of providers, including Cadence Systems, Habana,
Intel AI, NVIDIA, Qualcomm, Tencent, Windows, and Xilinx.

An example use case is edge deployment on a Xilinx FPGA
device. FPGA devices are custom chips that can be program‐
med with specific logic. They are used by edge devices for low-
latency or high-performance applications, like video. If you
want to deploy your new innovative model to an FPGA device,
you would first convert it to ONNX format and then use the
Xilinx FPGA development tools to generate an FPGA image
with your model’s implementation.

Let’s take a look at an example of how to export a model to
ONNX, again using our VGG16 model. The ONNX exporter
can use tracing or scripting. We learned about tracing and
scripting, described in the earlier section on TorchScript. We
can use tracing by simply providing the model and an example
input. The following code shows how we’d export our VGG16
model to ONNX using tracing:

model = vgg16(pretrained=True)
example_input = torch.rand(1, 3, 224, 224)
onnx_model = torch.onnx.export(model,
                               example_input,
                               "vgg16.onnx")

We define an example input and call torch.onnx.export(). The
resulting file, vgg16.onnx, is a binary protobuf file that contains
both the network structure and the parameters of the VGG16
model we exported.

If we want to verify that our model was converted to ONNX
properly, we can use the ONNX checker, as shown in the fol‐
lowing code:
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import onnx

model = onnx.load("vgg16.onnx")
onnx.checker.check_model(model)
onnx.helper.printable_graph(model.graph)

This code uses the Python ONNX library to load the model,
run the checker, and print out a human-readable version of the
model. You may need to install the ONNX library before run‐
ning the code, using conda or pip.

To learn more about converting to ONNX or running in an
ONNX runtime, check out the ONNX tutorial on the PyTorch
website.

In addition to TorchScript, TorchServe, and ONNX, more tools
are being developed to support PyTorch model deployment.
Let’s consider some tools used to deploy models to mobile
platforms.

Mobile Libraries
Android and iPhone devices are continuously evolving and
adding native support for deep learning acceleration in their
custom chipsets. In addition, there is a growing need to reduce
latency, preserve privacy, and interact seamlessly with deep
learning models in applications such as augmented reality
(AR). Deployment to mobile devices is further complicated due
to mobile runtimes that can significantly differ from the train‐
ing environments used by developers, leading to errors and
challenges during mobile deployment.

PyTorch Mobile addresses these challenges and provides an
end-to-end workflow to go from training to mobile deploy‐
ment. PyTorch Mobile is available for iOS, Android, and Linux
and provides APIs for the preprocessing and integration tasks
needed for mobile applications. The basic workflow is shown in
Figure 7-2.
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Figure 7-2. PyTorch mobile workflow

You start by designing your model in PyTorch as you normally
would. Then you may quantize your model to reduce its com‐
plexity with minimal degradation in performance. Subse‐
quently, you would use tracing or scripting to convert to Torch‐
Script and optimize your model for mobile devices using
torch.utils. Next, save your model and use the appropriate
mobile library for deployment. Android uses the Maven
PyTorch library and iOS uses CocoPods with the LibTorch pod.
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WARNING

PyTorch Mobile is still being developed and is subject to
change.

For the latest details on PyTorch Mobile, refer to the PyTorch
Mobile documentation.

Now that we’ve explored some PyTorch tools available for
deploying our models, let’s take a look at some reference appli‐
cations and code for deployment to the cloud and to edge devi‐
ces. First I’ll show you how to build a web server for develop‐
ment using Flask.

Deploying to a Flask App
Before deploying to full-scale production, you may want to
deploy your models to a development web server. This enables
you to integrate your deep learning algorithms with other sys‐
tems and quickly build prototypes to demonstrate your new
models. One of the easiest ways to build a development server
is with Python using Flask.

Flask is a simple micro web framework written in Python. It is
called a “micro” framework because it does not include a data‐
base abstraction layer, form validation, upload handling, vari‐
ous authentication technologies, or anything else that might be
provided with other libraries. We won’t cover Flask in depth in
this book, but I’ll show you how to use Flask to deploy your
models in Python.

We’ll also expose a REST API so that other applications can
pass in data and receive predictions. In the following examples,
we’ll deploy our pretrained VGG16 model and classify images.
First we’ll define our API endpoints, request types, and
response types. Our API endpoint will be at /predict, which
takes in POST requests (including the image file). The response

210 | Chapter 7: Deploying PyTorch to Production

https://pytorch.tips/mobile
https://pytorch.tips/mobile


will be in JSON format and contain a class_id and class_name
from the ImageNet dataset.

Let’s create our main Flask file, called app.py. First we’ll import
the required packages:

import io
import json

from torchvision import models
import torchvision.transforms as transforms
from PIL import Image
from flask import Flask, jsonify, request

We’ll be using io to convert bytes to an image and json to han‐
dle JSON-formatted data. We’ll be using torchvision to create
our VGG16 model and transform the image data into the
appropriate format for our model. Finally, we import Flask,
jsonnify, and request to handle the API requests and
responses.

Before we create our web server, let’s define a get_prediction()
function that reads in image data, preprocesses it, passes it into
our model, and returns the image class:

import json
imagenet_class_index = json.load(
    open("./imagenet_class_index.json"))

model = models.vgg16(pretrained=True)

image_transforms = transforms.Compose(
    [transforms.Resize(255),
     transforms.CenterCrop(224),
     transforms.ToTensor(),
     transforms.Normalize(
          [0.485, 0.456, 0.406],
          [0.229, 0.224, 0.225])])

def get_prediction(image_bytes):
    image = Image.open(io.BytesIO(image_bytes))
    tensor = image_transforms(image)
    outputs = model(tensor)
    _, y = outputs.max(1)
    predicted_idx = str(y.item())
    return imagenet_class_index[predicted_idx]
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Since our model will return a number indicating the class, we’ll
need a lookup table to convert this number to a class name. We
create a dictionary called imagenet_class_index by reading in
the JSON conversion file. We then instantiate our VGG16
model and define our image transforms to preprocess a PIL
image by resizing it, center-cropping it, converting it to a ten‐
sor, and normalizing it. These steps are required prior to send‐
ing the image into our model.

Our get_prediction() function creates a PIL image object
based on the received bytes and applies the required image
transforms to create an input tensor. Next, we perform the for‐
ward pass (or model inference) and find the class with highest
probability, y. Last, we look up the class name using the output
class value.

Now that we have code that preprocesses an image, passes it
through our model, and returns the predicted class, we can cre‐
ate our Flask web server and endpoints and deploy our model,
as shown in the following code:

app = Flask(__name__)

@app.route('/predict', methods=['POST'])
def predict():
  if request.method == 'POST':
    file = request.files['file']
  img_bytes = file.read()
  class_id, class_name = \
    get_prediction(image_bytes=img_bytes)
  return jsonify({'class_id': class_id,
                 'class_name': class_name})

Our web server object is called app. We’ve created it, but it’s not
running yet. We set our endpoint to /predict and configured it
to handle POST requests. When the web server receives the
POST, it will execute the predict() function that reads the
image, gets the prediction, and returns the image class in JSON
format.

That’s it! Now we just need to add the following code so that
the web server runs when we execute app.py:
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if __name__ == '__main__':
    app.run()

To test our web server, we can run it as follows:
>>> FLASK_ENV=development FLASK_APP=app.py flask run

We can send an image using a simple Python file and the
requests library:

import requests

resp = requests.post(
    "http://localhost:5000/predict",
    files={"file": open('cat.jpg','rb')})

print(resp.json())

>>> {"class_id": "n02124075", "class_name": "Egyptian_cat"}

In this example, we’re running a web server on our local
machine on port 5000 (localhost:5000). You may want to run
your development web server in Google Colab to take advan‐
tage of cloud GPUs. I’ll show you how to do so next.

Colab Flask App
Perhaps you’ve been developing your PyTorch models in Colab
to take advantage of its rapid development or its GPUs. Colab
provides a virtual machine (VM) which routes its localhost to
our machine’s local host. To expose it to a public URL, we can
use a library called ngrok.

First install ngrok in Colab:
!pip install flask-ngrok

To run our Flask app with ngrok, all we need to do is add two
lines of code, as shown in the following annotations:

from flask_ngrok import run_with_ngrok 

@app.route("/")
def home():
  return "<h1>Running Flask on Google Colab!</h1>"

app.run()
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app = Flask(__name__)

run_with_ngrok(app) 

@app.route('/predict', methods=['POST'])
def predict():
  if request.method == 'POST':
    file = request.files['file']
  img_bytes = file.read()
  class_id, class_name = \
    get_prediction(image_bytes=img_bytes)
  return jsonify({'class_id': class_id,
                  'class_name': class_name})

app.run() 

Import the ngrok library.

Starts ngrok when the app is run.

Since we’re running in Colab, we don’t need to check for
main.

I’ve omitted the other imports and the get_prediction() func‐
tion as they do not change. Now you can run your develop‐
ment web server in Colab for even faster prototyping. The
ngrok library provides a secure URL for the server running in
Colab; you’ll find the URL in the Colab notebook output when
running the Flask app. For example, the following output
shows that the URL is http://c0c97117ba27.ngrok.io:
 * Serving Flask app "__main__" (lazy loading)
 * Environment: production
   WARNING: This is a development server.
     Do not use it in a production deployment.
   Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Running on http://c0c97117ba27.ngrok.io
 * Traffic stats available on http://127.0.0.1:4040
127.0.0.1 - - [08/Dec/2020 20:46:05] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [08/Dec/2020 20:46:05]
  "GET /favicon.ico HTTP/1.1" 404 -
127.0.0.1 - - [08/Dec/2020 20:46:06] "GET / HTTP/1.1" 200 -
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Once again, you can send a POST request with an image to test
the web server. You can run the following code locally or in
another Colab notebook:

import requests

resp = requests.post(
      "http://c0c97117ba27.ngrok.io/predict",
      files={"file": open('cat.jpg','rb')})

print(resp.json())

# out :
# {"class_id": "n02124075",
#  "class_name": "Egyptian_cat"}

Notice the URL has changed. Deploying your model in a Flask
app is a good way to quickly test it and the get_prediction()
function with a REST API. However, our Flask app here is used
as a development web server, not for production deployment.
When deploying your models at scale, you will need to address
things like model management, A/B testing, monitoring,
logging, and other tasks to ensure your model server is working
properly. To deploy to production at scale, we’ll use
TorchServe.

Deploying to the Cloud with TorchServe
In this example, we’ll deploy our VGG16 image classifier to a
production environment. Let’s pretend our company makes a
software tool that will sort collections of retail product images
into categories depending on which objects appear in the
images. The company is growing rapidly and now supports
millions of small businesses that use the tool daily.

As part of the machine learning engineering team, you’ll need
to deploy your model to production and provide a simple
REST API that the software tool will use to classify its images.
Because we want to deploy something as quickly as possible,
we’ll use a Docker container in an AWS EC2 instance.
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Quick Start with Docker
TorchServe provides scripts to create Docker images based on a
variety of platforms and options. Running a Docker container
eliminates the need to reinstall all the dependencies required to
run TorchServe. In addition, we can scale our model inference
by spinning multiple Docker containers using Kubernetes. First
we must create the Docker image according to the resources we
have on our EC2 instance.

The first step is to clone the TorchServe repository and navi‐
gate to the Docker folder, using the following commands:

$ git clone https://github.com/pytorch/serve.git
cd serve/docker

Next we’ll need to add our model archive for VGG16 into the
Docker image. We do this by adding the following line to the
Dockerfile that downloads the archived model file and saves it
within the /home/model-server/ directory:

$ curl -o /home/model-server/vgg16.pth \
    https://download.pytorch.org/models/vgg16.pth

We can now run the build_image.sh script to create a Docker
image with the public binaries installed. Since we’re running on
an EC2 instance with a GPU, we’ll use the -g flag, as follows:

$ ./build_image.sh -g

You can run ./build_image.sh -h to see additional options.

Once our Docker image is created, we can run the container
with the following command:

$ docker run --rm -it --gpus '"device=1"' \
    -p 8080:8080 -p 8081:8081 -p 8082:8082 \
    -p 7070:7070 -p 7071:7071 \
    pytorch/torchserve:latest-gpu

This command will start the container with the 8080/81/82 and
7070/71 ports exposed to the outer world’s localhost. It uses
one GPU with the latest CUDA version.
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Now our TorchServe Docker container is running. Our compa‐
ny’s software tool can send inference requests by sending the
image file to ourip.com/predict and can receive image classifica‐
tions via JSON.

For more details on running TorchServe in Docker, refer to the
TorchServe Docker documentation. To learn more about
TorchServe, visit the TorchServe repository.

Now you can deploy your models to your local machine and
cloud servers using Flask for development or TorchServe for
production. This is useful for prototyping and integrating with
other applications through a REST API. Next, you’ll expand
your deployment capabilities outside of the cloud: in the fol‐
lowing section we’ll explore how you would deploy models to
mobile devices and other edge devices.

Deploying to Mobile and Edge
Edge devices are (usually small) hardware systems that inter‐
face directly with the user or environment and run machine
learning computations directly on the device instead of on a
centralized server in the cloud. Some examples of edge devices
include mobile phones and tablets, wearables like smart
watches and heart rate monitors, and other IoT devices such as
industrial sensors and home thermostats. There’s a growing
need to run deep learning algorithms on edge devices in order
to maintain privacy, reduce data transfer, minimize latency, and
support new interactive use cases in real time.

First we’ll explore how to deploy your PyTorch models on
mobile devices with iOS and Android, then we’ll cover other
edge devices. PyTorch’s support for edge deployment is limited
but growing. These sections will provide some reference code
to help you get started using PyTorch Mobile.
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iOS
According to Apple, as of January 2021 there were over 1.65
billion active iOS devices in the world. The support for
machine learning hardware acceleration continues to grow
with each new model and custom processing unit. Learning
how to deploy your PyTorch models to iOS opens the doors for
many opportunities to create an iOS app based on deep
learning.

To deploy your model to an iOS device, you’ll need to learn
how to create an iOS application using development tools like
Xcode. We won’t cover iOS development in this book, but you
can find a “Hello, World” program and sample code to help you
build your app at the PyTorch iOS Example Apps GitHub
repository.

Let’s describe the workflow for deploying our VGG16 network
to an iOS application. iOS will use the PyTorch C++ API to
interface with our model, so we’ll need to convert and save our
model to TorchScript first. Then we’ll wrap the C++ function in
Objective-C so iOS Swift code can access the API. We’ll use
Swift to load and preprocess an image, and then we’ll pass the
image data into our model to predict its class.

First we will convert our VGG16 model to TorchScript using
tracing and save it as model.pt, as shown in the following code:

import torch
import torchvision
from torch.utils.mobile_optimizer \
  import optimize_for_mobile

model = torchvision.models.vgg16(pretrained=True)
model.eval()

example = torch.rand(1, 3, 224, 224) 

traced_script_module = \

  torch.jit.trace(model, example) 
torchscript_model_optimized = \

  optimize_for_mobile(traced_script_module) 

torchscript_model_optimized.save("model.pt") 

218 | Chapter 7: Deploying PyTorch to Production

https://pytorch.tips/ios-demo
https://pytorch.tips/ios-demo


Define example using random data.

Convert model to TorchScript.

New step to optimize the code.

Save the model.

As described earlier, using tracing requires defining an example
input, and we do so using random data. Then we convert the
model to TorchScript using torch.jit.trace(). We then add a
new step to optimize the TorchScript code for mobile platforms
using the torch.utils.mobile_optimizer package. Finally, we
save the model to a file named model.pt.

Now we’ll need to write our Swift iOS application. Our iOS app
will use the PyTorch C++ library, which we can install via
CocoaPods as follows:

$ pod install

Then we need to write some Swift code to load a sample image.
You can improve this in the future by accessing the camera or
photos on the device, but for now we’ll keep it simple:

let image = UIImage(named: "image.jpg")! \
  imageView.image = image

let resizedImage = image.resized(
  to: CGSize(width: 224, height: 224))

guard var pixelBuffer = resizedImage.normalized()
else return

Here we resize the image to 224 × 224 pixels and run a function
to normalize the image data.

Next we load and instantiate our model into our iOS app, as
shown in the following code:

private lazy var module: TorchModule = {
    if let filePath = Bundle.main.path(
      forResource: "model", ofType: "pt"),

        let module = TorchModule(
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                 fileAtPath: filePath) {
          return module
    } else {
        fatalError("Can't find the model file!")
    }
}()

iOS is written in Swift, and Swift cannot interface to C++, so
we need to use an Objective-C class, TorchModule, as a wrapper
for torch::jit::script::Module.

Now that our model is loaded, we can predict an image’s class
by passing the preprocessed image data into our model and
running a prediction, as shown in the following code:

guard let outputs = module.predict(image:
  UnsafeMutableRawPointer(&pixelBuffer))
else {
    return
}

Under the hood, the predict() Objective-C wrapper calls the
C++ forward() function as follows:

at::Tensor tensor = torch::from_blob(
  imageBuffer, {1, 3, 224, 224}, at::kFloat);

torch::autograd::AutoGradMode guard(false);
auto outputTensor = _impl.forward(
  {tensor}).toTensor();
float* floatBuffer =
  outputTensor.data_ptr<float>();

When you run the sample app, you should see output similar to
Figure 7-3 for the sample image file.

This image classification example is only a small representation
of the capabilities of coding for iOS devices. For more
advanced use cases, you can still follow the same process: con‐
vert and save to TorchScript, create an Objective-C wrapper,
preprocess the input, and call your predict() function. Next,
we’ll follow a similar process for deploying PyTorch to Android
mobile devices.
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Figure 7-3. iOS example

Android
Android mobile devices are also abundantly used throughout
the world, with the OS estimated to have a market share of over
70% in mobile devices at the start of 2021. This means there is
also a huge opportunity to deploy PyTorch models to Android
devices.
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Android uses the PyTorch Android API, and you will need to
install the Android development tools to build a sample app.
Using Android Studio, you will be able to install the Android
native development kit (NDK) and software development kit
(SDK). We won’t cover Android development in the book, but
you can find a “Hello, World” program and sample code to help
you build your app at the PyTorch Android Example GitHub
repository.

The workflow for deploying a PyTorch model on an Android
device is very similar to the process we used for iOS. We’ll still
need to convert our model to TorchScript to use it with the
PyTorch Android API. However, since the API natively sup‐
ports loading and running our TorchScript model, we do not
need to wrap it in C++ code as we did with iOS. Instead, we’ll
use Java to write an Android app that loads and preprocesses
an image file, passes it to our model for inference, and returns
the results.

Let’s deploy our VGG16 model to Android. First we convert the
model to TorchScript just like we did for iOS, as shown in the
following code:

import torch
import torchvision
from torch.utils.mobile_optimizer \
  import optimize_for_mobile

model = torchvision.models.vgg16(pretrained=True)
model.eval()
example = torch.rand(1, 3, 224, 224)

traced_script_module = \
  torch.jit.trace(model, example)
torchscript_model_optimized = \
  optimize_for_mobile(traced_script_module)
torchscript_model_optimized.save("model.pt")

We convert the model to TorchScript using tracing with
torch.jit.trace(). We then add a new step to optimize the
TorchScript code for mobile platforms using the
torch.utils.mobile_optimizer package. Finally, we save the
model to a file named model.pt.
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Next, we create our Android app using Java. We add the
PyTorch Android API to our app as a Gradle dependency by
adding the following code to build.gradle:

repositories {
  jcenter()
}

dependencies {
  implementation
    'org.pytorch:pytorch_android:1.4.0'
  implementation
    'org.pytorch:pytorch_android_torchvision:1.4.0'
}

Next, we write our Android app. We start by loading an image
and preprocessing it with the following code:

Bitmap bitmap = \
  BitmapFactory.decodeStream(
    getAssets().open("image.jpg"));

Tensor inputTensor = \
  TensorImageUtils.bitmapToFloat32Tensor(
    bitmap,
    TensorImageUtils.TORCHVISION_NORM_MEAN_RGB,
    TensorImageUtils.TORCHVISION_NORM_STD_RGB);

Now that we have our image, we can predict its class, but first
we must load our model, as follows:

Module module = Module.load(
  assetFilePath(this, "model.pt"));

Then we can run inference to predict the image’s class and pro‐
cess the results with the following code:

Tensor outputTensor = module.forward(
  IValue.from(inputTensor)).toTensor();
float[] scores = \
  outputTensor.getDataAsFloatArray();

float maxScore = -Float.MAX_VALUE;
int maxScoreIdx = -1;
for (int i = 0; i < scores.length; i++) {
  if (scores[i] > maxScore) {
    maxScore = scores[i];
    maxScoreIdx = i;
  }
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}
String className = \
  ImageNetClasses.IMAGENET_CLASSES[maxScoreIdx];

This workflow can be used for more advanced use cases. You
can use the camera or photos on the device or other Android
sensors to create more complex apps. For more PyTorch
Android demo applications, visit the PyTorch Android Demo
App GitHub repository.

Other Edge Devices
Mobile devices running iOS or Android represent one type of
edge device, but there are many more that can execute deep
learning algorithms. Edge devices are often built using custom
hardware for a specific application. Examples of other edge
devices include sensors, video equipment, medical monitors,
software-defined radios, thermostats, farming machines, and
manufacturing sensors to detect defects.

Most edge devices include computer processors, GPUs, FPGAs,
or other custom ASIC computer chips that are capable of run‐
ning deep learning models. So how do you deploy your
PyTorch models to these edge devices? Well, it depends on
what processing components are used on the device. Let’s
explore some ideas for commonly used chips:

CPUs
If your edge device uses a CPU, such as an Intel or AMD
processor, PyTorch can be deployed in Python and C++
using both TorchScript and the C++ frontend API. Mobile
and edge CPU chipsets are usually optimized to minimize
power, and memory may be more limited on an edge
device. It may be worthwhile to optimize your models
using pruning or quantization prior to deployment to
minimize the power and memory required to run
inference.

ARMs
ARM processors are a family of computer processors with
a reduced set of instructions. They typically run at lower
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power and clock speeds than Intel or AMD CPUs and can
be included within Systems on a Chip (SoCs). In addition
to the processor, SoCs chips usually include other elec‐
tronics such as programmable FPGA logic or GPUs. Run‐
ning PyTorch in Linux on ARM devices is currently under
development.

Microcontrollers
Microcontrollers are very limited processors that are usu‐
ally aimed at very simple control tasks. Some popular
microcontrollers include Arduino and Beaglebone pro‐
cessors. Support for microcontrollers is limited due to the
few resources available.

GPUs
Edge devices may include GPU chips. NVIDIA GPUs, are
the most widely supported GPUs, but other companies
(such as AMD and Intel) manufacture GPU chips as well.
NVIDIA supports PyTorch in its GPU development kits,
including its Jetson Nano, Xavier, and NX boards.

FPGAs
PyTorch models can be deployed to many FPGA devices,
including Xilinx (recently acquired by AMD) and Intel
FPGA device families. Neither platform supports direct
PyTorch deployment; however, they do support the
ONNX format. The typical approach is to convert
PyTorch models to ONNX and use the FPGA develop‐
ment tools to create FPGA logic from the ONNX model.

TPUs
Google’s TPU chips are being deployed across edge devi‐
ces as well. PyTorch is supported via the XLA library, as
described in “PyTorch on a TPU” on page 156. Deploying
your models to edge devices that utilize TPUs can enable
you to run inference using the XLA library.

ASICs
Many companies are developing their own custom chips
or ASICs that implement model designs in a highly
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optimized and efficient manner. The ability to deploy your
PyTorch models will depend heavily on the capabilities
supported by the custom ASIC chip designs and develop‐
ment tools. In some cases, you may be able to use the
PyTorch/XLA library if the ASIC supports it.

When it comes time to deploy your PyTorch models to an edge
device, consider the processing components available on the
system. Depending on the chips available, investigate your
options to utilize the C++ frontend API, leverage TorchScript,
convert your models to ONNX format, or access the PyTorch
XLA library to deploy your models.

In this chapter, you learned how to use the standard Python
API, TorchScript/C++, TorchServe, ONNX, and the PyTorch
mobile libraries to deploy your models for inference. The chap‐
ter also provided reference code to deploy your PyTorch mod‐
els to local development servers or production environments in
the cloud using Flask and TorchServe, as well as to iOS and
Android devices.

PyTorch supports a large, active ecosystem of useful tools for
model development and deployment. We’ll explore this ecosys‐
tem in the next chapter, which also provides reference code for
some of the most popular PyTorch tools.
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CHAPTER 8

The PyTorch Ecosystem and
Additional Resources

In the previous chapters, you’ve learned everything you need to
design and deploy deep learning models with PyTorch. You
have learned how to build, train, test, and accelerate your mod‐
els across different platforms and how to deploy those models
to the cloud and edge devices. As you’ve seen, PyTorch has
powerful capabilities in both development and deployment
environments and is highly extensible, allowing you to create
customizations tailored to your needs.

To conclude this reference guide, we’ll explore the PyTorch
Ecosystem, other supporting libraries, and additional resour‐
ces. The PyTorch Ecosystem is one of the most powerful
advantages of PyTorch. It provides a rich set of projects, tools,
models, libraries, and platforms to explore AI and accelerate
your AI development.

The PyTorch Ecosystem includes projects and libraries created
by researchers, third-party vendors, and the PyTorch commu‐
nity. These projects are well maintained and have been vetted
by the PyTorch team to ensure their quality and utility.

In addition, the PyTorch project includes other libraries that
support specific domains, including Torchvision for computer
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vision and Torchtext for NLP. PyTorch also supports other
packages like TensorBoard for visualization, and there’s an
abundance of learning resources for further study, like Papers
with Code and PyTorch Academy.

In this chapter, we’ll begin with an overview of the PyTorch
Ecosystem and a high-level view of its supported projects and
tools. Then we’ll dig a little deeper into some of the most pow‐
erful and popular resources, with reference material about their
usage and APIs provided along the way. Finally, I’ll show you
how to learn more with a variety of tutorials, books, courses,
and other training resources.

Let’s start by looking at all the Ecosystem has to offer.

The PyTorch Ecosystem
As of early 2021, the PyTorch Ecosystem features over 50 libra‐
ries and projects, and the list continues to grow. Some of these
are domain-specific projects, such as those specifically for com‐
puter vision or NLP solutions. Other projects, such as PyTorch
Lightning and fastai, provide frameworks for writing concise
code, while projects like PySyft and Crypten support security
and privacy. There are also projects that support reinforcement
learning, gaming models, model interpretability, and accelera‐
tion. In this section, we’ll explore projects included in the
PyTorch Ecosystem.

Table 8-1 provides a list of the Ecosystem projects that support
computer vision applications.

Table 8-1. Computer vision projects

Project Description

Torchvision PyTorch’s computer vision library that provides common
transforms, models, and utilities to support computer vision
applications (https://pytorch.tips/torchvision)

Detectron2 Facebook’s objection detection and segmentation platform
(https://pytorch.tips/detectron2)
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Project Description

Albumentations Image augmentation library
(https://pytorch.tips/albumentations)

PyTorch3D Collection of reusable components for 3D computer vision
(https://pytorch.tips/pytorch3d)

Kornia Library of differentiable modules for computer vision
(https://pytorch.tips/kornia)

MONAI Framework for deep learning in healthcare imaging
(https://pytorch.tips/monai)

TorchIO Toolkit for 3D medical images (https://pytorch.tips/torchio)

Torchvision is one of the most powerful libraries for computer
vision applications and is included in the PyTorch project. It’s
also maintained by the PyTorch development team. We’ll cover
the Torchvision API in more detail later in this chapter.

PyTorch3D and TorchIO provide additional support for 3D
imaging, while TorchIO and MONAI focus on medical imag‐
ing applications. Detectron2 is a powerful platform for object
detection. If you’re conducting computer vision research and
development, these extensions may help accelerate your results.

As with computer vision, there have been major advances in
NLP research over the past decade, and NLP applications are
also well supported by PyTorch.

Table 8-2 provides a list of the Ecosystem projects that support
NLP and audio-based applications.

Table 8-2. NLP and audio projects

Project Description

Torchtext PyTorch’s NLP and text processing library
(https://pytorch.tips/torchtext)

Flair Simple framework for NLP (https://pytorch.tips/flair)

AllenNLP Library for designing and evaluating NLP models
(https://pytorch.tips/allennlp)
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Project Description

ParlAI Framework for sharing, training, and testing dialogue models
(https://pytorch.tips/parlai)

NeMo Toolkit for conversational AI (https://pytorch.tips/nemo)

PyTorch NLP Basic utilities for NLP (https://pytorch.tips/pytorchnlp)

Translate Facebook’s machine translation platform
(https://pytorch.tips/translate)

TorchAudio PyTorch’s library for audio preprocessing
(https://pytorch.tips/torchaudio)

Like Torchvision, Torchtext is included as part of the PyTorch
project and is maintained by the PyTorch development team.
Torchtext provides powerful functionality for processing text
data and developing NLP-based models.

Flair, AllenNLP, and PyTorch NLP provide additional capabili‐
ties for text-based processing and NLP model development.
ParlAI and NeMo provide tools to develop dialogue and con‐
versational AI systems, while Translate focuses on machine
translation.

TorchAudio provides functions for handling audio files like
speech and music.

Reinforcement learning and gaming are also rapidly growing
fields of research, and there are tools to support them using
PyTorch.

Table 8-3 provides a list of the Ecosystem projects that support
gaming and reinforcement learning applications.

Table 8-3. Gaming and reinforcement learning projects

Project Description

ELF Project for training and testing algorithms in game environments
(https://pytorch.tips/elf)

PFRL Library of deep reinforcement algorithms (https://pytorch.tips/pfrl)
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ELF (extensive, lightweight, and flexible platform for game
research) is an open source project developed by Facebook that
reimplements gaming algorithms like AlphaGoZero and
AlphaZero. PFRL (preferred reinforcement learning) is a
PyTorch-based open source deep reinforcement learning
library developed by Preferred Networks, the creators of
Chainer and ChainerRL. It can be used to create baseline algo‐
rithms for reinforcement learning. PFRL currently has repro‐
ducibility scripts for 11 key deep reinforcement learning algo‐
rithms based on original research papers.

As you’ve seen in this book, PyTorch is a highly customizable
framework. This characteristic sometimes results in the need to
write the same boilerplate code often for common tasks. To
help developers write code faster and eliminate the need for
boilerplate code, several PyTorch projects provide high-level
programming APIs or compatibility with other high-level
frameworks like scikit-learn.

Table 8-4 provides a list of the Ecosystem projects that support
high-level programming.

Table 8-4. High-level programming projects

Project Description

fastai Library that simplifies training using modern practices
(https://pytorch.tips/fastai)

PyTorch
Lightning

Customizable Keras-like ML library that eliminates boilerplate
code (https://pytorch.tips/lightning)

Ignite Library for writing compact, full-featured training loops
(https://pytorch.tips/ignite)

Catalyst Framework for compact reinforcement learning pipelines
(https://pytorch.tips/catalyst)

skorch Provides PyTorch compatibility with scikit-learn
(https://pytorch.tips/skorch)

Hydra Framework for configuring complex applications
(https://pytorch.tips/hydra)
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Project Description

higher Facilitates the implementation of complex meta-learning
algorithms (https://pytorch.tips/higher)

Poutyne Keras-like framework for boilerplate code
(https://pytorch.tips/poutyne)

Fastai is a research and learning framework built on PyTorch. It
has comprehensive documentation and has provided a high-
level API for PyTorch since the library’s early days. You can get
up to speed with the framework quickly by consultng its docu‐
mentation and free online courses or reading the book Deep
Learning for Coders with fastai and PyTorch by Jeremy Howard
and Sylvain Gugger (O’Reilly).

PyTorch Lightning has also become one a very popular high-
level programming API for PyTorch. It provides all the neces‐
sary boilerplate code for training, validation, and test loops
while allowing you to easily add customizations for your
methods.

Ignite and Catalyst are also popular high-level frameworks,
while skorch and Poutyne provide scikit-learn and Keras-like
interfaces, respectively. Hydra and higher are used to simplify
the configuration of complex applications.

In addition to high-level frameworks, there are packages in the
Ecosystem that support hardware acceleration and optimized
inference.

Table 8-5 provides a list of ecosystem projects that support
inference acceleration applications.

Table 8-5. Inference projects

Project Description

Glow ML compiler for hardware acceleration (https://pytorch.tips/glow)

Hummingbird Compiles trained models for faster inference
(https://pytorch.tips/hummingbird)
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Glow is a machine learning compiler and execution engine for
hardware accelerators, and it can be used as a backend for
high-level deep learning frameworks. The compiler allows
state-of-the-art optimizations and code generation of neural
network graphs. Hummingbird is an open source project
developed by Microsoft. It is a library for compiling trained,
traditional ML models into tensor computations and seam‐
lessly leverages PyTorch to accelerate traditional ML models.

In addition to accelerating inference, the PyTorch Ecosystem
also contains projects to accelerate training and optimize mod‐
els using distributed training.

Table 8-6 provides a list of ecosystem projects that support dis‐
tributed training and model optimization.

Table 8-6. Distributed training and model optimization projects

Project Description

Ray Fast, simple framework for building and running distributed
applications (https://pytorch.tips/ray)

Horovod Distributed deep learning training framework for TensorFlow,
Keras, PyTorch, and Apache MXNet (https://pytorch.tips/horovod)

DeepSpeed Optimization library (https://pytorch.tips/deepspeed)

Optuna Automated hyperparameter search and optimization
(https://pytorch.tips/optuna)

Polyaxon Platform for building, training, and monitoring large-scale deep
learning applications (https://pytorch.tips/polyaxon)

Determined Platform that trains models using shared GPUs and collaboration
(https://pytorch.tips/determined)

Allegro Trains Library that contains a deep learning experiment manager,
versioning, and machine learning ops
(https://pytorch.tips/allegro)

Ray is a Python API for building distributed applications and is
packaged with other libraries for accelerating machine learning
workloads. We used one of these packages, Ray Tune, in
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Chapter 6 to tune hyperparameters on a distributed system.
Ray is a very powerful package that can also support scalable
reinforcement learning, distributed training, and scalable serv‐
ing. Horovod is another distributed framework. It is focused on
distributed training and can be used with Ray.

DeepSpeed, Optuna, and Allegro Trains also support hyper‐
parameter tuning and model optimization. Polyaxon can be
used to train and monitor models at scale, and Determined
focuses on sharing GPUs for accelerated training.

With the growth in PyTorch’s popularity, there have been quite
a few specialized packages developed to support niche domains
and specific tools. Many of these tools aim to improve models
or the preprocessing of data.

Table 8-7 provides a list of the Ecosystem projects that support
modeling and data processing.

Table 8-7. Modeling and data processing projects

Project Description

TensorBoard TensorBoard’s data and model visualization tool is integrated
into PyTorch (https://pytorch.tips/pytorch-tensorboard)

PyTorch
Geometric

Geometric deep learning extension library for PyTorch
(https://pytorch.tips/geometric)

Pyro Flexible and extensible deep probabilistic modeling
(https://pytorch.tips/pyro)

Deep Graph
Library (DGL)

Library for implementation of graph neural networks
(https://pytorch.tips/dgl)

MMF Facebook’s modular framework for multi-model deep learning
(vision and language) (https://pytorch.tips/mmf)

GPyTorch Library for creating scalable Gaussian process models
(https://pytorch.tips/gpytorch)

BoTorch Library for Bayesian optimization (https://pytorch.tips/botorch)

Torch Points 3D Framework for unstructured 3D spatial data
(https://pytorch.tips/torchpoints3d)
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Project Description

TensorLy High level API for tensor methods and deep tensorized neural
networks (https://pytorch.tips/tensorly)
(https://pytorch.tips/advertorch)

BaaL Implements active learning from Bayesian theory
(https://pytorch.tips/baal)

PennyLane Library for quantum ML (https://pytorch.tips/pennylane)

TensorBoard is a very popular visualization tool developed for
TensorFlow that can be used for PyTorch as well. We’ll cover
this tool and its PyTorch API later in this chapter.

PyTorch Geometric, Pyro, GPyTorch, BoTorch, and BaaL all
support different types of modeling, such as geometric, proba‐
bilistic, Gaussian modeling, and Bayesian optimization.

Facebook’s MMF is a feature-rich package for multi-modal
modeling, and Torch Points 3D can be used to model generic
3D spatial data.

PyTorch’s maturity and stability as a tool shows in the advent of
packages used to support security and privacy. Security and
privacy concerns are becoming more important as regulations
require systems to be compliant in these domains.

Table 8-8 provides a list of ecosystem projects that support
security and privacy.

Table 8-8. Security and privacy projects

Project Description

AdverTorch Modules for adversarial examples and defending against attacks

PySyft Library for model encryption and privacy
(https://pytorch.tips/pysyft)

Opacus Library for training models with differential privacy
(https://pytorch.tips/opacus)

CrypTen Framework for privacy preserving ML (https://pytorch.tips/crypten)
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PySyft, Opacus, and CrypTen are PyTorch packages that sup‐
port security and privacy. They add features to protect and
encrypt models and the data used to create them.

Often deep learning seems like a black box, where developers
have no idea why models make the decisions they make. Today,
however, this lack of transparency is no longer acceptable:
there is a growing awareness that companies and their execu‐
tives must be held accountable for the fairness and operations
of their algorithms. Model interpretability is important for
researchers, developers, and company executives to understand
why models produce their results.

Table 8-9 shows the ecosystem project that support model
interpretability.

Table 8-9. Model interpretability projects

Project Description

Captum Library for model interpretability (https://pytorch.tips/captum)

Visual
attribution

PyTorch implementation of recent visual attribution methods for
model interpretability (https://pytorch.tips/visual-attribution)

Currently, Captum is the premier PyTorch project that sup‐
ports model interpretability. The Visual attribution package is
useful for interpreting computer vision models and identifying
image saliency. As the field expands, more projects are sure to
enter this space.

As you can see, the PyTorch Ecosystem includes a broad range
of open source projects that can assist you in many different
ways. Perhaps you are working on a project that could benefit
other researchers. If you’d like to make your project a part of
the official PyTorch Ecosystem, visit the PyTorch Ecosystem
application page.

When considering applications, the PyTorch team looks for
projects that meet the following requirements:
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• Your project uses PyTorch to improve the user experience,
add new capabilities, or speed up training/inference.

• Your project is stable, well maintained, and includes ade‐
quate infrastructure, documentation, and technical
support.

The Ecosystem is constantly growing. To access the latest list of
projects, visit the PyTorch Ecosystem website. To update us on
new projects for the book, please email the author at
jpapa@joepapa.ai.

Next, we will go a little deeper into some of the PyTorch proj‐
ect’s supporting tools and libraries. We obviously can’t cover all
of the available libraries and tools in this book, but in the fol‐
lowing sections we’ll explore a few of the most popular and
useful ones to give you a deeper understanding of their APIs
and usage.

Torchvision for Image and Video
We’ve used Torchvision through this book, and it is one of the
most powerful and useful PyTorch libraries for computer
vision research. Technically, the Torchvision package is part of
the PyTorch project. It consists of a selection of popular data‐
sets, model architectures, and common image transformations.

Datasets and I/O
Torchvision provides a large assortment of datasets. They are
included in the torchvision.datasets library and can be
accessed by creating a dataset object, as shown in the following
code:

import torchvision

train_data = torchvision.datasets.CIFAR10(
          root=".",
          train=True,
          transform=None,
          download=True)
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You simply call the constructor function and pass in the appro‐
priate options. This code creates a dataset object from the
CIFAR-10 dataset using the training data with no transforms. It
look for the dataset files in the current directory, and if they
don’t exist, it will download them.

Table 8-10 provides a comprehensive list of datasets available
from Torchvision.

Table 8-10. Torchvision datasets

Dataset Description

CelebA Large-scale face attributes dataset with more than 200,000
celebrity images, each with 40 attribute annotations.

CIFAR-10 CIFAR-10 dataset consisting of 60,000 32 × 32 color images in
10 classes, split into 50,000 training and 10,000 test images. The
CIFAR-100 dataset, which has 100 classes, is also available.

Cityscapes Large-scale dataset containing video sequences recorded in
street scenes from 50 different cities, with annotations.

COCO Large-scale object detection, segmentation, and captioning
dataset.

DatasetFolder Used to create any dataset from files in a folder structure.

EMNIST An extension of MNIST to handwritten letter.

FakeData A fake dataset that returns randomly generated images as PIL
images.

Fashion-MNIST Dataset of Zalando’s clothing images matching the MNIST
format (60,000 training examples, 10,000 test examples, 28 ×
28 grayscale images, 10 classes).

Flickr Flickr 8,000-image dataset.

HMDB51 Large human motion database of video sequences.

ImageFolder Used to create an image dataset from files in a folder structure.

ImageNet Image classification dataset with 14,197,122 images and 21,841
word phrases.
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Dataset Description

Kinetics-400 Large-scale action recognition video dataset with 650,000 10-
second video clips that cover up to 700 human action classes
such as playing instruments, shaking hands, and hugging.

KMNIST Kuzushiji-MNIST, a drop-in replacement for the MNIST dataset
(70,000 28 × 28 grayscale images) where one character
represents each of the 10 rows of Hiragana.

LSUN One million labeled images for each of 10 scene categories and
20 object categories.

MNIST Handwritten, single-digit numbers as 28 × 28 grayscale images
with 60,000 training and 10,000 test samples.

Omniglot Human-generated dataset of 1,623 different handwritten
characters from 50 different alphabets.

PhotoTour Photo tourism dataset consisting of 1,024 × 1,024 bitmap
images, each containing a 16 × 16 array of image patches.

Places365 Dataset of 10 million images comprising 400+ unique scene
categories with 5,000 to 30,000 training images per class.

QMNIST Facebook’s project to generate an MNIST dataset from the
original data found in the NIST Special Database 19.

SBD Semantic boundaries dataset that contains annotations from
11,355 images for semantic segmentation.

SBU Stony Brook University (SBU) captioned photo dataset
containing over 1 million captioned images.

STL10 CIFAR-10-like dataset used for unsupervised learning. 10 classes
of 96 × 96 color images with 5,000 training, 8,000 test, and
100,000 unlabeled images.

SVHN Street view house numbers dataset, similar to MNIST but with
10× more data in natural scene color images.

UCF101 Action recognition dataset with 13,320 videos from 101 action
categories.

USPS Dataset of 16 × 16 handwritten text images with 10 classes,
7,291 training and 2,007 test images.
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Dataset Description

VOC PASCAL visual object classes image datasets for object class
recognition. The 2012 version has 20 classes, 11,530 training/
validation images with 27,450 region of interest (ROI)
annotated objects and 6,929 segmentations.

More datasets are being added to Torchvision all the time. For
an up-to-date list, visit the Torchvision documentation.

Models
Torchvision also provides an extensive list of models, contain‐
ing both the module architectures and pretrained weights if
available. The model object is easily created by calling the cor‐
responding constructor function, as shown here:

import torchvision

model = torchvision.models.vgg16(pretrained=False)

This code creates a VGG16 model with random weights since
the pretrained weights are not used. You can instantiate
many different computer vision models by using a similar con‐
structor and setting the appropriate parameters. Torchvision
provides pretrained models using the PyTorch
torch.utils.model_zoo. These can be constructed by passing
pretrained=True.

Table 8-11 provides a comprehensive list of models included in
Torchvision, by category. These models are well known in the
research community, and the table includes references to the
research papers associated with each model.

Table 8-11. Torchvision models

Model Paper

Classification

AlexNet “One Weird Trick for Parallelizing Convolutional Neural
Networks,” by Alex Krizhevsky
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Model Paper

VGG “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” by Karen Simonyan and Andrew
Zisserman

ResNet “Deep Residual Learning for Image Recognition,” by
Kaiming He et al.

SqueezeNet “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer
Parameters and <0.5MB Model Size,” by Forrest N.
Iandola et al.

DenseNet “Densely Connected Convolutional Networks,” by Gao
Huang et al.

Inception v3 “Rethinking the Inception Architecture for Computer
Vision,” by Christian Szegedy et al.

GoogLeNet “Going Deeper with Convolutions,” by Christian Szegedy
et al.

ShuffleNet v2 “ShuffleNet V2: Practical Guidelines for Efficient CNN
Architecture Design,” by Ningning Ma et al.

MobileNet v2 “MobileNetV2: Inverted Residuals and Linear
Bottlenecks,” by Mark Sandler et al.

ResNeXt “Aggregated Residual Transformations for Deep Neural
Networks,” by Saining Xie et al.

Wide ResNet “Wide Residual Networks,” by Sergey Zagoruyko and
Nikos Komodakis

MNASNet “MnasNet: Platform-Aware Neural Architecture Search
for Mobile,” by Mingxing Tan et al.

Semantic
segmentation

FCN ResNet50 “Fully Convolutional Networks for Semantic
Segmentation,” by Jonathan Long et al.

FCN ResNet101 See above

Torchvision for Image and Video | 241



Model Paper

DeepLabV3 ResNet50 “Rethinking Atrous Convolution for Semantic Image
Segmentation,” by Liang-Chieh Chen et al.

DeepLabV3 ResNet101 See above

Object detection

Faster R-CNN
ResNet-50

“FPNFaster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks,” by Shaoqing Ren et al.

Mask R-CNN
ResNet-50 FPN

“Mask R-CNN,” by Kaiming He et al.

Video classification

ResNet 3D 18 “A Closer Look at Spatiotemporal Convolutions for
Action Recognition,” by Du Tran et al.

ResNet MC 18 See above

ResNet (2+1)D See above

New computer vision models are also being added to Torchvi‐
sion all the time. For an up-to-date list, visit the Torchvision
documentation.

Transforms, Operations, and Utilities
Torchvision also provides a comprehensive collection of trans‐
forms, operations, and utilities to assist in image preprocessing
and data preparation. A common approach to applying
transforms is to form a composition of transforms and pass
this transforms object into the dataset constructor function, as
shown in the following code:

from torchvision import transforms, datasets

train_transforms = transforms.Compose([
                      transforms.ToTensor(),
                      transforms.Normalize(
                      (0.4914, 0.4822, 0.4465),
                      (0.2023, 0.1994, 0.2010)),
                      ])
train_data = datasets.CIFAR10(
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                  root=".",
                  train=True,
                  transform=train_transforms)

Here, we create a composite transform that converts the data
to a tensor using ToTensor() then normalizes the image
data using predetermined means and standard deviations for
each channel. Setting the transform parameter to this
train_transforms object configures the dataset to apply the
sequence of transforms when data is accessed.

Table 8-12 provides a complete list of available transforms from
torchvision.transforms. Transforms that appear in italics in
this and Table 8-13 are currently not supported by TorchScript.

Table 8-12. Torchvision transforms

Transform Description

Operational transforms

Compose() Creates a transform based on a
sequence of other transforms

CenterCrop(size) Crops an image in the center
with the given size

ColorJitter(brightness=0,

contrast=0, saturation=0, hue=0)
Randomly changes the
brightness, contrast,
saturation, and hue of an
image

FiveCrop(size) Crops an image into four
corners and the center crop

Grayscale(num_output_channels=1) Converts a color image to
grayscale

Pad(padding, fill=0,
padding_mode=constant)

Pads the edges of an image
with the given value

RandomAffine(degrees,

translate=None, scale=None, 
shear=None, resample=0, fill

color=0)

Randomly applies an affine
transformation
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Transform Description

RandomApply(transforms, p=0.5) Randomly applies a list of
transforms with a given
probability

RandomCrop(size, padding=None, 
pad_if_needed=False, fill=0,

padding_mode=constant)

Crops an image at a random
location

RandomGrayscale(p=0.1) Randomly converts an image
to grayscale with a given
probability

RandomHorizontalFlip(p=0.5) Randomly flips an image
horizontally with a given
probability

RandomPerspective(distortion_

scale=0.5, p=0.5,

interpolation=2, fill=0)

Applies a random perspective
transformation

RandomResizedCrop(size,

scale=(0.08, 1.0), ratio=(0.75, 

1.3333333333333333),

interpolation=2)

Resizes an image with a
random size and aspect ratio

RandomRotation(degrees,

resample=False, expand=False,
center=None, fill=None)

Rotates an image randomly

RandomVerticalFlip(p=0.5) Randomly flips an image
vertically with a given
probability

Resize(size, interpolation=2) Resizes an image to a random
size

TenCrop(size,

vertical_flip=False)

Crops an image into four
corners and the center crop
and additionally provides a
flipped version of each
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Transform Description

GaussianBlur(kernel_size,

sigma=(0.1, 2.0))

Applies a Gaussian blur with a
random kernel

Conversion transforms

ToPILImage(mode=None) Converts a tensor or
numpy.ndarray to a PIL
image

ToTensor() Converts a PIL image or ndar
ray to a tensor

Generic transforms

Lambda(lambda) Applies a user-defined
lambda as a transform

Most of the transforms can operate on images in tensor or PIL
format with a [..., C, H, W] shape, where ... means an arbi‐
trary number of leading dimensions. However, some trans‐
forms only operate on PIL images or tensor image data.

The transforms listed in Table 8-13 operate only on PIL images.
These transforms are currently not supported by TorchScript.

Table 8-13. Torchvision PIL-only transforms

Transform Description

RandomChoice(transforms) Applies a single transform picked randomly
from a list

RandomOrder(transforms) Applies a sequence of transforms in
random order

The transforms listed in Table 8-14 operate only on tensor
images.
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Table 8-14. Torchvision tensor-only transforms

Transform Description

LinearTransformation(

transformation_matrix,

mean_vector)

Applies a linear transformation to a
tensor image based on a square
transformation matrix and a
mean_vector computed offline.

Normalize(mean, std, 

inplace=False)

Normalizes a tensor image with a
given mean and standard deviation.

RandomErasing(p=0.5, 

scale=(0.02, 0.33), 

ratio=(0.3, 3.3), value=0, 

inplace=False)

Randomly chooses a rectangle region
and erases its pixels.

ConvertImageDtype(dtype: 

torch.dtype)

Converts a tensor image to a new
data type and automatically scales its
values to match the type

NOTE

Use torch.nn.Sequential() instead of torchvision.
transforms.Compose() when scripting transforms for
C++ usage. The following code shows an example:
>>> transforms = torch.nn.Sequential(
        transforms.CenterCrop(10),
        transforms.Normalize(
            (0.485, 0.456, 0.406), (0.229, 0.224,
            0.225)),
        )

>>> scripted_transforms = torch.jit.script(transforms)

Many of the transforms listed in the previous tables contain a
random number generator for specifying the parameter. For
example, RandomResizedCrop() crops an image to a random
size and aspect ratio.
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Torchvision also provides functional transforms as part of the
torchvision.transforms.functional package. You can use
these transforms to perform transformations with a specific set
of parameters that you choose. For example, you could call
torchvision.transforms.functional.adjust_brightness() to
adjust the brightness of one on more images.

Table 8-15 provides a list of the supported functional
transforms.

Table 8-15. Torchvision functional transforms

Functional transforms and utilities

adjust_brightness(img: torch.Tensor,

brightness_factor: float)

adjust_contrast(img: torch.Tensor,

contrast_factor: float)

adjust_gamma(img: torch.Tensor, gamma: float,

gain: float = 1)

adjust_hue(img: torch.Tensor, hue_factor: float) →
torch.Tensor

adjust_saturation(img: torch.Tensor,

saturation_factor: float)

affine(img: torch.Tensor, angle: float,

translate: List[int], scale: float, shear: List[float],
resample: int = 0, fillcolor: Optional[int] = None)

center_crop(img: torch.Tensor, output_size: List[int])

convert_image_dtype(image: torch.Tensor,

dtype: torch.dtype = torch.float32)

crop(img: torch.Tensor, top: int, left: int,

height: int, width: int)

erase(img: torch.Tensor, i: int, j: int, h: int,

w: int, v: torch.Tensor, inplace: bool = False)

five_crop(img: torch.Tensor, size: List[int])
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Functional transforms and utilities

gaussian_blur(img: torch.Tensor, kernel_size: 

List[int], sigma: Optional[List[float]] = None)

hflip(img: torch.Tensor)

normalize(tensor: torch.Tensor, mean: List[float], 

std: List[float], inplace: bool = False)

pad(img: torch.Tensor, padding: List[int],

fill: int = 0, padding_mode: str = constant)

perspective(img: torch.Tensor, startpoints: 

List[List[int]], endpoints: List[List[int]],

interpolation: int = 2, fill: Optional[int] = None)

pil_to_tensor(pic)

resize(img: torch.Tensor, size: List[int],

interpolation: int = 2)

resized_crop(img: torch.Tensor, top: int, left: int, 

height: int, width: int, size: List[int],

interpolation: int = 2)

rgb_to_grayscale(img: torch.Tensor,

num_output_channels: int = 1)

rotate(img: torch.Tensor, angle: float,

resample: int = 0, expand: bool = False,

center: Optional[List[int]] = None,

fill: Optional[int] = None)

ten_crop(img: torch.Tensor, size: List[int],

vertical_flip: bool = False)

to_grayscale(img, num_output_channels=1)

to_pil_image(pic, mode=None)

to_tensor(pic)

vflip(img: torch.Tensor)
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Functional transforms and utilities

utils.save_image(tensor: Union[torch.Tensor, 

List[torch.Tensor]], fp: Union[str, pathlib.Path,

BinaryIO], nrow: int = 8, padding: int = 2, normalize: 
bool = False, range: Optional[Tuple[int, int]] = 

None, scale_each: bool = False, pad_value: int = 0, 

format: Optional[str] = None)

utils.make_grid(tensor: Union[torch.Tensor, 

List[torch.Tensor]], nrow: int = 8, padding: int = 2, 

normalize: bool = False, range: Optional[Tuple[int, 

int]] = None, scale_each: bool = False,

pad_value: int = 0)

As you can see in the table above, Torchvision provides a
robust set of functional operations that you can use to process
your image data. Each one has its own set of parameters for
robust control.

In addition, Torchvision provides functions to facilitate I/O
and operations. Table 8-16 provides a list of some of these
functions.

Table 8-16. Torchvision functions for I/O and operations

Function

Video

io.read_video(filename: str, start_pts: int = 0, 

end_pts: Optional[float] = None, pts_unit: str = pts)

io.read_video_timestamps9filename: str, pts_unit: str 

= pts)

io.write_video9filename: str, video_array:

torch.Tensor, _fps: float, video_codec: str = libx264, 
options: Optional[Dict[str, Any]] = None)

Fine-grained video

io.VideoReader(path, stream=video)
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Function

Image

io.decode_image(input: torch.Tensor)

io.encode_jpeg(input: torch.Tensor, quality: int = 75)

io.read_image(path: str)

io.write_jpeg(input: torch.Tensor, filename: str,

quality: int = 75)

io.encode_png(input: torch.Tensor, compression_level: 

int = 6)

io.write_png(input: torch.Tensor, filename: str,

compression_level: int = 6)

The preceding functions are provided so that you can quickly
read and write video and image files in multiple formats. They
allow you to speed up your image and video processing
without the need to write these functions from scratch.

As you can see, Torchvision is a feature-rich, well-supported,
and mature PyTorch package. This section provided a quick
reference to the Torchvision API. In the next section, we’ll
explore another popular PyTorch package for NLP and text
applications called Torchtext.

Torchtext for NLP
The Torchtext package consists of a collection of data-
processing utilities and popular datasets for NLP. The Torchtext
API is slightly different from the Torchvision API, but the over‐
all approach is the same.

Create a Dataset Object
First you create a dataset and describe a preprocessing pipeline,
as we did with Torchvision transforms. Torchtext provides a set
of well-known datasets out of the box. For example, we can
load the IMDb dataset as shown in the following code:
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from torchtext.datasets import IMDB

train_iter, test_iter = \
  IMDB(split=('train', 'test'))

next(train_iter)
# out:
# ('neg',
# 'I rented I AM CURIOUS-YELLOW ...)

We automatically create an iterator and can access the data
using next().

WARNING

Torchtext significantly changed its API in PyTorch 1.8. If
the code in this section returns errors, you may need to
upgrade your version of PyTorch.

Preprocess Data
Torchtext also provides features to preprocess text and create
data pipelines. Preprocessing tasks may include defining token‐
izers, vocabularies, and numerical embeddings.

In the new Torchtext API, you can access different tokenizers
using the data.get_tokenizer() function, as shown in the fol‐
lowing code:

from torchtext.data.utils \
  import get_tokenizer

tokenizer = get_tokenizer('basic_english')

Creating vocabularies in the new API is also flexible. You can
build a vocabulary directly with the Vocab class, as shown in the
following code:

from collections import Counter
from torchtext.vocab import Vocab

train_iter = IMDB(split='train')
counter = Counter()
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for (label, line) in train_iter:
    counter.update(tokenizer(line))
vocab = Vocab(counter,
              min_freq=10,
              specials=('<unk>',
                        '<BOS>',
                        '<EOS>',
                        '<PAD>'))

As you can see, we can set the min_freq to specify the cutoff
frequency in the vocabulary. We can also assign tokens to spe‐
cial symbols like <BOS> and <EOS>, as shown in the constructor
of the Vocab class.

Another useful feature is to define transforms for text and
labels, as shown in the following code:

text_transform = lambda x: [vocab['<BOS>']] \
  + [vocab[token] \
     for token in tokenizer(x)] + [vocab['<EOS>']]

label_transform = lambda x: 1 \
  if x == 'pos' else 0

print(text_transform("programming is awesome"))
# out: [1, 8320, 12, 1156, 2]

We pass in a text string to our transforms, and we use the
vocabulary and tokenizer to preprocess the data.

Create a Dataloader for Batching
Now that we have loaded and preprocessed our data, the last
step is to create a dataloader to sample and batch data from the
dataset. We can create a dataloader with the following code:

from torch.utils.data import DataLoader

train_iter = IMDB(split='train')
train_dataloader = DataLoader(
    list(train_iter),
    batch_size=8,
    shuffle=True)

# for text, label in train_dataloader
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You may notice that this code is similar to the code with which
we created a dataloader in Torchvision. Instead of passing in
the dataset object, we pass the train_iter cast as a list(). The
DataLoader() constructor also accepts batch_sampler and col
late_fcn parameters (not shown in the preceding code; see the
documentation) so you can customize how the dataset is sam‐
pled and collated. After you create the dataloader, use it to train
your model, as shown in the preceding code comments.

Torchtext has many useful features. Let’s explore what’s avail‐
able from the API.

Data (torchtext.data)
The torchtext.data API provides functions for creating text-
based dataset objects in PyTorch. Table 8-17 lists the available
functions in torchtext.data.

Table 8-17. Torchtext data

Function Description

torchtext.data.utils

get_tokenizer(tokenizer,

language=en)

Generates a tokenizer function for a
string sentence

ngrams_iterator(token_

list, ngrams)

Returns an iterator that yields the
given tokens and their ngrams

torchtext.data.functional

generate_sp_model(

filename, 

vocab_size=20000, 

model_type=unigram, 

model_prefix=m_user)

Trains a SentencePiece tokenizer

load_sp_model(spm) Loads a SentencePiece model
from a file
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Function Description

sentencepiece_

numericalizer(sp_model)

Creates a generator that takes in a
text sentence and outputs the
corresponding identifiers based on a
SentencePiece model

sentencepiece_

tokenizer(sp_model)

Creates a generator that takes in a
text sentence and outputs the
corresponding tokens based on a
SentencePiece model

custom_replace(replace_

pattern)

Acts as a transform to convert text
strings

simple_space_split(

iterator)

Acts as a transform to split text
strings by spaces

numericalize_tokens_

from_iterator(vocab,

iterator,

removed_tokens=None)

Yields a list of identifiers from a token
iterator with a vocab

torchtext.data.metrics

bleu_score(candidate_

corpus, references_corpus, 

max_n=4, weights=[0.25, 

0.25, 0.25, 0.25])

Computes the BLEU score between a
candidate translation corpus and a
reference translation corpus

As you can see, the torchtext.data submodule supports func‐
tions for creating dataset objects based on fields aas well as for
loading, preprocessing, and iterating through batches. Next let’s
see what NLP datasets are available from the Torchtext library.

Datasets (torchtext.datasets)
Torchtext supports loading datasets from popular papers and
research. You can find datasets for language modeling, senti‐
ment analysis, text classification, question classification, entail‐
ment, machine translation, sequence tagging, question answer‐
ing, and unsupervised learning.
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Table 8-18 provides a comprehensive list of the datasets
included in Torchtext.

Table 8-18. Torchtext datasets

Function Description

Text classification

TextClassificationDataset(vocab, 

data, labels)

Generic text-classification
dataset

IMDB(root=.data, split=(train, 

test))

Binary sentiment analysis
dataset consisting of
50,000 reviews labeled as
positive or negative from
IMDb

AG_NEWS(root=.data, split=(train, 

test))

Dataset of news articles
labeled with four topics

SogouNews(root=.data, 

split=(train, test))

Dataset of news articles
labeled with five topics

DBpedia(root=.data, split=(train, 

test))

Dataset of news articles
labeled with 14 categories

YelpReviewPolarity(root=.data, 

split=(train, test))

Dataset of 500,000 Yelp
reviews with binary
classification

YelpReviewFull(root=.data, 

split=(train, test))

Dataset of 500,000 Yelp
reviews with fine-grained
(five-class) classification

YahooAnswers(root=.data, 

split=(train, test))

Dataset of Yahoo answers
labeled in 10 different
categories

AmazonReviewPolarity(root=.data, 

split=(train, test))

Dataset of Amazon
reviews with binary
classification
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Function Description

AmazonReviewFull(root=.data, 

split=(train, test))

Dataset of Amazon
reviews with fine-grained
(five-class) classification

Language modeling

LanguageModelingDataset(path, 

text_field, newline_eos=True,

encoding=utf-8, **kwargs)

General language
modeling dataset class

WikiText2(root=.data, 

split=(train, valid, test))

WikiText long-term
dependency language
modeling dataset, a
collection of over 100
million tokens extracted
from the set of verified
“Good” and “Featured”
articles on Wikipedia

WikiText103(root=.data, 

split=(train, valid, test))

Larger WikiText dataset

PennTreebank(root=.data, 

split=(train, valid, test))

A relatively small dataset
originally created for part
of speech (POS) tagging

Machine translation

TranslationDataset(path, exts, 

fields, **kwargs)

Generic translation
dataset class

IWSLT2016(root=.data, 

split=(train, valid, test),

language_pair=(de, en),

valid_set=tst2013, 

test_set=tst2014)

International Conference
on Spoken Language
Translation (IWSLT) 2016
TED talk translation task

IWSLT2017(root=.data, 

split=(train, valid, test),

language_pair=(de, en))

International Conference
on Spoken Language
Translation (IWSLT) 2017
TED talk translation task
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Function Description

Sequence tagging

SequenceTaggingDataset(path, 

fields, encoding=utf-8,

separator=t, **kwargs)

Generic sequence-tagging
dataset class

UDPOS(root=.data, split=(train, 

valid, test))

Universal dependencies
version 2 POS-tagged data

CoNLL2000Chunking(root=.data, 

split=(train, test))

Command that downloads
and loads the Conference
on Computational Natural
Language Learning
(CoNLL) 2000 chunking
dataset

Question answering

SQuAD1(root=.data, split=(train, 

dev))

Creates the Stanford
Question Answering
Dataset (SQuAD) 1.0
dataset, a reading
comprehension dataset
consisting of questions
posed by crowdworkers on
a set of Wikipedia articles

SQuAD2(root=.data, split=(train, 

dev))

Creates the Stanford
Question Answering
Dataset (SQuAD) 2.0
dataset, a dataset that
extends the 1.0 dataset by
adding over 50,000
unanswerable questions

Torchtext developers are always adding new datasets. For the
most updated list, visit the Torchtext datasets documentation.

Once you load data, whether from existing datasets or ones that
you create, you will need to convert the text data to numeric
data before training a model and running inference. To do so,
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we use vocabularies and word embeddings that provide the
maps to perform these conversions. Next, we’ll examine the
Torchtext functions used to support vocabularies.

Vocabularies (torchtext.vocab)
Torchtext provides generic classes and specific classes for pop‐
ular vocabularies. Table 8-19 provides a list of classes in torch
text.vocab to support the creation and use of vocabularies.

Table 8-19. Torchtext vocabularies

Function Description

Vocabulary classes

Vocab(counter, max_size=None, 

min_freq=1, specials=(<unk>,
<pad>), vectors=None,
unk_init=None,

vectors_cache=None,

specials_first=True)

Defines a vocabulary object that
will be used to numericalize a
field

SubwordVocab(counter, 

max_size=None, specials=<pad>,
vectors=None,

unk_init=<method zero_of 

torch._C._TensorBase objects>)

Creates a revtok subword
vocabulary from a
collections.Counter

Vectors(name, cache=None, 

url=None, unk_init=None,

max_vectors=None)

Generic class for word vector
embeddings

Pretrained word embeddings

GloVe(name=840B, dim=300, 

**kwargs)

Global vectors (GloVe) model for
distributed word representation,
developed at Stanford

FastText(language=en, 

**kwargs)

Pretrained word embeddings for
294 languages, created by
Facebook’s AI Research lab
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Function Description

CharNGram(**kwargs) CharNGram embeddings, a simple
approach for learning character-
based compositional models to
embed textual sequences

Miscellaneous

build_vocab_from_iterator(

iterator, num_lines=None)

Builds a vocabulary by cycling
through an iterator

As you can see, Torchtext provides a robust set of functionality
to support text-based modeling and NLP research. For more
information, visit the Torchtext documentation.

Whether you’re developing deep learning models for NLP,
computer vision, or another field, it’s helpful to be able to visu‐
alize models, data, and performance metrics as you go. In the
next section, we’ll explore another powerful package for visual‐
ization called TensorBoard.

TensorBoard for Visualization
TensorBoard is a visualization toolkit that’s included in
PyTorch’s major competing deep learning framework, Tensor‐
Flow. Instead of developing its own visualization toolkit,
PyTorch integrates with TensorBoard and leverages its visuali‐
zation capabilities natively.

With TensorBoard, you can visualize learning curves, scalar
data, model architectures, weight distributions, and 3D data
embeddings, as well as keep track of hyperparameter experi‐
ment results. This section will show you how to use Tensor‐
Board with PyTorch and provide a reference to the Tensor‐
Board API.

The TensorBoard application is run on a local or remote server,
and the display and user interface run in a browser. We can also
run TensorBoard inside Jupyter Notebook or Google Colab.

TensorBoard for Visualization | 259

https://pytorch.tips/torchtext


I’ll use Colab in this book to demonstrate the capabilities of
TensorBoard, but the process is very similar for running it
locally or remotely in the cloud. Colab comes with Tensor‐
Board preinstalled, and you can run it directly in a cell using
magic commands, as shown in the following code:

%load_ext tensorboard
%tensorboard --logdir ./runs/

First we load the tensorboard extension and then we run
tensorboard and specify the log directory that holds the event
files. Event files hold the data from PyTorch that will be dis‐
played in the TensorBoard application.

Since we haven’t created any event files yet, you will see an
empty display, as shown in Figure 8-1.

Figure 8-1. TensorBoard application

By clicking on the arrow next to INACTIVE in the upper-right
menu, you will see the possible display tabs. One commonly
used display tab is the SCALARS tab. This tab can display any
scalar value over time. We often use the SCALARS display to
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view loss and accuracy training curves. Let’s see how you can
save scalar values for TensorBoard in your PyTorch code.

NOTE

The  PyTorch  integration  with  TensorBoard  was  origi‐
nally  implemented  by  an  open  source  project  called
TensorBoardX.  Since  then,  TensorBoard  support  has
been  integrated into the PyTorch project as the
torch.utils.tensorboard  package  and  it’s  actively
maintained  by  the  PyTorch  development  team.

First let’s import PyTorch’s TensorBoard interface and set up
PyTorch for use with TensorBoard, as shown in the following
code:

from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter() 

The writer will output to the ./runs/ directory by default.

We simply import the SummaryWriter class from the PyTorch
tensorboard package and instantiate a SummaryWriter object. To
write data to TensorBoard, all we need to do is call methods
from the SummaryWriter object. To save our loss values while
our model is training, we use the add_scalar() method, as
shown in the following code:

N_EPOCHS = 10
for epoch in range(N_EPOCHS):

    epoch_loss = 0.0
    for inputs, labels in trainloader:
        inputs = inputs.to(device)
        labels = labels.to(device)

        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, labels)
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        loss.backward()
        optimizer.step()

        epoch_loss += loss.item()
    print("Epoch: {} Loss: {}".format(epoch,
        epoch_loss/len(trainloader)))
    writer.add_scalar('Loss/train',

        epoch_loss/len(trainloader), epoch) 

Log loss.item() as an event to tensorboard.

This is just an example training loop. You can assume the model
has already been defined and the trainloader has been created.
Not only does the code print the loss every epoch, but it also
logs it to a tensorboard event. We can either refresh the Tensor‐
Board application in the previous cell or create another cell
altogether using the %tensorboard command.

Learning Curves with SCALARS
TensorBoard provides the ability to plot one or more scalar val‐
ues over time. This is useful in deep learning development to
display metrics as your model trains. By viewing metrics like
loss or accuracy it’s easy to see if your model’s training is stable
and continues to improve.

Figure 8-2 shows an example display of learning curves using
TensorBoard.

You can interact with the display by sliding the smoothing fac‐
tor, and you can also see the curve at each epoch by mousing
over the plots. TensorBoard allows you to apply smoothing to
iron out instabilities and show the overall progress.

262 | Chapter 8: The PyTorch Ecosystem and Additional Resources



Figure 8-2. TensorBoard learning curves

Model Architectures with GRAPHS
Another useful feature of TensorBoard is visualizing your deep
learning model using graphs. To save a graph to the event file,
we will use the add_graph() method, as shown in the following
code:

model = vgg16(preTrained=True)
writer.add_graph(model)

In this code we instantiate a VGG16 model and write the model
to an event file. We can display the model graph by either
refreshing an existing TensorBoard cell or creating a new one.
Figure 8-3 shows the graph visualization tool in TensorBoard.
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Figure 8-3. TensorBoard model graph

The graph is interactive. You can click on each module and
expand it to view the underlying modules. This tool is useful
for understanding existing models and verifying that your
model graphs match their intended designs.

Data with IMAGES, TEXT, and PROJECTOR
You can also use TensorBoard to view different types of data,
such as images, text, and 3D embeddings. In these cases, you
would use the add_image(), add_text(), and add_projection()
methods, respectively, to write data to the event file.

Figure 8-4 shows a batch of image data from the Fashion-
MNIST dataset.

By examining batches of image data, you can verify that the
data looks as expected or identify errors in your data or results.
TensorBoard also provides the ability to listen to audio data,
display text data, and view 3D projections of multidimensional
data or data embeddings.
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Figure 8-4. TensorBoard image display

Weight Distributions with DISTRIBUTIONS
and HISTOGRAMS
Another useful feature of TensorBoard is the ability to display
distributions and histograms. This allows you to view large
amounts of data to verify expected behavior or identify issues.

One common task in model development is making sure you
avoid the vanishing gradient problem. Vanishing gradients occur
when the model weights become zero or close to zero. When
this occurs the neurons essentially die off and can no longer be
updated.

If we visualize the distribution of our weights, it’s easy to see
when a large portion of the weight values have reached zero.

Figure 8-5 shows the DISTRIBUTIONS tab in TensorBoard.
Here we can examine the distributions of our weight values.

As you see in Figure 8-5, TensorBoard can display distributions
in 3D so it’s easy to see how the distributions change over time
or over each epoch.
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Figure 8-5. TensorBoard weight distributions

Hyperparameters with HPARAMS
When running deep learning experiments, it’s easy to lose track
of the different hyperparameter sets used to try a hypothesis.
TensorBoard provides a way to keep track of the hyperparame‐
ter values during each experiment and tabularizes the values
and their results.

Figure 8-6 displays an example of how we track experiments
and their corresponding hyperparameters and results.

In the HPARAMS tab, you can view the results in table view,
parallel coordinates view, or scatter plot matrix view. Each
experiment is identified by its session group name, hyperpara‐
meters such as dropout percentage and optimizer algorithm,
and the resulting metric, such as accuracy. The HPARAMS
tables help you keep track of your experiments and results.

When you’re finished writing data to TensorBoard event files,
you should use the close() method, as shown here:

writer.close()
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This will call the destructor function and release any memory
that was used for the summary writer.

Figure 8-6. TensorBoard hyperparameter tracking

The TensorBoard API
The PyTorch TensorBoard API is pretty simple. It’s included as
part of the torch.utils package as torch.utils.tensorboard.
Table 8-20 shows a comprehensive list of functions used to
interface PyTorch to TensorBoard.

Table 8-20. PyTorch TensorBoard API

Method Description

SummaryWriter(log_dir=None, 

comment='', purge_step=None, 

max_queue=10, flush_secs=120, 

filename_suffix='')

Creates a Summary
Writer object

flush() Flushes the event file to
disk; makes sure that all
pending events have
been written to disk
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Method Description

close() Frees the Summary
Writer object and
closes event files

add_scalar(tag, scalar_value, 

global_step=None, walltime=None)

Writes a scalar to the
event file

add_scalars(main_tag, 

tag_scalar_dict, global_step=None, 

walltime=None)

Writes multiple scalars
to the event file to
display multiple scalars
on the same plot

add_custom_scalars(layout) Creates a special chart
by collecting chart tags
in scalars

add_histogram(tag, values, 

global_step=None, bins=tensorflow, 

walltime=None, max_bins=None)

Writes data for a
histogram display

add_image(tag, img_tensor, 

global_step=None, walltime=None, 

dataformats=CHW)

Writes image data

add_images(tag, img_tensor, 

global_step=None, walltime=None, 

dataformats=NCHW)

Writes multiple images
to the same display

add_figure(tag, figure, 

global_step=None, close=True, 

walltime=None)

Writes a
matplotlib-type
plot as an image

add_video(tag, vid_tensor, 

global_step=None, fps=4, 

walltime=None)

Writes a video

add_audio(tag, snd_tensor, 

global_step=None, 

sample_rate=44100, walltime=None)

Writes an audio file to
the event summary

add_text(tag, text_string, 

global_step=None, walltime=None)

Writes text data to
summary
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Method Description

add_graph(model, 

input_to_model=None, verbose=False)

Writes a model graph or
computational graph to
summary

add_embedding(mat, metadata=None, 

label_img=None, global_step=None, 

tag=default, metadata_header=None)

Writes embedding
projector data tto
summary

add_pr_curve(tag, labels, 

predictions, global_step=None, 

num_thresholds=127, weights=None, 

walltime=None)

Writes the precision/
recall curve under
different thresholds

add_mesh(tag, vertices, 

colors=None, faces=None, 

config_dict=None, global_step=None, 

walltime=None)

Adds meshes or 3D
point clouds to
TensorBoard

add_hparams(hparam_dict, 

metric_dict, 

hparam_domain_discrete=None, 

run_name=None)

Adds a set of
hyperparameters for
comparison in
TensorBoard

As shown in Table 8-20, the API is simple. You can use the Sum
maryWriter(), flush(), and close() methods to manage the
writer object and use the other functions to add data to the
TensorBoard event file.

For more details on the TensorBoard PyTorch API, visit the
TensorBoard API documentation. For more details on using
the TensorBoard application itself, visit the TensorBoard
documentation.

TensorBoard solves one major challenge with developing deep
learning models in PyTorch by providing a visualization tool.
Another major challenge is keeping up with the latest research
and state-of-the art solutions. Researchers often need to repro‐
duce the results and leverage the code for benchmarking their
own designs. In the next section we explore Papers with Code,
a resource you can use to solve this problem.
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Papers with Code
Papers with Code (PwC) is a website that organizes access to
machine learning research papers and their corresponding
code, which is often written in PyTorch. PwC allows you to
easily reproduce experiments and extend current research, and
the website allows you to find the best-performing research
papers for a given machine learning topic. For example, want
to find the best image classification models and their code? Just
click on the Image Classification tile and you’ll see a summary
of the research area as well as benchmarks and links to corre‐
sponding papers and code on GitHub. Figure 8-7 shows an
example listing for Image Classification.

Figure 8-7. Papers with Code

PwC is not an exclusive PyTorch project; however, most of the
code provided on PwC uses PyTorch. It may be able to help you
build awareness of the current state-of-the-art research and
solve your problems in deep learning and AI. Explore more at
the PwC website.

Additional PyTorch Resources
After reading this book, you should have a good understanding
of PyTorch and its features. However, there are always new
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aspects to explore and practice. In this section, I’ll provide a list
of additional resources that you can check out to learn more
and grow your skills with PyTorch.

Tutorials
The PyTorch website provides an extensive set of documenta‐
tion and tutorials. If you’re looking for more code examples,
this resource is a good place to start. Figure 8-8 shows the
PyTorch Tutorials website, where you can select tags to help
you find tutorials that interest you.

Figure 8-8. PyTorch Tutorials

The site includes a 60-min blitz, PyTorch recipes, tutorials, and
a PyTorch Cheat Sheet. Most of the code and tutorials are avail‐
able on GitHub, and can be run in VS Code, Jupyter Notebook,
and Colab.

The 60-min Blitz is a good place to start, refresh your skills, or
review the basics of PyTorch. PyTorch recipes are bite-sized,
actionable examples of how to use specific PyTorch features.
PyTorch tutorials are slightly longer than recipes and are com‐
posed of multiple steps to achieve or demonstrate an outcome.
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Currently, you can find tutorials related to the following topics:

• Audio
• Best Practice
• C++
• CUDA
• Extending PyTorch
• FX
• Frontend APIs
• Getting Started
• Image/Video
• Interpretability
• Memory Format
• Mobile
• Model Optimization
• Parallel and Distributed Training
• Production
• Profiling
• Quantization
• Reinforcement Learning
• TensorBoard
• Text
• TorchScript

The PyTorch team is continually adding new resources and this
list is certainly subject to change. For more information and
the latest tutorials, visit the PyTorch Tutorials website.
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Books
Tutorials are a great for learning, but perhaps you’d prefer to
read more about PyTorch and gain different perspectives from
multiple authors. Table 8-21 provides a list of other books
related to PyTorch.

Table 8-21. PyTorch books

Book Publisher,
year

Summary

Cloud Native Machine Learning
by Carl Osipov

Manning,
2021

Learn how to deploy PyTorch
models on AWS

Deep Learning for Coders with
fastai and PyTorch by Jeremy
Howard and Sylvain Gugger

O’Reilly,
2020

Learn how to build AI
applications without a PhD

Deep Learning with PyTorch by
Eli Stevens et al.

Manning,
2019

Learn how to build, train, and
tune NNs using Python tools

Deep Learning with PyTorch by
Vishnu Subramanian

Packt, 2018 Learn how to build NN models
using PyTorch

Hands-On Generative
Adversarial Networks with
PyTorch 1.x by John Hany and
Greg Walters

Packt, 2019 Learn how to implement next-
generation NNs to build
powerful GAN models using
Python

Hands-On Natural Language
Processing with PyTorch 1.x by
Thomas Dop

Packt, 2020 Learn how to build smart, AI-
driven linguistic applications
using deep learning and NLP
techniques

Hands-On Neural Networks with
PyTorch 1.0 by Vihar Kurama

Packt, 2019 Learn how to implement deep
learning architectures in
PyTorch

Natural Language Processing
with PyTorch by Delip Rao and
Brian McMahan

O’Reilly,
2019

Learn how to build intelligent
language applications using
deep learning
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Book Publisher,
year

Summary

Practical Deep Learning with
PyTorch by Nihkil Ketkar

Apress, 2020 Learn how to optimize GANs
with Python

Programming PyTorch for Deep
Learning by Ian Pointer

O’Reilly,
2019

Learn how to create and deploy
deep learning applications

PyTorch Artificial Intelligence
Fundamentals by Jibin Mathew

Packt, 2020 Learn how to design, build, and
deploy your own AI models
with PyTorch 1.x

PyTorch Recipes by Pradeepta
Mishra

Apress, 2019 Learn how to solve problems in
PyTorch

Online Courses and Live Training
If you prefer online video courses and live training workshops,
there are options available for you to expand your PyTorch
knowledge and skills. You can continue learning from me and
other online instructors at PyTorch Academy, Udemy, Cour‐
sera, Udacity, Skillshare, DataCamp, Pluralsight, edX, O’Reilly
Learning, and LinkedIn Learning. Some courses are free while
others require a fee or a subscription.

Table 8-22 lists a selection of online courses on PyTorch avail‐
able at the time of writing.

Table 8-22. PyTorch courses

Course Instructor Platform

Getting Started with PyTorch
Development

Joe Papa PyTorch
Academy

PyTorch Fundamentals Joe Papa PyTorch
Academy

Advanced PyTorch Joe Papa PyTorch
Academy

Introduction to Deep Learning with
PyTorch

Ismail Elezi DataCamp
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Course Instructor Platform

Foundations of PyTorch Janani Ravi Pluralsight

Deep Neural Networks with PyTorch IBM Coursera

PyTorch Basics for Machine Learning IBM edX

Intro to Deep Learning with PyTorch Facebook AI Udacity

PyTorch: Deep Learning and Artificial
Intelligence

Lazy Programmer Udemy

PyTorch for Deep Learning and
Computer Vision

Rayan Slim et al. Udemy

PyTorch for Beginners Dan We Skillshare

PyTorch Essential Training: Deep
Learning

Jonathan Fernandes LinkedIn
Learning

Introduction to Deep Learning Using
PyTorch

Goku Mohandas and
Alfredo Canziani

O’Reilly
Learning

This chapter has provided resources for expanding your learn‐
ing, research, and development with PyTorch. You can use this
material as a quick reference for the numerous packages within
the PyTorch project and the PyTorch Ecosystem. When you are
looking to expand your skills and knowledge, you can return to
this chapter to get ideas on other training materials available to
you.

Congratulations on completing the book! You’ve come a long
way, getting to grips with tensors, understanding the model
development process, and exploring reference designs using
PyTorch. In addition, you’ve learned how to customize
PyTorch, create your own features, accelerate training, optimize
your models, and deploy your NNs to the cloud and edge devi‐
ces. Finally, we explored the PyTorch Ecosystem, investigated
key packages like Torchvision, Torchtext, and TensorBoard,
and learned about additional ways to expand your knowledge
with tutorials, books, and online courses.
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No matter what projects you tackle in the future, I hope you’ll
be able to return to this book again and again. I also hope you
continue to expand your skills and master PyTorch’s capabili‐
ties to develop innovative new deep learning tools and systems.
Don’t let your new knowledge and skills dwindle away. Go
build something interesting, and make a difference in the
world!

Let me know what you create! I hope to see you in one of my
courses at PyTorch Academy and feel free to reach out to me
via email (jpapa@joepapa.ai), Twitter (@JoePapaAI), or
LinkedIn (@MrJoePapa).
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