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Preface

In the past 10 years or so, there has been a growing interest in applying math and
statistics to our everyday work and lives. Why is that? Does it have to do with the
accelerated interest in “data science,” which Harvard Business Review called “the
Sexiest Job of the 21st Century”? Or is it the promise of machine learning and
“artificial intelligence” changing our lives? Is it because news headlines are inundated
with studies, polls, and research findings but unsure how to scrutinize such claims?
Or is it the promise of “self-driving” cars and robots automating jobs in the near
future?

I will make the argument that the disciplines of math and statistics have captured
mainstream interest because of the growing availability of data, and we need math,
statistics, and machine learning to make sense of it. Yes, we do have scientific tools,
machine learning, and other automations that call to us like sirens. We blindly trust
these “black boxes,” devices, and softwares; we do not understand them but we use
them anyway.

While it is easy to believe computers are smarter than we are (and this idea is
frequently marketed), the reality cannot be more the opposite. This disconnect can
be precarious on so many levels. Do you really want an algorithm or AI performing
criminal sentencing or driving a vehicle, but nobody including the developer can
explain why it came to a specific decision? Explainability is the next frontier of
statistical computing and AI. This can begin only when we open up the black box and
uncover the math.

You may also ask how can a developer not know how their own algorithm works? We
will talk about that in the second half of the book when we discuss machine learning
techniques and emphasize why we need to understand the math behind the black
boxes we build.

To another point, the reason data is being collected on a massive scale is largely due
to connected devices and their presence in our everyday lives. We no longer solely
use the internet on a desktop or laptop computer. We now take it with us in our
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smartphones, cars, and household devices. This has subtly enabled a transition over
the past two decades. Data has now evolved from an operational tool to something
that is collected and analyzed for less-defined objectives. A smartwatch is constantly
collecting data on our heart rate, breathing, walking distance, and other markers.
Then it uploads that data to a cloud to be analyzed alongside other users. Our driving
habits are being collected by computerized cars and being used by manufacturers to
collect data and enable self-driving vehicles. Even “smart toothbrushes” are finding
their way into drugstores, which track brushing habits and store that data in a cloud.
Whether smart toothbrush data is useful and essential is another discussion!

All of this data collection is permeating every corner of our lives. It can be over‐
whelming, and a whole book can be written on privacy concerns and ethics. But this
availability of data also creates opportunities to leverage math and statistics in new
ways and create more exposure outside academic environments. We can learn more
about the human experience, improve product design and application, and optimize
commercial strategies. If you understand the ideas presented in this book, you will
be able to unlock the value held in our data-hoarding infrastructure. This does not
imply that data and statistical tools are a silver bullet to solve all the world’s problems,
but they have given us new tools that we can use. Sometimes it is just as valuable
to recognize certain data projects as rabbit holes and realize efforts are better spent
elsewhere.

This growing availability of data has made way for data science and machine learning
to become in-demand professions. We define essential math as an exposure to proba‐
bility, linear algebra, statistics, and machine learning. If you are seeking a career in
data science, machine learning, or engineering, these topics are necessary. I will throw
in just enough college math, calculus, and statistics necessary to better understand
what goes in the black box libraries you will encounter.

With this book, I aim to expose readers to different mathematical, statistical, and
machine learning areas that will be applicable to real-world problems. The first four
chapters cover foundational math concepts including practical calculus, probability,
linear algebra, and statistics. The last three chapters will segue into machine learning.
The ultimate purpose of teaching machine learning is to integrate everything we learn
and demonstrate practical insights in using machine learning and statistical libraries
beyond a black box understanding.

The only tool needed to follow examples is a Windows/Mac/Linux computer and a
Python 3 environment of your choice. The primary Python libraries we will need are
numpy, scipy, sympy, and sklearn. If you are unfamiliar with Python, it is a friendly
and easy-to-use programming language with massive learning resources behind it.
Here are some I recommend:
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Data Science from Scratch, 2nd Edition by Joel Grus (O’Reilly)
The second chapter of this book has the best crash course in Python I have
encountered. Even if you have never written code before, Joel does a fantastic job
getting you up and running with Python effectively in the shortest time possible.
It is also a great book to have on your shelf and to apply your mathematical
knowledge!

Python for the Busy Java Developer by Deepak Sarda (Apress)
If you are a software engineer coming from a statically-typed, object-oriented
programming background, this is the book to grab. As someone who started
programming with Java, I have a deep appreciation for how Deepak shares
Python features and relates them to Java developers. If you have done .NET, C++,
or other C-like languages you will probably learn Python effectively from this
book as well.

This book will not make you an expert or give you PhD knowledge. I do my best
to avoid mathematical expressions full of Greek symbols and instead strive to use
plain English in its place. But what this book will do is make you more comfortable
talking about math and statistics, giving you essential knowledge to navigate these
areas successfully. I believe the widest path to success is not having deep, specialized
knowledge in one topic, but instead having exposure and practical knowledge across
several topics. That is the goal of this book, and you will learn just enough to be
dangerous and ask those once-elusive critical questions.

So let’s get started!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/thomasnield/machine-learning-demo-data.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Essential Math
for Data Science by Thomas Nield (O’Reilly). Copyright 2022 Thomas Nield,
978-1-098-10293-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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CHAPTER 1

Basic Math and Calculus Review

We will kick off the first chapter covering what numbers are and how variables and
functions work on a Cartesian system. We will then cover exponents and logarithms.
After that, we will learn the two basic operations of calculus: derivatives and integrals.

Before we dive into the applied areas of essential math such as probability, linear
algebra, statistics, and machine learning, we should probably review a few basic math
and calculus concepts. Before you drop this book and run screaming, do not worry!
I will present how to calculate derivatives and integrals for a function in a way you
were probably not taught in college. We have Python on our side, not a pencil and
paper. Even if you are not familiar with derivatives and integrals, you still do not need
to worry.

I will make these topics as tight and practical as possible, focusing only on what will
help us in later chapters and what falls under the “essential math” umbrella.

This Is Not a Full Math Crash Course!

This is by no means a comprehensive review of high school and
college math. If you want that, a great book to check out is No Bull‐
shit Guide to Math and Physics by Ivan Savov (pardon my French).
The first few chapters contain the best crash course on high school
and college math I have ever seen. The book Mathematics 1001 by
Dr. Richard Elwes has some great content as well, and in bite-sized
explanations.
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Number Theory
What are numbers? I promise to not be too philosophical in this book, but are
numbers not a construct we have defined? Why do we have the digits 0 through 9,
and not have more digits than that? Why do we have fractions and decimals and not
just whole numbers? This area of math where we muse about numbers and why we
designed them a certain way is known as number theory.

Number theory goes all the way back to ancient times, when mathematicians studied
different number systems, and it explains why we have accepted them the way we do
today. Here are different number systems that you may recognize:

Natural numbers
These are the numbers 1, 2, 3, 4, 5…and so on. Only positive numbers are
included here, and they are the earliest known system. Natural numbers are so
ancient cavemen scratched tally marks on bones and cave walls to keep records.

Whole numbers
Adding to natural numbers, the concept of “0” was later accepted; we call
these “whole numbers.” The Babylonians also developed the useful idea for
place-holding notation for empty “columns” on numbers greater than 9, such as
“10,” “1,000,” or “1,090.” Those zeros indicate no value occupying that column.

Integers
Integers include positive and negative natural numbers as well as 0. We may
take them for granted, but ancient mathematicians deeply distrusted the idea of
negative numbers. But when you subtract 5 from 3, you get –2. This is useful
especially when it comes to finances where we measure profits and losses. In
628 AD, an Indian mathematician named Brahmagupta showed why negative
numbers were necessary for arithmetic to progress with the quadratic formula,
and therefore integers became accepted.

Rational numbers
Any number that you can express as a fraction, such as 2/3, is a rational number.
This includes all finite decimals and integers since they can be expressed as
fractions, too, such as 687/100 = 6.87 and 2/1 = 2, respectively. They are called
rational because they are ratios. Rational numbers were quickly deemed neces‐
sary because time, resources, and other quantities could not always be measured
in discrete units. Milk does not always come in gallons. We may have to measure
it as parts of a gallon. If I run for 12 minutes, I cannot be forced to measure in
whole miles when in actuality I ran 9/10 of a mile.

Irrational numbers
Irrational numbers cannot be expressed as a fraction. This includes the famous
π, square roots of certain numbers like 2, and Euler’s number e, which we will
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learn about later. These numbers have an infinite number of decimal digits, such
as 3.141592653589793238462…

There is an interesting history behind irrational numbers. The Greek mathemati‐
cian Pythagoras believed all numbers are rational. He believed this so fervently,
he made a religion that prayed to the number 10. “Bless us, divine number, thou
who generated gods and men!” he and his followers would pray (why “10” was
so special, I do not know). There is a legend that one of his followers, Hippasus,
proved not all numbers are rational simply by demonstrating the square root
of 2. This severely messed with Pythagoras’s belief system, and he responded by
drowning Hippasus at sea.

Regardless, we now know not all numbers are rational.

Real numbers
Real numbers include rational as well as irrational numbers. In practicality, when
you are doing any data science work you can treat any decimals you work with as
real numbers.

Complex and imaginary numbers
You encounter this number type when you take the square root of a negative
number. While imaginary and complex numbers have relevance in certain types
of problems, we will mostly steer clear of them.

In data science, you will find most (if not all) of your work will be using whole
numbers, natural numbers, integers, and real numbers. Imaginary numbers may be
encountered in more advanced use cases such as matrix decomposition, which we
will touch on in Chapter 4.

Complex and Imaginary Numbers

If you do want to learn about imaginary numbers, there is a great
playlist Imaginary Numbers are Real on YouTube.

Order of Operations
Hopefully, you are familiar with order of operations, which is the order you solve each
part of a mathematical expression. As a brief refresher, recall that you evaluate com‐
ponents in parentheses, followed by exponents, then multiplication, division, addi‐
tion, and subtraction. You can remember the order of operations by the mnemonic
device PEMDAS (Please Excuse My Dear Aunt Sally), which corresponds to the
ordering parentheses, exponents, multiplication, division, addition, and subtraction.
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Take for example this expression:

2 × 3 + 2 2

5 − 4

First we evaluate the parentheses (3 + 2), which equals 5:

2 × 5
2

5 − 4

Next we solve the exponent, which we can see is squaring that 5 we just summed.
That is 25:

2 × 255 − 4

Next up we have multiplication and division. The ordering of these two is swappable
since division is also multiplication (using fractions). Let’s go ahead and multiply the
2 with the 25

5 , yielding 50
5 :

50
5 − 4

Next we will perform the division, dividing 50 by 5, which will yield 10:

10 − 4

And finally, we perform any addition and subtraction. Of course, 10 − 4 is going to
give us 6:

10 − 4 = 6

Sure enough, if we were to express this in Python we would print a value of 6.0 as
shown in Example 1-1.

Example 1-1. Solving an expression in Python

my_value = 2 * (3 + 2)**2 / 5 - 4

print(my_value) # prints 6.0
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This may be elementary but it is still critical. In code, even if you get the correct result
without them, it is a good practice to liberally use parentheses in complex expressions
so you establish control of the evaluation order.

Here I group the fractional part of my expression in parentheses, helping to set it
apart from the rest of the expression in Example 1-2.

Example 1-2. Making use of parentheses for clarity in Python

my_value = 2 * ((3 + 2)**2 / 5) - 4

print(my_value) # prints 6.0

While both examples are technically correct, the latter is more clear to us easily con‐
fused humans. If you or someone else makes changes to your code, the parentheses
provide an easy reference of operation order as you make changes. This provides a
line of defense against code changes to prevent bugs as well.

Variables
If you have done some scripting with Python or another programming language, you
have an idea what a variable is. In mathematics, a variable is a named placeholder for
an unspecified or unknown number.

You may have a variable x representing any real number, and you can multiply that
variable without declaring what it is. In Example 1-3 we take a variable input x from a
user and multiply it by 3.

Example 1-3. A variable in Python that is then multiplied

x = int(input("Please input a number\n"))

product = 3 * x

print(product)

There are some standard variable names for certain variable types. If these variable
names and concepts are unfamiliar, no worries! But some readers might recognize we
use theta θ to denote angles and beta β for a parameter in a linear regression. Greek
symbols make awkward variable names in Python, so we would likely name these
variables theta and beta in Python as shown in Example 1-4.

Variables | 5



Example 1-4. Greek variable names in Python

beta = 1.75
theta = 30.0

Note also that variable names can be subscripted so that several instances of a variable
name can be used. For practical purposes, just treat these as separate variables. If you
encounter variables x1, x2, and x3, just treat them as three separate variables as shown
in Example 1-5.

Example 1-5. Expressing subscripted variables in Python

x1 = 3  # or x_1 = 3
x2 = 10 # or x_2 = 10
x3 = 44 # or x_3 = 44

Functions
Functions are expressions that define relationships between two or more variables.
More specifically, a function takes input variables (also called domain variables or
independent variables), plugs them into an expression, and then results in an output
variable (also called dependent variable).

Take this simple linear function:

y = 2x + 1

For any given x-value, we solve the expression with that x to find y. When x = 1, then
y = 3. When x = 2, y = 5. When x = 3, y = 7 and so on, as shown in Table 1-1.

Table 1-1. Different values for y = 2x + 1

x 2x + 1 y
0 2(0) + 1 1

1 2(1) + 1 3

2 2(2) + 1 5

3 2(3) + 1 7

Functions are useful because they model a predictable relationship between variables,
such as how many fires y can we expect at x temperature. We will use linear functions
to perform linear regressions in Chapter 5.
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Another convention you may see for the dependent variable y is to explicitly label it
a function of x, such as f x . So rather than express a function as y = 2x + 1, we can
also express it as:

f x = 2x + 1

Example 1-6 shows how we can declare a mathematical function and iterate it in
Python.

Example 1-6. Declaring a linear function in Python

def f(x):
    return 2 * x + 1

x_values = [0, 1, 2, 3]

for x in x_values:
    y = f(x)
    print(y)

When dealing with real numbers, a subtle but important feature of functions is they
often have an infinite number of x-values and resulting y-values. Ask yourself this:
how many x-values can we put through the function y = 2x + 1? Rather than just 0, 1,
2, 3…why not 0, 0.5, 1, 1.5, 2, 2.5, 3 as shown in Table 1-2?

Table 1-2. Different values for y = 2x + 1

x 2x + 1 y
0.0 2(0) + 1 1

0.5 2(.5) + 1 2

1.0 2(1) + 1 3

1.5 2(1.5) + 1 4

2.0 2(2) + 1 5

2.5 2(2.5) + 1 6

3.0 2(3) + 1 7

Or why not do quarter steps for x? Or 1/10 of a step? We can make these steps
infinitely small, effectively showing y = 2x + 1 is a continuous function, where for
every possible value of x there is a value for y. This segues us nicely to visualize our
function as a line as shown in Figure 1-1.
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Figure 1-1. Graph for function y = 2x + 1

When we plot on a two-dimensional plane with two number lines (one for each
variable) it is known as a Cartesian plane, x-y plane, or coordinate plane. We trace a
given x-value and then look up the corresponding y-value, and plot the intersections
as a line. Notice that due to the nature of real numbers (or decimals, if you prefer),
there are an infinite number of x values. This is why when we plot the function f(x)
we get a continuous line with no breaks in it. There are an infinite number of points
on that line, or any part of that line.

If you want to plot this using Python, there are a number of charting libraries from
Plotly to matplotlib. Throughout this book we will use SymPy to do many tasks, and
the first we will use is plotting a function. SymPy uses matplotlib so make sure you
have that package installed. Otherwise it will print an ugly text-based graph to your
console. After that, just declare the x variable to SymPy using symbols(), declare
your function, and then plot it as shown in Example 1-7 and Figure 1-2.

Example 1-7. Charting a linear function in Python using SymPy

from sympy import *

x = symbols('x')
f = 2*x + 1
plot(f)
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Figure 1-2. Using SymPy to graph a linear function

Example 1-8 and Figure 1-3 are another example showing the function f x = x2 + 1.

Example 1-8. Charting an exponential function

from sympy import *

x = symbols('x')
f = x**2 + 1
plot(f)

Note in Figure 1-3 we do not get a straight line but rather a smooth, symmetrical
curve known as a parabola. It is continuous but not linear, as it does not produce
values in a straight line. Curvy functions like this are mathematically harder to work
with, but we will learn some tricks to make it not so bad.

Curvilinear Functions

When a function is continuous but curvy, rather than linear and
straight, we call it a curvilinear function.
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Figure 1-3. Using SymPy to graph an exponential function

Note that functions utilize multiple input variables, not just one. For example, we can
have a function with independent variables x and y. Note that y is not dependent like
in previous examples.

f x, y = 2x + 3y

Since we have two independent variables (x and y) and one dependent variable (the
output of f(x,y)), we need to plot this graph on three dimensions to produce a plane
of values rather than a line, as shown in Example 1-9 and Figure 1-4.

Example 1-9. Declaring a function with two independent variables in Python

from sympy import *
from sympy.plotting import plot3d

x, y = symbols('x y')
f = 2*x + 3*y
plot3d(f)
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Figure 1-4. Using SymPy to graph a three-dimensional function

No matter how many independent variables you have, your function will typically
output only one dependent variable. When you solve for multiple dependent vari‐
ables, you will likely be using separate functions for each one.

Summations
I promised not to use equations full of Greek symbols in this book. However, there is
one that is so common and useful that I would be remiss to not cover it. A summation
is expressed as a sigma Σ  and adds elements together.

For example, if I want to iterate the numbers 1 through 5, multiply each by 2, and
sum them, here is how I would express that using a summation. Example 1-10 shows
how to execute this in Python.

∑
i = 1

5
2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 30

Example 1-10. Performing a summation in Python

summation = sum(2*i for i in range(1,6))
print(summation)

Note that i is a placeholder variable representing each consecutive index value we are
iterating in the loop, which we multiply by 2 and then sum all together. When you
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are iterating data, you may see variables like xi indicating an element in a collection at
index i.

The range() function

Recall that the range() function in Python is end exclusive, mean‐
ing if you invoke range(1,4) it will iterate the numbers 1, 2, and 3.
It excludes the 4 as an upper boundary.

It is also common to see n represent the number of items in a collection, like
the number of records in a dataset. Here is one such example where we iterate a
collection of numbers of size n, multiply each one by 10, and sum them:

∑
i = 1

n
10xi

In Example 1-11 we use Python to execute this expression on a collection of four
numbers. Note that in Python (and most programming languages in general) we
typically reference items starting at index 0, while in math we start at index 1.
Therefore, we shift accordingly in our iteration by starting at 0 in our range().

Example 1-11. Summation of elements in Python

x = [1, 4, 6, 2]
n = len(x)

summation = sum(10*x[i] for i in range(0,n))
print(summation)

That is the gist of summation. In a nutshell, a summation Σ  says, “add a bunch of
things together,” and uses an index i and a maximum value n to express each iteration
feeding into the sum. We will see these throughout this book.

Summations in SymPy
Feel free to come back to this sidebar later when you learn more about SymPy.
SymPy, which we use to graph functions, is actually a symbolic math library; we
will talk about what this means later in this chapter. But note for future reference
that a summation operation in SymPy is performed using the Sum() operator. In the
following code, we iterate i from 1 through n, multiply each i, and sum them. But
then we use the subs() function to specify n as 5, which will then iterate and sum all i
elements from 1 through n:
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from sympy import *

i,n = symbols('i n')

# iterate each element i from 1 to n,
# then multiply and sum
summation = Sum(2*i,(i,1,n))

# specify n as 5,
# iterating the numbers 1 through 5
up_to_5 = summation.subs(n, 5)
print(up_to_5.doit()) # 30

Note that summations in SymPy are lazy, meaning they do not automatically calculate
or get simplified. So use the doit() function to execute the expression.

Exponents
Exponents multiply a number by itself a specified number of times. When you raise 2
to the third power (expressed as 23 using 3 as a superscript), that is multiplying three
2s together:

23 = 2 * 2 * 2 = 8

The base is the variable or value we are exponentiating, and the exponent is the
number of times we multiply the base value. For the expression 23, 2 is the base and 3
is the exponent.

Exponents have a few interesting properties. Say we multiplied x2 and x3 together.
Observe what happens next when I expand the exponents with simple multiplication
and then consolidate into a single exponent:

x2x3 = x * x * x * x * x = x2 + 3 = x5

When we multiply exponents together with the same base, we simply add the expo‐
nents, which is known as the product rule. Let me emphasize that the base of all
multiplied exponents must be the same for the product rule to apply.

Let’s explore division next. What happens when we divide x2 by x5 ?

x2

x5
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x * x
x * x * x * x * x

1
x * x * x

1
x3 = x−3

As you can see, when we divide x2 by x5 we can cancel out two x’s in the numerator
and denominator, leaving us with 1

x3 . When a factor exists in both the numerator and

denominator, we can cancel out that factor.

What about the x−3, you wonder? This is a good point to introduce negative expo‐
nents, which is another way of expressing an exponent operation in the denominator
of a fraction. To demonstrate, 1

x3  is the same as x−3:

1
x3 = x−3

Tying back the product rule, we can see it applies to negative exponents, too. To get
intuition behind this, let’s approach this problem a different way. We can express
this division of two exponents by making the “5” exponent of x5 negative, and then
multiplying it with x2. When you add a negative number, it is effectively performing
subtraction. Therefore, the exponent product rule summing the multiplied exponents
still holds up as shown next:

x2

x5 = x2 1
x5 = x2x−5 = x2 + −5 = x−3

Last but not least, can you figure out why any base with an exponent of 0 is 1?

x0 = 1

The best way to get this intuition is to reason that any number divided by itself is 1.

If you have x
3

x3  it is algebraically obvious that reduces to 1. But that expression also

evaluates to x0:

1 = x3

x3 = x3x−3 = x3 + −3 = x0
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By the transitive property, which states that if a = b and b = c, then a = c, we know
that x0 = 1.

Simplify Expressions with SymPy
If you get uncomfortable with simplifying algebraic expressions, you can use the
SymPy library to do the work for you. Here is how to simplify our previous example:

from sympy import *

x = symbols('x')
expr = x**2 / x**5
print(expr) # x**(-3)

Now what about fractional exponents? They are an alternative way to represent roots,
such as the square root. As a brief refresher, a 4 asks “What number multiplied by
itself will give me 4?” which of course is 2. Note here that 41/2 is the same as 4:

41/2 = 4 = 2

Cubed roots are similar to square roots, but they seek a number multiplied by itself
three times to give a result. A cubed root of 8 is expressed as 83  and asks “What
number multiplied by itself three times gives me 8?” This number would be 2 because
2 * 2 * 2 = 8. In exponents a cubed root is expressed as a fractional exponent, and 83

can be reexpressed as 81/3:

81/3 = 83 = 2

To bring it back full circle, what happens when you multiply the cubed root of 8
three times? This will undo the cubed root and yield 8. Alternatively, if we express
the cubed root as fractional exponents 81/3, it becomes clear we add the exponents
together to get an exponent of 1. That also undoes the cubed root:

83 * 83 * 83 = 8
1
3 × 8

1
3 × 8

1
3 = 8

1
3 + 1

3 + 1
3 = 81 = 8

And one last property: an exponent of an exponent will multiply the exponents
together. This is known as the power rule. So 83 2 would simplify to 86:

83 2 = 83 × 2 = 86
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If you are skeptical why this is, try expanding it and you will see the sum rule makes it
clear:

83 2 = 8383 = 83 + 3 = 86

Lastly, what does it mean when we have a fractional exponent with a numerator other

than 1, such as 8
2
3? Well, that is taking the cube root of 8 and then squaring it. Take a

look:

8
2
3 = 8

1
3

2
= 22 = 4

And yes, irrational numbers can serve as exponents like 8π, which is 687.2913. This
may feel unintuitive, and understandably so! In the interest of time, we will not
dive deep into this as it requires some calculus. But essentially, we can calculate
irrational exponents by approximating with a rational number. This is effectively
what computers do since they can compute to only so many decimal places anyway.

For example π has an infinite number of decimal places. But if we take the first 11
digits, 3.1415926535, we can approximate π as a rational number 31415926535 /
10000000000. Sure enough, this gives us approximately 687.2913, which should
approximately match any calculator:

8π ≈ 8
31415926535
10000000000 ≈ 687.2913

Logarithms
A logarithm is a math function that finds a power for a specific number and base.
It may not sound interesting at first, but it actually has many applications. From
measuring earthquakes to managing volume on your stereo, the logarithm is found
everywhere. It also finds its way into machine learning and data science a lot. As a
matter of fact, logarithms will be a key part of logistic regressions in Chapter 6.

Start your thinking by asking “2 raised to what power gives me 8?” One way to
express this mathematically is to use an x for the exponent:

2x = 8

We intuitively know the answer, x = 3, but we need a more elegant way to express this
common math operation. This is what the log  function is for.
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log28 = x

As you can see in the preceding logarithm expression, we have a base 2 and are
finding a power to give us 8. More generally, we can reexpress a variable exponent as
a logarithm:

ax = b
logab = x

Algebraically speaking, this is a way of isolating the x, which is important to solve for
x. Example 1-12 shows how we calculate this logarithm in Python.

Example 1-12. Using the log function in Python

from math import log

# 2 raised to what power gives me 8?
x = log(8, 2)

print(x) # prints 3.0

When you do not supply a base argument to a log() function on a platform like
Python, it will typically have a default base. In some fields, like earthquake measure‐
ments, the default base for the log is 10. But in data science the default base for the log
is Euler’s number e. Python uses the latter, and we will talk about e shortly.

Just like exponents, logarithms have several properties when it comes to multiplica‐
tion, division, exponentiation, and so on. In the interest of time and focus, I will just
present this in Table 1-3. The key idea to focus on is a logarithm finds an exponent
for a given base to result in a certain number.

If you need to dive into logarithmic properties, Table 1-3 displays exponent and
logarithm behaviors side-by-side that you can use for reference.

Table 1-3. Properties for exponents and logarithms

Operator Exponent property Logarithm property
Multiplication xm × xn = xm + n log a × b = log a + log b

Division xm

xn
= xm − n log a

b = log a − log b

Exponentiation xm n = xmn log an = n × log a

Zero Exponent x0 = 1 log 1 = 0

Inverse x−1 = 1
x log x−1 = log 1

x = − log x
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Euler’s Number and Natural Logarithms
There is a special number that shows up quite a bit in math called Euler’s number e.
It is a special number much like Pi π and is approximately 2.71828. e is used a lot
because it mathematically simplifies a lot of problems. We will cover e in the context
of exponents and logarithms.

Euler’s Number
Back in high school, my calculus teacher demonstrated Euler’s number in several
exponential problems. Finally I asked, “Mr. Nowe, what is e anyway? Where does it
come from?” I remember never being fully satisfied with the explanations involving
rabbit populations and other natural phenomena. I hope to give a more satisfying
explanation here.

Why Euler’s Number Is Used So Much
A property of Euler’s number is its exponential function is a derivative to itself,
which is convenient for exponential and logarithmic functions. We will learn about
derivatives later in this chapter. In many applications where the base does not really
matter, we pick the one that results in the simplest derivative, and that is Euler’s
number. That is also why it is the default base in many data science functions.

Here is how I like to discover Euler’s number. Let’s say you loan $100 to somebody
with 20% interest annually. Typically, interest will be compounded monthly, so the
interest each month would be . 20/12 = . 01666. How much will the loan balance be
after two years? To keep it simple, let’s assume the loan does not require payments
(and no payments are made) until the end of those two years.

Putting together the exponent concepts we learned so far (or perhaps pulling out a
finance textbook), we can come up with a formula to calculate interest. It consists of
a balance A for a starting investment P, interest rate r, time span t (number of years),
and periods n (number of months in each year). Here is the formula:

A = P × 1 + r
n

nt

So if we were to compound interest every month, the loan would grow to $148.69 as
calculated here:

A = P × 1 + r
n

nt
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100 × 1 + .20
12

12 × 2
= 148.6914618  

If you want to do this in Python, try it out with the code in Example 1-13.

Example 1-13. Calculating compound interest in Python

from math import exp

p = 100
r = .20
t = 2.0
n = 12

a = p * (1 + (r/n))**(n * t)

print(a) # prints 148.69146179463576

But what if we compounded interest daily? What happens then? Change n to 365:

A = P × 1 + r
n

nt
 

100 × 1 + .20
365

365 × 2
= 149.1661279

Huh! If we compound our interest daily instead of monthly, we would earn 47.4666
cents more at the end of two years. If we got greedy why not compound every hour as
shown next? Will that give us even more? There are 8,760 hours in a year, so set n to
that value:

A = P × 1 + r
n

nt
 

100 × 1 + .20
8760

8760 × 2
= 149.1817886

Ah, we squeezed out roughly 2 cents more in interest! But are we experiencing a
diminishing return? Let’s try to compound every minute! Note that there are 525,600
minutes in a year, so let’s set that value to n:

A = P × 1 + r
n

nt
 

100 × 1 + .20
525600

525600 × 2
= 149.1824584
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OK, we are only gaining smaller and smaller fractions of a cent the more frequently
we compound. So if I keep making these periods infinitely smaller to the point of
compounding continuously, where does this lead?

Let me introduce you to Euler’s number e, which is approximately 2.71828. Here is
the formula to compound “continuously,” meaning we are compounding nonstop:

A = P × ert

Returning to our example, let’s calculate the balance of our loan after two years if we
compounded continuously:

A = P × ert
A = 100 × e . 20 × 2 = 149.1824698

This is not too surprising considering compounding every minute got us a balance of
149.1824584. That got us really close to our value of 149.1824698 when compounding
continuously.

Typically you use e as an exponent base in Python, Excel, and other platforms using
the exp() function. You will find that e is so commonly used, it is the default base for
both exponent and logarithm functions.

Example 1-14 calculates continuous interest in Python using the exp() function.

Example 1-14. Calculating continuous interest in Python

from math import exp

p = 100 # principal, starting amount
r = .20 # interest rate, by year
t = 2.0 # time, number of years

a = p * exp(r*t)

print(a) # prints 149.18246976412703

So where do we derive this constant e? Compare the compounding interest formula
and the continuous interest formula. They structurally look similar but have some
differences:

A = P × 1 + r
n

nt

A = P × ert
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More technically speaking, e is the resulting value of the expression 1 + 1
n

n as n
forever gets bigger and bigger, thus approaching infinity. Try experimenting with
increasingly large values for n. By making it larger and larger you will notice
something:

1 + 1
n

n
 

1 + 1
100

100
= 2.70481382942 

1 + 1
1000

1000
= 2.71692393224 

1 + 1
10000

10000
= 2.71814592682 

1 + 1
10000000

10000000
= 2.71828169413 

As you make n larger, there is a diminishing return and it converges approximately
on the value 2.71828, which is our value e. You will find this e used not just in study‐
ing populations and their growth. It plays a key role in many areas of mathematics.

Later in the book, we will use Euler’s number to build normal distributions in
Chapter 3 and logistic regressions in Chapter 6.

Natural Logarithms
When we use e as our base for a logarithm, we call it a natural logarithm. Depending
on the platform, we may use ln() instead of log() to specify a natural logarithm. So
rather than express a natural logarithm expressed as loge10 to find the power raised
on e to get 10, we would shorthand it as ln 10 :

loge10 = ln 10

However, in Python, a natural logarithm is specified by the log() function. As
discussed earlier, the default base for the log() function is e. Just leave the second
argument for the base empty and it will default to using e as the base shown in
Example 1-15.

Example 1-15. Calculating the natural logarithm of 10 in Python

from math import log

# e raised to what power gives us 10?
x = log(10)

Euler’s Number and Natural Logarithms | 21



print(x) # prints 2.302585092994046

We will use e in a number of places throughout this book. Feel free to experiment
with exponents and logarithms using Excel, Python, Desmos.com, or any other calcu‐
lation platform of your choice. Make graphs and get comfortable with what these
functions look like.

Limits
As we have seen with Euler’s number, some interesting ideas emerge when we forever
increase or decrease an input variable and the output variable keeps approaching a
value but never reaching it. Let’s formally explore this idea.

Take this function, which is plotted in Figure 1-5:

f x = 1
x

Figure 1-5. A function that forever approaches 0 but never reaches 0

We are looking only at positive x values. Notice that as x forever increases, f(x) gets
closer to 0. Fascinatingly, f(x) never actually reaches 0. It just forever keeps getting
closer.
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Therefore the fate of this function is, as x forever extends into infinity, it will keep
getting closer to 0 but never reach 0. The way we express a value that is forever being
approached, but never reached, is through a limit:

lim
x ∞

1
x

= 0

The way we read this is “as x approaches infinity, the function 1/x approaches 0 (but
never reaches 0).” You will see this kind of “approach but never touch” behavior a lot,
especially when we dive into derivatives and integrals.

Using SymPy, we can calculate what value we approach for f x = 1
x

 as x approaches
infinity ∞ (Example 1-16). Note that ∞ is cleverly expressed in SymPy with oo.

Example 1-16. Using SymPy to calculate limits

from sympy import *

x = symbols('x')
f = 1 / x
result = limit(f, x, oo)

print(result) # 0

As you have seen, we discovered Euler’s number e this way too. It is the result of
forever extending n into infinity for this function:

lim
n ∞

1 + 1
n

n
= e = 2.71828169413... 

Funnily enough, when we calculate Euler’s number with limits in SymPy (shown in
the following code), SymPy immediately recognizes it as Euler’s number. We can call
evalf() so we can actually display it as a number:

from sympy import *

n = symbols('n')
f = (1 + (1/n))**n
result = limit(f, n, oo)

print(result) # E
print(result.evalf()) # 2.71828182845905
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The Power of SymPy
SymPy is a powerful and fantastic computer algebra system (CAS) for Python that
uses exact symbolic computation rather than approximate computation using deci‐
mals. It’s helpful for those situations when you would use “pencil and paper” to solve
math and calculus problems, with the benefit of using familiar Python syntax. Rather
than represent the square root of 2 by approximating 1.4142135623730951, it will
preserve it as exactly sqrt 2 .

So why not use SymPy for everything math-related? While we will use it throughout
this book, it is important to still be comfortable doing Python math with plain
decimals, as scikit-learn and other data science libraries take this approach. It is much
faster for computers to use decimals rather than symbols. SymPy also struggles when
mathematical expressions start to get too big. But keep SymPy in your back pocket as
your advantage, and do not tell your high school and college-age kids about it. They
can literally use it to do their math homework.

Derivatives
Let’s go back to talking about functions and look at them from a calculus perspective,
starting with derivatives. A derivative tells the slope of a function, and it is useful to
measure the rate of change at any point in a function.

Why do we care about derivatives? They are often used in machine learning and
other mathematical algorithms, especially with gradient descent. When the slope is 0,
that means we are at the minimum or maximum of an output variable. This concept
will be useful later when we do linear regression (Chapter 5), logistic regression
(Chapter 6), and neural networks (Chapter 7).

Let’s start with a simple example. Let’s take a look at the function f x = x2 in
Figure 1-6. How “steep” is the curve at x = 2?

Notice that we can measure “steepness” at any point in the curve, and we can visualize
this with a tangent line. Think of a tangent line as a straight line that “just touches”
the curve at a given point. It also provides the slope at a given point. You can crudely
estimate a tangent line at a given x-value by creating a line intersecting that x-value
and a really close neighboring x-value on the function.

Take x = 2 and a nearby value x = 2.1, which when passed to the function f x = x2

will yield f(2) = 4 and f(2.1) = 4.41 as shown in Figure 1-7. The resulting line that
passes through these two points has a slope of 4.1.
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Figure 1-6. Observing steepness at a given part of the function

Figure 1-7. A crude way of calculating slope
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You can quickly calculate the slope m between two points using the simple rise-over-
run formula:

m =
y2 − y1
x2 − x1

 

m = 4.41 − 4.0
2.1 − 2.0  

m = 4.1 

If I made the x step between the two points even smaller, like x = 2 and x = 2.00001,
which would result in f(2) = 4 and f(2.00001) = 4.00004, that would get really close to
the actual slope of 4. So the smaller the step is to the neighboring value, the closer we
get to the slope value at a given point in the curve. Like so many important concepts
in math, we find something meaningful as we approach infinitely large or infinitely
small values.

Example 1-17 shows a derivative calculator implemented in Python.

Example 1-17. A derivative calculator in Python

def derivative_x(f, x, step_size):
    m = (f(x + step_size) - f(x)) / ((x + step_size) - x)
    return m

def my_function(x):
    return x**2

slope_at_2 = derivative_x(my_function, 2, .00001)

print(slope_at_2) # prints 4.000010000000827

Now the good news is there is a cleaner way to calculate the slope anywhere on a
function. We have already been using SymPy to plot graphs, but I will show you how
it can also do tasks like derivatives using the magic of symbolic computation.

When you encounter an exponential function like f x = x2 the derivative function
will make the exponent a multiplier and then decrement the exponent by 1, leaving
us with the derivative d

dx
x2 = 2x. The d

dx
 indicates a derivative with respect to x, which

says we are building a derivative targeting the x-value to get its slope. So if we want
to find the slope at x = 2, and we have the derivative function, we just plug in that
x-value to get the slope:

f x = x2
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d
dx
f x = d

dx
x2 = 2x

d
dx
f 2 = 2 2 = 4

If you intend to learn these rules to hand-calculate derivatives, there are plenty of
calculus books for that. But there are some nice tools to calculate derivatives symboli‐
cally for you. The Python library SymPy is free and open source, and it nicely adapts
to using the Python syntax. Example 1-18 shows how to calculate the derivative for
f x = x2 on SymPy.

Example 1-18. Calculating a derivative in SymPy

from sympy import *

# Declare 'x' to SymPy
x = symbols('x')

# Now just use Python syntax to declare function
f = x**2

# Calculate the derivative of the function
dx_f = diff(f)
print(dx_f) # prints 2*x

Wow! So by declaring variables using the symbols() function in SymPy, I can then
proceed to use normal Python syntax to declare my function. After that I can use
diff() to calculate the derivative function. In Example 1-19 we can then take our
derivative function back to plain Python and simply declare it as another function.

Example 1-19. A derivative calculator in Python

def f(x):
    return x**2

def dx_f(x):
    return 2*x

slope_at_2 = dx_f(2.0)

print(slope_at_2) # prints 4.0

If you want to keep using SymPy, you can call the subs() function to swap the x
variable with the value 2 as shown in Example 1-20.
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Example 1-20. Using the substitution feature in SymPy

# Calculate the slope at x = 2
print(dx_f.subs(x,2)) # prints 4

Partial Derivatives
Another concept we will encounter in this book is partial derivatives, which we will
use in Chapters 5, 6, and 7. These are derivatives of functions that have multiple input
variables.

Think of it this way. Rather than finding the slope on a one-dimensional function,
we have slopes with respect to multiple variables in several directions. For each given
variable derivative, we assume the other variables are held constant. Take a look at the
3D graph of f x, y = 2x3 + 3y3 in Figure 1-8, and you will see we have slopes in two
directions for two variables.

Let’s take the function f x, y = 2x3 + 3y3. The x and y variable each get their own
derivatives d

dx
 and d

dy
. These represent the slope values with respect to each variable

on a multidimensional surface. We technically call these “slopes” gradients when
dealing with multiple dimensions. These are the derivatives for x and y, followed by
the SymPy code to calculate those derivatives:

f x, y = 2x3 + 3y3

d
dx

2x3 + 3y3 = 6x2

d
dy

2x3 + 3y3 = 9y2

Example 1-21 and Figure 1-8 show how we calculate the partial derivatives for x and
y, respectively, with SymPy.

Example 1-21. Calculating partial derivatives with SymPy

from sympy import *
from sympy.plotting import plot3d

# Declare x and y to SymPy
x,y = symbols('x y')

# Now just use Python syntax to declare function
f = 2*x**3 + 3*y**3

# Calculate the partial derivatives for x and y
dx_f = diff(f, x)
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dy_f = diff(f, y)

print(dx_f) # prints 6*x**2
print(dy_f) # prints 9*y**2

# plot the function
plot3d(f)

Figure 1-8. Plotting a three-dimensional exponential function

So for (x,y) values (1,2), the slope with respect to x is 6 1 = 6 and the slope with
respect to y is 9 2 2 = 36.

Using Limits to Calculate Derivatives
Want to see where limits come into play calculating derivatives? If you are feeling
good about what we learned so far, proceed! If you are still digesting, maybe consider
coming back to this sidebar later.

SymPy allows us to do some interesting explorations about math. Take our function
f x = x2; we approximated a slope for x = 2 by drawing a line through a close
neighboring point x = 2.0001 by adding a step 0.0001. Why not use a limit to forever
decrease that step s and see what slope it approaches?

lim
s 0

x + s 2 − x2

x + s − x
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In our example, we are interested in the slope where x = 2 so let’s substitute that:

lim
s 0

2 + s 2 − 22

2 + s − 2 = 4

By forever approaching a step size s to 0 but never reaching it (remember the
neighboring point cannot touch the point at x = 2, else we have no line!), we can use
a limit to see we converge on a slope of 4 as shown in Example 1-22.

Example 1-22. Using limits to calculate a slope

from sympy import *

# "x" and step size "s"
x, s = symbols('x s')

# declare function
f = x**2

# slope between two points with gap "s"
# substitute into rise-over-run formula
slope_f = (f.subs(x, x + s) - f) / ((x+s) - x)

# substitute 2 for x
slope_2 = slope_f.subs(x, 2)

# calculate slope at x = 2
# infinitely approach step size _s_ to 0
result = limit(slope_2, s, 0)

print(result) # 4

Now what if we do not assign a specific value to x and leave it alone? What happens if
we decrease our step size s infinitely toward 0? Let’s look in Example 1-23.

Example 1-23. Using limits to calculate a derivative

from sympy import *

# "x" and step size "s"
x, s = symbols('x s')

# declare function
f = x**2

# slope between two points with gap "s"
# substitute into rise-over-run formula
slope_f = (f.subs(x, x + s) - f) / ((x+s) - x)

# calculate derivative function
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# infinitely approach step size +s+ to 0
result = limit(slope_f, s, 0)

print(result) # 2x

That gave us our derivative function 2x. SymPy was smart enough to figure out to
never let our step size reach 0 but forever approach 0. This converges f x = x2 to
reach its derivative counterpart 2x.

The Chain Rule
In Chapter 7 when we build a neural network, we are going to need a special math
trick called the chain rule. When we compose the neural network layers, we will have
to untangle the derivatives from each layer. But for now let’s learn the chain rule with
a simple algebraic example. Let’s say you are given two functions:

y = x2 + 1

z = y3 − 2

Notice that these two functions are linked, because the y is the output variable in the
first function but is the input variable in the second. This means we can substitute the
first function y into the second function z like this:

z = x2 + 1 3 − 2

So what is the derivative for z with respect to x? We already have the substitution
expressing z in terms of x. Let’s use SymPy to calculate that in Example 1-24.

Example 1-24. Finding the derivative of z with respect to x

from sympy import *

z = (x**2 + 1)**3 - 2
dz_dx = diff(z, x)
print(dz_dx)

# 6*x*(x**2 + 1)**2

So our derivative for z with respect to x is 6x x2 + 1 2:

dz
dx

x2 + 1 3 − 2
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= 6x x2 + 1 2

But look at this. Let’s start over and take a different approach. If we take the deriva‐
tives of the y and z functions separately, and then multiply them together, this also
produces the derivative of z with respect to x! Let’s try it:

dy
dx

x2 + 1 = 2x

dz
dy

y3 − 2 = 3y2

dz
dx

= 2x 3y2 = 6xy2

All right, 6xy2 may not look like 6x x2 + 1 2, but that’s only because we have not
substituted the y function yet. Do that so the entire dz

dx
 derivative is expressed in

terms of x without y.

dz
dx

= 6xy2 = 6x x2 + 1 2

Now we see we got the same derivative function 6x x2 + 1 2!

This is the chain rule, which says that for a given function y (with input variable x)
composed into another function z (with input variable y), we can find the derivative
of z with respect to x by multiplying the two respective derivatives together:

dz
dx

= dz
dy

× dy
dx

Example 1-25 shows the SymPy code that makes this comparison, showing the
derivative from the chain rule is equal to the derivative of the substituted function.

32 | Chapter 1: Basic Math and Calculus Review



Example 1-25. Calculating the derivative dz/dx with and without the chain rule, but still
getting the same answer

from sympy import *

x, y = symbols('x y')

# derivative for first function
# need to underscore y to prevent variable clash
_y = x**2 + 1
dy_dx = diff(_y)

# derivative for second function
z = y**3 - 2
dz_dy = diff(z)

# Calculate derivative with and without
# chain rule, substitute y function
dz_dx_chain = (dy_dx * dz_dy).subs(y, _y)
dz_dx_no_chain = diff(z.subs(y, _y))

# Prove chain rule by showing both are equal
print(dz_dx_chain) # 6*x*(x**2 + 1)**2
print(dz_dx_no_chain) # 6*x*(x**2 + 1)**2

The chain rule is a key part of training a neural network with the proper weights and
biases. Rather than untangle the derivative of each node in a nested onion fashion, we
can multiply the derivatives across each node instead, which is mathematically a lot
easier.

Integrals
The opposite of a derivative is an integral, which finds the area under the curve for a
given range. In Chapters 2 and 3, we will be finding the areas under probability distri‐
butions. Although we will not use integrals directly, and instead will use cumulative
density functions that are already integrated, it is good to be aware of how integrals
find areas under curves. Appendix A contains examples of using this approach on
probability distributions.

I want to take an intuitive approach for learning integrals called the Reimann Sums,
one that flexibly adapts to any continuous function. First, let’s point out that finding
the area for a range under a straight line is easy. Let’s say I have a function f x = 2x
and I want to find the area under the line between 0 and 1, as shaded in Figure 1-9.
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Figure 1-9. Calculating an area under a linear function

Notice that I am finding the area bounded between the line and the x-axis, and in
the x range 0.0 to 1.0. If you recall basic geometry formulas, the area A for a triangle
is A = 1

2bℎ where b is the length of the base and h is the height. We can visually
spot that b = 1 and ℎ = 2. So plugging into the formula, we get for our area 1.0 as
calculated here:

A = 1
2bℎ

A = 1
2 * 1 * 2

A = 1

That was not bad, right? But let’s look at a function that is difficult to find the area
under: f x = x2 + 1. What is the area between 0 and 1 as shaded in Figure 1-10?
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Figure 1-10. Calculating area under nonlinear functions is less straightforward

Again we are interested in the area below the curve and above the x-axis, only within
the x range between 0 and 1. The curviness here does not give us a clean geometric
formula to find the area, but here is a clever little hack you can do.

What if we packed five rectangles of equal length under the curve as shown in
Figure 1-11, where the height of each one extends from the x-axis to where the
midpoint touches the curve?

The area of a rectangle is A = length × width, so we could easily sum the areas of the
rectangles. Would that give us a good approximation of the area under the curve?
What if we packed 100 rectangles? 1,000? 100,000? As we increase the number of
rectangles while decreasing their width, would we not get closer to the area under the
curve? Yes we would, and it is yet another case where we increase/decrease something
toward infinity to approach an actual value.
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Figure 1-11. Packing rectangles under a curve to approximate area

Let’s try it out in Python. First we need a function that approximates an integral that
we will call approximate_integral(). The arguments a and b will specify the min
and max of the x range, respectively. n will be the number of rectangles to pack, and f
will be the function we are integrating. We implement the function in Example 1-26,
and then use it to integrate our function f x = x2 + 1 with five rectangles, between
0.0 and 1.0.

Example 1-26. An integral approximation in Python

def approximate_integral(a, b, n, f):
    delta_x = (b - a) / n
    total_sum = 0

    for i in range(1, n + 1):
        midpoint = 0.5 * (2 * a + delta_x * (2 * i - 1))
        total_sum += f(midpoint)

    return total_sum * delta_x

def my_function(x):
    return x**2 + 1

area = approximate_integral(a=0, b=1, n=5, f=my_function)
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print(area) # prints 1.33

So we get an area of 1.33. What happens if we use 1,000 rectangles? Let’s try it out in
Example 1-27.

Example 1-27. Another integral approximation in Python

area = approximate_integral(a=0, b=1, n=1000, f=my_function)

print(area) # prints 1.333333250000001

OK, we are getting some more precision here, and getting some more decimal places.
What about one million rectangles as shown in Example 1-28?

Example 1-28. Yet another integral approximation in Python

area = approximate_integral(a=0, b=1, n=1_000_000, f=my_function)

print(area) # prints 1.3333333333332733

OK, I think we are getting a diminishing return here and converging on the value
1.333 where the “.333” part is forever recurring. If this were a rational number, it is
likely 4/3 = 1.333. As we increase the number of rectangles, the approximation starts
to reach its limit at smaller and smaller decimals.

Now that we have some intuition on what we are trying to achieve and why, let’s do
a more exact approach with SymPy, which happens to support rational numbers, in
Example 1-29.

Example 1-29. Using SymPy to perform integration

from sympy import *

# Declare 'x' to SymPy
x = symbols('x')

# Now just use Python syntax to declare function
f = x**2 + 1

# Calculate the integral of the function with respect to x
# for the area between x = 0 and 1
area = integrate(f, (x, 0, 1))

print(area) # prints 4/3
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Cool! So the area actually is 4/3, which is what our previous method converged
on. Unfortunately, plain Python (and many programming languages) only support
decimals, but computer algebra systems like SymPy give us exact rational numbers.
We will be using integrals to find areas under curves in Chapters 2 and 3, although we
will have scikit-learn do the work for us.

Calculating Integrals with Limits
For the super curious, here is how we calculate definite integrals using limits in
SymPy. Please! Skip or come back to this sidebar later if you have enough to digest.
But if you are feeling good and want to deep dive into how integrals are derived using
limits, proceed!

The main idea follows much of what we did earlier: pack rectangles under a curve
and make them infinitely smaller until we approach the exact area. But of course, the
rectangles cannot have a width of 0…they just have to keep getting closer to 0 without
ever reaching 0. It is another case of using limits.

Khan Academy has a great article explaining how to use limits for Reimann Sums but
here is how we do it in SymPy as shown in Example 1-30.

Example 1-30. Using limits to calculate integrals

from sympy import *

# Declare variables to SymPy
x, i, n = symbols('x i n')

# Declare function and range
f = x**2 + 1
lower, upper = 0, 1

# Calculate width and each rectangle height at index "i"
delta_x = ((upper - lower) / n)
x_i = (lower + delta_x * i)
fx_i = f.subs(x, x_i)

# Iterate all "n" rectangles and sum their areas
n_rectangles = Sum(delta_x * fx_i, (i, 1, n)).doit()

# Calculate the area by approaching the number
# of rectangles "n" to infinity
area = limit(n_rectangles, n, oo)

print(area) # prints 4/3
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Here we determine the length of each rectangle delta_x and the start of each rectan‐
gle x_i where i is the index of each rectangle. fx_i is the height of each rectangle at
index i. We declare n number of rectangles and sum their areas delta_x * fx_i, but
we have no area value yet because we have not committed a number for n. Instead we
approach n toward infinity to see what area we converge on, and you should get 4/3!

Conclusion
In this chapter we covered some foundations we will use for the rest of this book.
From number theory to logarithms and calculus integrals, we highlighted some
important mathematical concepts relevant to data science, machine learning, and
analytics. You may have questions about why these concepts are useful. That will
come next!

Before we move on to discuss probability, take a little time to skim these concepts one
more time and then do the following exercises. You can always revisit this chapter
as you progress through this book and refresh as necessary when you start applying
these mathematical ideas.

Exercises
1. Is the value 62.6738 rational or irrational? Why or why not?1.

2. Evaluate the expression: 10710−52.

3. Evaluate the expression: 81
1
23.

4. Evaluate the expression: 25
3
24.

5. Assuming no payments are made, how much would a $1,000 loan be worth at 5%5.
interest compounded monthly after 3 years?

6. Assuming no payments are made, how much would a $1,000 loan be worth at 5%6.
interest compounded continuously after 3 years?

7. For the function f x = 3x2 + 1 what is the slope at x = 3?7.

8. For the function f x = 3x2 + 1 what is the area under the curve for x between 08.
and 2?

Answers are in Appendix B.
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CHAPTER 2

Probability

When you think of probability, what images come to mind? Perhaps you think of
gambling-related examples, like the probability of winning the lottery or getting a
pair with two dice. Maybe it is predicting stock performance, the outcome of a
political election, or whether your flight will arrive on time. Our world is full of
uncertainties we want to measure.

Maybe that is the word we should focus on: uncertainty. How do we measure some‐
thing that we are uncertain about?

In the end, probability is the theoretical study of measuring certainty that an event
will happen. It is a foundational discipline for statistics, hypothesis testing, machine
learning, and other topics in this book. A lot of folks take probability for granted
and assume they understand it. However, it is more nuanced and complicated than
most people think. While the theorems and ideas of probability are mathematically
sound, it gets more complex when we introduce data and venture into statistics. We
will cover that in Chapter 4 on statistics and hypothesis testing.

In this chapter, we will discuss what probability is. Then we will cover probability
math concepts, Bayes’ Theorem, the binomial distribution, and the beta distribution.

41



Understanding Probability
Probability is how strongly we believe an event will happen, often expressed as a
percentage. Here are some questions that might warrant a probability for an answer:

• How likely will I get 7 heads in 10 fair coin flips?•
• What are my chances of winning an election?•
• Will my flight be late?•
• How certain am I that a product is defective?•

The most popular way to express probability is as a percentage, as in “There is a
70% chance my flight will be late.” We will call this probability P X , where X is the
event of interest. As you work with probabilities, though, you will more likely see it
expressed as a decimal (in this case .70), which must be between 0.0 and 1.0:

P X = .70

Likelihood is similar to probability, and it is easy to confuse the two (many dic‐
tionaries do as well). You can get away with using “probability” and “likelihood”
interchangeably in everyday conversation. However, we should pin down these differ‐
ences. Probability is about quantifying predictions of events yet to happen, whereas
likelihood is measuring the frequency of events that already occurred. In statistics
and machine learning, we often use likelihood (the past) in the form of data to
predict probability (the future).

It is important to note that a probability of an event happening must be strictly
between 0% and 100%, or 0.0 and 1.0. Logically, this means the probability of an
event not happening is calculated by subtracting the probability of the event from 1.0:

P X = .70
P not X = 1 − .70 = .30

This is another distinction between probability and likelihood. Probabilities of all
possible mutually exclusive outcomes for an event (meaning only one outcome can
occur, not multiple) must sum to 1.0 or 100%. Likelihoods, however, are not subject
to this rule.

Alternatively, probability can be expressed as an odds O X  such as 7:3, 7/3, or 2.333.

To turn an odds O X  into a proportional probability P X , use this formula:

P X = O X
1 + O X
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So if I have an odds 7/3, I can convert it into a proportional probability like this:

P X = O X
1 + O X

P X =
7
3

1 + 7
3

P X = .7

Conversely, you can turn an odds into a probability simply by dividing the probability
of the event occurring by the probability it will not occur:

O X = P X
1 − P X

O X = .70
1 − .70

O X = 7
3

Odds Are Useful!
While many people feel more comfortable expressing probabilities as percentages or
proportions, odds can be a helpful tool. If I have an odds of 2.0, that means I feel
an event is two times more likely to happen than not to happen. That can be more
intuitive to describe a belief than a percentage of 66.666 %. For this reason, odds are
helpful quantifying subjective beliefs especially in a gambling/betting context. It plays
a role in Bayesian statistics (including the Bayes Factor) as well as logistic regressions
with the log-odds, which we will cover in Chapter 6.

Probability Versus Statistics
Sometimes people use the terms probability and statistics interchangeably, and while
it is understandable to conflate the two disciplines, they do have distinctions. Proba‐
bility is purely theoretical of how likely an event is to happen and does not require
data. Statistics, on the other hand, cannot exist without data and uses it to discover
probability and provides tools to describe data.

Think of predicting the outcome of rolling a 4 on a die (that’s the singular of dice).
Approaching the problem with a pure probability mindset, one simply says there are
six sides on a die. We assume each side is equally likely, so the probability of getting a
4 is 1/6, or 16.666%.
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However, a zealous statistician might say, “No! We need to roll the die to get data. If
we can get 30 rolls or more, and the more rolls we do the better, only then will we
have data to determine the probability of getting a 4.” This approach may seem silly
if we assume the die is fair, but what if it’s not? If that’s the case, collecting data is
the only way to discover the probability of rolling a 4. We will talk about hypothesis
testing in Chapter 3.

Probability Math
When we work with a single probability of an event P X , known as a marginal
probability, the idea is fairly straightforward, as discussed previously. But when we
start combining probabilities of different events, it gets a little less intuitive.

Joint Probabilities
Let’s say you have a fair coin and a fair six-sided die. You want to find the probability
of flipping a heads and rolling a 6 on the coin and die, respectively. These are two
separate probabilities of two separate events, but we want to find the probability that
both events will occur together. This is known as a joint probability.

Think of a joint probability as an AND operator. I want to find the probability of
flipping a heads AND rolling a 6. We want both events to happen together, so how do
we calculate this probability?

There are two sides on a coin and six sides on the die, so the probability of heads
is 1/2 and the probability of six is 1/6. The probability of both events occurring
(assuming they are independent, more on this later!) is simply multiplying the two
together:

P A AND B = P A × P B

P heads = 1
2

P 6 = 1
6

P heads AND 6 = 1
2 × 1

6 = 1
12 = .08333

Easy enough, but why is this the case? A lot of probability rules can be discovered
by generating all possible combinations of events, which comes from an area of
discrete math known as permutations and combinations. For this case, generate every
possible outcome between the coin and die, pairing heads (H) and tails (T) with the
numbers 1 through 6. Note I put asterisks “*” around the outcome of interest where
we get heads and a 6:
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H1  H2  H3  H4  H5  *H6*  T1  T2  T3  T4  T5  T6

Notice there are 12 possible outcomes when flipping our coin and rolling our die.
The only one that is of interest to us is “H6,” getting a heads and a 6. So because there
is only one outcome that satisfies our condition, and there are 12 possible outcomes,
the probability of getting a heads and a 6 is 1/12.

Rather than generate all possible combinations and counting the ones of interest to
us, we can again use the multiplication as a shortcut to find the joint probability. This
is known as the product rule:

P A AND B = P A × P B

P heads AND 6 = 1
2 × 1

6 = 1
12 = .08333

Union Probabilities
We discussed joint probabilities, which is the probability of two or more events
occurring simultaneously. But what about the probability of getting event A or B?
When we deal with OR operations with probabilities, this is known as a union
probability.

Let’s start with mutually exclusive events, which are events that cannot occur simulta‐
neously. For example, if I roll one die I cannot simultaneously get a 4 and a 6. I can
only get one outcome. Getting the union probability for these cases is easy. I simply
add them together. If I want to find the probability of getting a 4 or 6 on a die roll, it
is going to be 2/6 = 1/3:

P 4 = 1
6

P 6 = 1
6

P 4 OR 6 = 1
6 + 1

6 = 1
3

But what about nonmutually exclusive events, which are events that can occur simul‐
taneously? Let’s go back to the coin flip and die roll example. What is the probability
of getting a heads OR a 6? Before you are tempted to add those probabilities, let’s
generate all possible outcomes again and highlight the ones we are interested in:

*H1*  *H2*  *H3*  *H4*  *H5*  *H6*  T1  T2  T3  T4  T5  *T6*

Here we are interested in all the heads outcomes as well as the 6 outcomes. If we
proportion the 7 out of 12 outcomes we are interested in, 7/12, we get a correct
probability of . 58333.
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But what happens if we add the probabilities of heads and 6 together? We get a
different (and wrong!) answer of . 666:

P ℎeads = 1
2

P 6 = 1
6

P heads OR 6 = 1
2 + 1

6 = 4
6 = .666

Why is that? Study the combinations of coin flip and die outcomes again and see if
you can find something fishy. Notice when we add the probabilities, we double-count
the probability of getting a 6 in both “H6” and “T6”! If this is not clear, try finding the
probability of getting heads or a die roll of 1 through 5:

P ℎeads = 1
2

P 1 through 5 = 5
6

P heads OR 1 through 5 = 1
2 + 5

6 = 8
6 = 1.333

We get a probability of 133.333%, which is definitely not correct because a probability
must be no more than 100% or 1.0. The problem again is we are double-counting
outcomes.

If you ponder long enough, you may realize the logical way to remove double-
counting in a union probability is to subtract the joint probability. This is known as
the sum rule of probability and ensures every joint event is counted only once:

P A OR B = P A + P B − P A AND B

P A OR B = P A + P B − P A × P B

So going back to our example of calculating the probability of a heads or a 6, we need
to subtract the joint probability of getting a heads or a 6 from the union probability:

P ℎeads = 1
2

P 6 = 1
6

P A OR B = P A + P B − P A × P B

P heads OR 6 = 1
2 + 1

6 − 1
2 × 1

6 = .58333
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Note that this formula also applies to mutually exclusive events. If the events are
mutually exclusive where only one outcome A or B is allowed but not both, then the
joint probability P(A AND B) is going to be 0, and therefore remove itself from the
formula. You are then left with simply summing the events as we did earlier.

In summary, when you have a union probability between two or more events that are
not mutually exclusive, be sure to subtract the joint probability so no probabilities are
double-counted.

Conditional Probability and Bayes’ Theorem
A probability topic that easily confuses people is the concept of conditional probabil‐
ity, which is the probability of an event A occurring given event B has occurred. It is
typically expressed as P A GIVEN B  or P A|B .

Let’s say a study makes a claim that 85% of cancer patients drank coffee. How
do you react to this claim? Does this alarm you and make you want to abandon
your favorite morning drink? Let’s first define this as a conditional probability
P Coffee given Cancer  or P Coffee|Cancer . This represents a probability of people
who drink coffee given they have cancer.

Within the United States, let’s compare this to the percentage of people diagnosed
with cancer (0.5% according to cancer.gov) and the percentage of people who drink
coffee (65% according to statista.com):

P Coffee = .65
P Cancer = .005
P Coffee|Cancer = .85

Hmmmm…study these numbers for a moment and ask whether coffee is really the
problem here. Notice again that only 0.5% of the population has cancer at any given
time. However 65% of the population drinks coffee regularly. If coffee contributes to
cancer, should we not have much higher cancer numbers than 0.5%? Would it not be
closer to 65%?

This is the sneaky thing about proportional numbers. They may seem significant
without any given context, and media headlines can certainly exploit this for clicks:
“New Study Reveals 85% of Cancer Patients Drink Coffee” it might read. Of course,
this is silly because we have taken a common attribute (drinking coffee) and associ‐
ated it with an uncommon one (having cancer).

The reason people can be so easily confused by conditional probabilities is because
the direction of the condition matters, and the two conditions are conflated as some‐
how being equal. The “probability of having cancer given you are a coffee drinker”
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is different from the “probability of being a coffee drinker given you have cancer.” To
put it simply: few coffee drinkers have cancer, but many cancer patients drink coffee.

If we are interested in studying whether coffee contributes to cancer, we really are
interested in the first conditional probability: the probability of someone having
cancer given they are a coffee drinker.

P Coffee|Cancer = .85
P Cancer|Coffee = ?

How do we flip the condition? There’s a powerful little formula called Bayes’ Theorem,
and we can use it to flip conditional probabilities:

P A|B = P B|A P A
P B

If we plug the information we already have into this formula, we can solve for the
probability someone has cancer given they drink coffee:

P A|B = P B|A *P A
P B

P Cancer|Coffee = P Coffee|Cancer *P Coffee
P Cancer

P Cancer|Coffee = .85 * . 005
.65 = .0065

If you want to calculate this in Python, check out Example 2-1.

Example 2-1. Using Bayes’ Theorem in Python

p_coffee_drinker = .65
p_cancer = .005
p_coffee_drinker_given_cancer = .85

p_cancer_given_coffee_drinker = p_coffee_drinker_given_cancer *
    p_cancer / p_coffee_drinker

# prints 0.006538461538461539
print(p_cancer_given_coffee_drinker)

So the probability someone has cancer given they are a coffee drinker is only 0.65%!
This number is very different from the probability someone is a coffee drinker given
they have cancer, which is 85%. Now do you see why the direction of the condition
matters? Bayes’ Theorem is helpful for this reason. It can also be used to chain
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several conditional probabilities together to keep updating our beliefs based on new
information.

What Defines a “Coffee Drinker”?
Note that I could have accounted for other variables here, in particular what qualifies
someone as a “coffee drinker.” If someone drinks coffee once a month, as opposed to
someone who drinks coffee every day, should I equally qualify both as “coffee drink‐
ers”? What about the person who started drinking coffee a month ago as opposed to
someone who drank coffee for 20 years? How often and how long do people have to
drink coffee before they meet the threshold of being a “coffee drinker” in this cancer
study?

These are important questions to consider, and they show why data rarely tells the
whole story. If someone gives you a spreadsheet of patients with a simple “YES/NO”
flag on whether they are a coffee drinker, that threshold needs to be defined! Or we
need a more weightful metric like “number of coffee drinks consumed in the last
three years.” I kept this thought experiment simple and didn’t define how someone
qualifies as a “coffee drinker,” but be aware that out in the field, it is always a good
idea to pull the threads on the data. We will discuss this more in Chapter 3.

If you want to explore the intuition behind Bayes’ Theorem more deeply, turn to
Appendix A. For now just know it helps us flip a conditional probability. Let’s talk
about how conditional probabilities interact with joint and union operations next.

Naive Bayes

Bayes’ Theorem plays a central role in a common machine learning
algorithm called Naive Bayes. Joel Grus covers it in his book Data
Science from Scratch (O’Reilly).

Joint and Union Conditional Probabilities
Let’s revisit joint probabilities and how they interact with conditional probabilities.
I want to find the probability somebody is a coffee drinker AND they have cancer.
Should I multiply P Coffee  and P Cancer ? Or should I use P Coffee|Cancer  in
place of P Coffee  if it is available? Which one do I use?

Option 1:
P Coffee × P Cancer = .65 × .005 = .00325

Option 2:
P Coffee|Cancer × P Cancer = .85 × .005 = .00425
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If we already have established our probability applies only to people with cancer,
does it not make sense to use P Coffee|Cancer  instead of P Coffee ? One is more
specific and applies to a condition that’s already been established. So we should use
P Coffee|Cancer  as P Cancer  is already part of our joint probability. This means
the probability of someone having cancer and being a coffee drinker is 0.425%:

P Coffee and Cancer = P Coffee|Cancer × P Cancer = .85 × .005 = .00425

This joint probability also applies in the other direction. I can find the probability of
someone being a coffee drinker and having cancer by multiplying P Cancer|Coffee
and P Coffee . As you can observe, I arrive at the same answer:

P Cancer|Coffee × P Coffee = .0065 × .65 = .00425

If we did not have any conditional probabilities available, then the best we can do is
multiply P Coffee Drinker  and P Cancer  as shown here:

P Coffee Drinker × P Cancer = .65 × .005 = .00325

Now think about this: if event A has no impact on event B, then what does that
mean for conditional probability P(B|A)? That means P(B|A) = P(B), meaning event
A occurring makes no difference to how likely event B is to occur. Therefore we
can update our joint probability formula, regardless if the two events are dependent,
to be:

P A AND B = P B × P A|B

And finally let’s talk about unions and conditional probability. If I wanted to calculate
the probability of A or B occurring, but A may affect the probability of B, we update
our sum rule like this:

P A OR B = P A + P B − P A|B × P B

As a reminder, this applies to mutually exclusive events as well. The sum rule P(A|B)
× P(B) would yield 0 if the events A and B cannot happen simultaneously.
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Binomial Distribution
For the remainder of this chapter, we are going to learn two probability distributions:
the binomial and beta distributions. While we will not be using these for the rest of
the book, they are useful tools in themselves and fundamental to understanding how
events occur given a number of trials. They will also be a good segue to understand‐
ing probability distributions that we will use heavily in Chapter 3. Let’s explore a use
case that could occur in a real-world scenario.

Let’s say you are working on a new turbine jet engine and you ran 10 tests. The
outcomes yielded eight successes and two failures:

✓ ✓ ✓ ✓ ✓ ✘ ✓ ✘ ✓ ✓

You were hoping to get a 90% success rate, but based on this data you conclude
that your tests have failed with only 80% success. Each test is time-consuming and
expensive, so you decide it is time to go back to the drawing board to reengineer the
design.

However, one of your engineers insists there should be more tests. “The only way we
will know for sure is to run more tests,” she argues. “What if more tests yield 90% or
greater success? After all, if you flip a coin 10 times and get 8 heads, it does not mean
the coin is fixed at 80%.”

You briefly consider the engineer’s argument and realize she has a point. Even a fair
coin flip will not always have an equally split outcome, especially with only 10 flips.
You are most likely to get five heads but you can also get three, four, six, or seven
heads. You could even get 10 heads, although this is extremely unlikely. So how do
you determine the likelihood of 80% success assuming the underlying probability is
90%?

One tool that might be relevant here is the binomial distribution, which measures how
likely k successes can happen out of n trials given p probability.

Visually, a binomial distribution looks like Figure 2-1.

Here, we see the probability of k successes for each bar out of 10 trials. This binomial
distribution assumes a probability p of 90%, meaning there is a .90 (or 90%) chance
for a success to occur. If this is true, that means there is a .1937 probability we would
get 8 successes out of 10 trials. The probability of getting 1 success out of 10 trials is
extremely unlikely, .000000008999, hence why the bar is not even visible.

We can also calculate the probability of eight or fewer successes by adding up bars
for eight or fewer successes. This would give us .2639 probability of eight or fewer
successes.
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Figure 2-1. A binomial distribution

So how do we implement the binomial distribution? We can do it from scratch rela‐
tively easily (as shared in Appendix A), or we can use libraries like SciPy. Example 2-2
shows how we use SciPy’s binom.pmf() function (PMF stands for “probability mass
function”) to print all 11 probabilities for our binomial distribution from 0 to 10
successes.

Example 2-2. Using SciPy for the binomial distribution

from scipy.stats import binom

n = 10
p = 0.9

for k in range(n + 1):
    probability = binom.pmf(k, n, p)
    print("{0} - {1}".format(k, probability))

# OUTPUT:

# 0 - 9.99999999999996e-11
# 1 - 8.999999999999996e-09
# 2 - 3.644999999999996e-07
# 3 - 8.748000000000003e-06
# 4 - 0.0001377809999999999
# 5 - 0.0014880347999999988
# 6 - 0.011160260999999996
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# 7 - 0.05739562800000001
# 8 - 0.19371024449999993
# 9 - 0.38742048900000037
# 10 - 0.34867844010000004

As you can see, we provide n as the number of trials, p as the probability of success
for each trial, and k as the number of successes we want to look up the probability
for. We iterate each number of successes x with the corresponding probability we
would see that many successes. As we can see in the output, the most likely number
of successes is nine.

But if we add up the probability of eight or fewer successes, we would get .2639. This
means there is a 26.39% chance we would see eight or fewer successes even if the
underlying success rate is 90%. So maybe the engineer is right: 26.39% chance is not
nothing and certainly possible.

However, we did make an assumption here in our model, which we will discuss next
with the beta distribution.

Binomial Distribution from Scratch

Turn to Appendix A to learn how to build the binomial distribu‐
tion from scratch without scikit-learn.

Beta Distribution
What did I assume with my engine-test model using the binomial distribution? Is
there a parameter I assumed to be true and then built my entire model around it?
Think carefully and read on.

What might be problematic about my binomial distribution is I assumed the under‐
lying success rate is 90%. That’s not to say my model is worthless. I just showed if
the underlying success rate is 90%, there is a 26.39% chance I would see 8 or fewer
successes with 10 trials. So the engineer is certainly not wrong that there could be an
underlying success rate of 90%.

But let’s flip the question and consider this: what if there are other underlying rates
of success that would yield 8/10 successes besides 90%? Could we see 8/10 successes
with an underlying 80% success rate? 70%? 30%? When we fix the 8/10 successes, can
we explore the probabilities of probabilities?

Rather than create countless binomial distributions to answer this question, there
is one tool that we can use. The beta distribution allows us to see the likelihood of
different underlying probabilities for an event to occur given alpha successes and beta
failures.
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A chart of the beta distribution given eight successes and two failures is shown in
Figure 2-2.

Figure 2-2. Beta distribution

Beta Distribution on Desmos

If you want to interact with the beta distribution, a Desmos graph
is provided here.

Notice that the x-axis represents all underlying rates of success from 0.0 to 1.0 (0%
to 100%), and the y-axis represents the likelihood of that probability given eight
successes and two failures. In other words, the beta distribution allows us to see the
probabilities of probabilities given 8/10 successes. Think of it as a meta-probability so
take your time grasping this idea!

Notice also that the beta distribution is a continuous function, meaning it forms a
continuous curve of decimal values (as opposed to the tidy and discrete integers in
the binomial distribution). This is going to make the math with the beta distribution
a bit harder, as a given density value on the y-axis is not a probability. We instead find
probabilities using areas under the curve.
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The beta distribution is a type of probability distribution, which means the area under
the entire curve is 1.0, or 100%. To find a probability, we need to find the area within
a range. For example, if we want to evaluate the probability 8/10 successes would
yield 90% or higher success rate, we need to find the area between 0.9 and 1.0, which
is .225, as shaded in Figure 2-3.

Figure 2-3. The area between 90% and 100%, which is 22.5%

As we did with the binomial distribution, we can use SciPy to implement the beta dis‐
tribution. Every continuous probability distribution has a cumulative density function
(CDF), which calculates the area up to a given x-value. Let’s say I wanted to calculate
the area up to 90% (0.0 to 0.90) as shaded in Figure 2-4.
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Figure 2-4. Calculating the area up to 90% (0.0 to 0.90)

It is easy enough to use SciPy with its beta.cdf() function, and the only parameters I
need to provide are the x-value, the number of successes a, and the number of failures
b as shown in Example 2-3.

Example 2-3. Beta distribution using SciPy

from scipy.stats import beta

a = 8
b = 2

p = beta.cdf(.90, a, b)

# 0.7748409780000001
print(p)

So according to our calculation, there is a 77.48% chance the underlying probability
of success is 90% or less.

How do we calculate the probability of success being 90% or more as shaded in
Figure 2-5?
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Figure 2-5. The probability of success being 90% or more

Our CDF calculates area only to the left of our boundary, not the right. Think about
our rules of probability, and with a probability distribution the total area under the
curve is 1.0. If we want to find the opposite probability of an event (greater than 0.90
as opposed to less than 0.90), just subtract the probability of being less than 0.90 from
1.0, and the remaining probability will capture being greater than 0.90. Figure 2-6
illustrates how we do this subtraction.

Figure 2-6. Finding the probability of success being greater than 90%

Example 2-4 shows how we calculate this subtraction operation in Python.
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Example 2-4. Subtracting to get a right area in a beta distribution

from scipy.stats import beta

a = 8
b = 2

p = 1.0 - beta.cdf(.90, a, b)

# 0.22515902199999993
print(p)

This means that out of 8/10 successful engine tests, there is only a 22.5% chance the
underlying success rate is 90% or greater. But there is about a 77.5% chance it is less
than 90%. The odds are not in our favor here that our tests were successful, but we
could gamble on that 22.5% chance with more tests if we are feeling lucky. If our CFO
granted funding for 26 more tests resulting in 30 successes and 6 failures, our beta
distribution would look like Figure 2-7.

Figure 2-7. Beta distribution after 30 successes and 6 failures

Notice our distribution became narrower, thus becoming more confident that the
underlying rate of success is in a smaller range. Unfortunately, our probability of
meeting our 90% success rate minimum has decreased, going from 22.5% to 13.16%
as shown in Example 2-5.
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Example 2-5. A beta distribution with more trials

from scipy.stats import beta

a = 30
b = 6

p = 1.0 - beta.cdf(.90, a, b)

# 0.13163577484183708
print(p)

At this point, it might be a good idea to walk away and stop doing tests, unless you
want to keep gambling against that 13.16% chance and hope the peak moves to the
right.

Last but not least, how would we calculate an area in the middle? What if I want to
find the probability my underlying rate of success is between 80% and 90% as shown
in Figure 2-8?

Figure 2-8. Probability the underlying rate of success is between 80% and 90%

Think carefully how you might approach this. What if we were to subtract the area
behind .80 from the area behind .90 like in Figure 2-9?
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Figure 2-9. Obtaining the area between .80 and .90

Would that give us the area between .80 and .90? Yes it would, and it would yield
an area of .3386 or 33.86% probability. Here is how we would calculate it in Python
(Example 2-6).

Example 2-6. Beta distribution middle area using SciPy

from scipy.stats import beta

a = 8
b = 2

p = beta.cdf(.90, a, b) - beta.cdf(.80, a, b)

# 0.33863336200000016
print(p)

The beta distribution is a fascinating tool to measure the probability of an event
occurring versus not occurring, based on a limited set of observations. It allows us to
reason about probabilities of probabilities, and we can update it as we get new data.
We can also use it for hypothesis testing, but we will put more emphasis on using the
normal distribution and T-distribution for that purpose in Chapter 3.

Beta Distribution from Scratch

To learn how to implement the beta distribution from scratch, refer
to Appendix A.

Conclusion
We covered a lot in this chapter! We not only discussed the fundamentals of prob‐
ability, its logical operators, and Bayes’ Theorem, but also introduced probability
distributions, including the binomial and beta distributions. In the next chapter we
will cover one of the more famous distributions, the normal distribution, and how it
relates to hypothesis testing.
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If you want to learn more about Bayesian probability and statistics, a great book
is Bayesian Statistics the Fun Way by Will Kurt (No Starch Press). There are also
interactive Katacoda scenarios available on the O’Reilly platform.

Exercises
1. There is a 30% chance of rain today, and a 40% chance your umbrella order will1.

arrive on time. You are eager to walk in the rain today and cannot do so without
either!
What is the probability it will rain AND your umbrella will arrive?

2. There is a 30% chance of rain today, and a 40% chance your umbrella order will2.
arrive on time.
You will be able to run errands only if it does not rain or your umbrella arrives.
What is the probability it will not rain OR your umbrella arrives?

3. There is a 30% chance of rain today, and a 40% chance your umbrella order will3.
arrive on time.
However, you found out if it rains there is only a 20% chance your umbrella will
arrive on time.
What is the probability it will rain AND your umbrella will arrive on time?

4. You have 137 passengers booked on a flight from Las Vegas to Dallas. However, it4.
is Las Vegas on a Sunday morning and you estimate each passenger is 40% likely
to not show up.
You are trying to figure out how many seats to overbook so the plane does not fly
empty.
How likely is it at least 50 passengers will not show up?

5. You flipped a coin 19 times and got heads 15 times and tails 4 times.5.
Do you think this coin has any good probability of being fair? Why or why not?

Answers are in Appendix B.
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CHAPTER 3

Descriptive and Inferential Statistics

Statistics is the practice of collecting and analyzing data to discover findings that are
useful or predict what causes those findings to happen. Probability often plays a large
role in statistics, as we use data to estimate how likely an event is to happen.

It may not always get credit, but statistics is the heart of many data-driven innova‐
tions. Machine learning in itself is a statistical tool, searching for possible hypotheses
to correlate relationships between different variables in data. However there are a lot
of blind sides in statistics, even for professional statisticians. We can easily get caught
up in what the data says that we forget to ask where the data comes from. These con‐
cerns become all the more important as big data, data mining, and machine learning
all accelerate the automation of statistical algorithms. Therefore, it is important to
have a solid foundation in statistics and hypothesis testing so you do not treat these
automations as black boxes.

In this section we will cover the fundamentals of statistics and hypothesis testing.
Starting with descriptive statistics, we will learn common ways to summarize data.
After that, we will venture into inferential statistics, where we try to uncover
attributes of a population based on a sample.

What Is Data?
It may seem odd to define “data,” something we all use and take for granted. But I
think it needs to be done. Chances are if you asked any person what data is, they
might answer to the effect of “you know…data! It’s…you know…information!” and
not venture farther than that. Now it seems to be marketed as the be-all and end-all.
The source of not just truth…but intelligence! It’s the fuel for artificial intelligence
and it is believed that the more data you have, the more truth you have. Therefore,
you can never have enough data. It will unlock the secrets needed to redefine your
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business strategy and maybe even create artificial general intelligence. But let me
offer a pragmatic perspective on what data is. Data is not important in itself. It’s the
analysis of data (and how it is produced) that is the driver of all these innovations and
solutions.

Imagine you were provided a photo of a family. Can you glean this family’s story
based on this one photo? What if you had 20 photos? 200 photos? 2,000 photos?
How many photos do you need to know their story? Do you need photos of them in
different situations? Alone and together? With relatives and friends? At home and at
work?

Data is just like photographs; it provides snapshots of a story. The continuous reality
and contexts are not fully captured, nor the infinite number of variables driving that
story. As we will discuss, data may be biased. It can have gaps and be missing relevant
variables. Ideally, we would love to have an infinite amount of data capturing an
infinite number of variables, with so much detail we could virtually re-create reality
and construct alternate ones! But is this possible? Currently, no. Not even the greatest
supercomputers in the world combined can come close to capturing the entirety of
the world as data.

Therefore, we have to narrow our scope to make our objectives feasible. A few
strategic photos of the father playing golf can easily tell us whether he is good at
golf. But trying to decipher his entire life story just through photos? That might be
impossible. There is so much that cannot be captured in snapshots. These practical
concerns should also be applied when working with data projects, because data is
actually just snapshots of a given time capturing only what it is aimed at (much like
a camera). We need to keep our objectives focused as this hones in on gathering data
that is relevant and complete. If we make our objectives broad and open-ended, we
can get into trouble with spurious findings and incomplete datasets. This practice,
known as data mining, has a time and place but it must be done carefully. We will
revisit this at the end of the chapter.

Even with narrowly defined objectives, we can still run into problems with our data.
Let’s return to the question of determining whether a few strategic photos can tell
whether the father is good at golf. Perhaps if you had a photo of him midswing
you would be able to tell if he had good form. Or perhaps if you saw him cheering
and fist-pumping at a hole, you can infer he got a good score. Maybe you can just
take a photo of his scorecard! But it’s important to note all these instances can be
faked or taken out of context. Maybe he was cheering for someone else, or maybe
the scorecard was not his or even forged. Just like these photographs, data does not
capture context or explanations. This is an incredibly important point because data
provides clues, not truth. These clues can lead us to the truth or mislead us into
erroneous conclusions.

64 | Chapter 3: Descriptive and Inferential Statistics



This is why being curious about where data comes from is such an important skill.
Ask questions about how the data was created, who created it, and what the data is
not capturing. It is too easy to get caught up in what the data says and forget to ask
where it came from. Even worse there are widespread sentiments that one can shovel
data into machine learning algorithms and expect the computer to work it all out.
But as the adage goes, “garbage in, garbage out.” No wonder only 13% of machine
learning projects succeed, according to VentureBeat. Successful machine learning
projects put thought and analysis into the data, as well as what produced the data.

Ground Truth
More broadly speaking, the family photo example presents a problem of ground
truth.

When I was teaching a class on AI system safety, I was once asked a question on
making self-driving cars safer. “When a self-driving car is failing to recognize a
pedestrian on its camera sensor, is there not a way for it to recognize the failure and
stop?” I replied no, because the system has no framework for ground truth, or verified
and complete knowledge of what is true. If the car is failing to recognize a pedestrian,
how is it supposed to recognize that it is failing to recognize a pedestrian? There’s no
ground truth for it to fall back on, unless there is a human operator who can provide
it and intervene.

This actually is the status quo of “self-driving” cars and taxi services. Some sensors
like radar provide modestly reliable ground truths on narrow questions, like “Is
there something in front of the vehicle?” But recognizing objects based on camera
and LIDAR sensors (in an uncontrolled environment) is a much fuzzier perception
problem with astronomical numbers of pixel combinations it could see. Thus, ground
truth is nonexistent.

Does your data represent a ground truth that’s verifiable and complete? Are the
sensors and sources reliable and accurate? Or is the ground truth unknown?

Descriptive Versus Inferential Statistics
What comes to mind when you hear the word “statistics”? Is it calculating mean,
median, mode, charts, bell curves, and other tools to describe data? This is the most
commonly understood part of statistics, called descriptive statistics, and we use it to
summarize data. After all, is it more meaningful to scroll through a million records of
data or have it summarized? We will cover this area of statistics first.

Inferential statistics tries to uncover attributes about a larger population, often based
on a sample. It is often misunderstood and less intuitive than descriptive statistics.
Often we are interested in studying a group that is too large to observe (e.g., average
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height of adolescents in North America) and we have to resort to using only a few
members of that group to infer conclusions about them. As you can guess, this is not
easy to get right. After all, we are trying to represent a population with a sample that
may not be representative. We will explore these caveats along the way.

Populations, Samples, and Bias
Before we dive deeper into descriptive and inferential statistics, it might be a good
idea to lay out some definitions and relate them to tangible examples.

A population is a particular group of interest we want to study, such as “all seniors
over the age of 65 in the North America,” “all golden retrievers in Scotland,” or
“current high school sophomores at Los Altos High School.” Notice how we have
boundaries on defining our population. Some of these boundaries are broad and
capture a large group over a vast geography or age group. Others are highly specific
and small such as the sophomores at Los Altos High School. How you hone in on
defining a population depends on what you are interested in studying.

A sample is a subset of the population that is ideally random and unbiased, which we
use to infer attributes about the population. We often have to study samples because
polling the entire population is not always possible. Of course, some populations are
easier to get hold of if they are small and accessible. But measuring all seniors over 65
in North America? That is unlikely to be practical!

Populations Can Be Abstract!

It is important to note that populations can be theoretical and not
physically tangible. In these cases our population acts more like a
sample from something abstract. Here’s my favorite example: we
are interested in flights that depart between 2 p.m. and 3 p.m.
at an airport, but we lack enough flights at that time to reliably
predict how often these flights are late. Therefore, we may treat this
population as a sample instead from an underlying population of
all theoretical flights taking off between 2 p.m. and 3 p.m.
Problems like this are why many researchers resort to simulations
to generate data. Simulations can be useful but rarely are accurate,
as simulations capture only so many variables and have assump‐
tions built in.

If we are going to infer attributes about a population based on a sample, it’s important
the sample be as random as possible so we do not skew our conclusions. Here’s an
example. Let’s say I’m a college student at Arizona State University. I want to find the
average number of hours college students watch television per week in the United
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States. I walk right outside my dorm and start polling random students walking by,
finishing my data gathering in a few hours. What’s the problem here?

The problem is our student sample is going to have bias, meaning it skews our
findings by overrepresenting a certain group at the expense of other groups. My
study defined the population to be “college students in the United States,” not “college
students at Arizona State University.” I am only polling students at one specific
university to represent all college students in the entire United States! Is that really
fair?

It is unlikely all colleges across the country homogeneously have the same student
attributes. What if Arizona State students watch far more TV than other students at
other universities? Would using them to represent the entire country not distort the
results? Maybe this is possible because it is usually too hot to go outside in Tempe,
Arizona. Therefore TV is a common pastime (anecdotally, I would know; I lived in
Phoenix for many years). Other college students in milder climates may do more
outdoor activities and watch less TV.

This is just one possible variable showing why it’s a bad idea to represent college
students across the entire United States with just a sample of students from one
university. Ideally, I should be randomly polling college students all over the country
at different universities. That way I have a more representative sample.

However, bias is not always geographic. Let’s say I make a sincere effort to poll
students across the United States. I arrange a social media campaign to have a poll
shared by various universities on Twitter and Facebook. This way their students see it
and hopefully fill it out. I get hundreds of responses on students’ TV habits across the
country and feel I’ve conquered the bias beast…or have I?

What if students who are on social media enough to see the poll are also likely
to watch more TV? If they are on social media a lot, they probably do not mind
recreational screen time. It’s easy to imagine they have Netflix and Hulu ready to
stream on that other tab! This particular type of bias where a specific group is more
likely to include themselves in a sample is known as self-selection bias.

Darn it! You just can’t win, can you? If you think about it long enough, data bias
just feels inevitable! And often it is. So many confounding variables, or factors we did
not account for, can influence our study. This problem of data bias is expensive and
difficult to overcome, and machine learning is especially vulnerable to it.

The way to overcome this problem is to truly at random select students from the
entire population, and they cannot elect themselves into or out of the sample volun‐
tarily. This is the most effective way to mitigate bias, but as you can imagine, it takes a
lot of coordinated resources to do.
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A Whirlwind Tour of Bias Types
As humans, we are strangely wired to be biased. We look for patterns even if they
do not exist. Perhaps this was a necessity for survival in our early history, as finding
patterns make hunting, gathering, and farming more productive.

There are many types of bias, but they all have the same effect of distorting findings.
Confirmation bias is gathering only data that supports your belief, which can even be
done unknowingly. An example of this is following only social media accounts you
politically agree with, reinforcing your beliefs rather than challenging them.

We just discussed self-selection bias, which is when certain types of subjects are more
likely to include themselves in the experiment. Walking onto a flight and polling the
customers if they like the airline over other airlines, and using that to rank customer
satisfaction among all airlines, is silly. Why? Many of those customers are likely repeat
customers, and they have created self-selection bias. We do not know how many are
first-time fliers or repeat fliers, and of course the latter is going to prefer that airline
over other airlines. Even first-time fliers may be biased and self-selected, because they
chose to fly that airline and we are not sampling all airlines.

Survival bias captures only living and survived subjects, while the deceased ones are
never accounted for. It is the most fascinating type of bias in my opinion, because the
examples are diverse and not obvious.

Probably the most famous example of survival bias is this: the Royal Air Force in
WWII was having trouble with German enemy fire causing casualties on its bombers.
Their initial solution was to armor bombers where bullet holes were found, reasoning
this would improve their likelihood of survival. However, a mathematician named
Abraham Wald pointed out to them that this was fatally wrong. He proposed armor‐
ing areas on the aircraft that did not have bullet holes. Was he insane? Far from it. The
bombers that returned obviously did not have fatal damage where bullet holes were
found. How do we know this? Because they returned from their mission! But what of
the aircraft that did not return? Where were they hit? Wald’s theory was “likely in the
areas untouched in the aircraft that survived and returned to base,” and this proved
to be right. Those areas without bullet holes were armored and the survivability of
aircraft and pilots increased. This unorthodox observation is credited with turning
the tide of war in favor of the Allies.

There are other fascinating examples of survivor bias that are less obvious. Many
management consulting companies and book publishers like to identify traits of
successful companies/individuals and use them as predictors for future successes.
These works are pure survival bias (and XKCD has a funny cartoon about this). These
works do not account for companies/individuals that failed in obscurity, and these
“success” qualities may be commonplace with failed ones as well. We just have not
heard about them because they never had a spotlight.
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An anecdotal example that comes to mind is Steve Jobs. On many accounts, he was
said to be passionate and hot-tempered…but he also created one of the most valuable
companies of all time. Therefore, some people believed being passionate and even
temperamental might correlate with success. Again, this is survivor bias. I am willing
to bet there are many companies run by passionate leaders that failed in obscurity, but
we fixate and latch on to outlier success stories like Apple.

Lastly, in 1987 there was a veterinary study showing that cats that fell from six or
fewer stories had greater injuries than those that fell more than six stories. Prevailing
scientific theories postulated that cats righted themselves at about five stories, giving
them enough time to brace for impact and inflict less injury. But then a publication
The Straight Dope posed an important question: what happened to the dead cats?
People are not likely to bring a dead cat to the vet and therefore it is not reported how
many cats died from higher falls. In the words of Homer Simpson, “D’oh!”

Alright, enough talk about populations, samples, and bias. Let’s move on to some
math and descriptive statistics. Just remember that math and computers do not
recognize bias in your data. That is on you as a good data science professional to
detect! Always ask questions about how the data was obtained, and then scrutinize
how that process could have biased the data.

Samples and Bias in Machine Learning

These problems with sampling and bias extends to machine learn‐
ing as well. Whether it is linear regression, logistic regression, or
neural networks, a sample of data is used to infer predictions. If
that data is biased then it will steer the machine learning algorithm
to make biased conclusions.
There are many documented cases of this. Criminal justice has
been a precarious application of machine learning because it has
repeatedly shown to be biased in every sense of the word, dis‐
criminating against minorities due to minority-heavy datasets. In
2017, Volvo tested self-driving cars that were trained on datasets
capturing deer, elk, and caribou. However, it had no driving data
in Australia and therefore could not recognize kangaroos, much
less make sense of their jumping movements! Both of these are
examples of biased data.

Descriptive Statistics
Descriptive statistics is the area most people are familiar with. We will touch on the
basics like mean, median, and mode followed by variance, standard deviation, and
the normal distribution.
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Mean and Weighted Mean
The mean is the average of a set of values. The operation is simple to do: sum the
values and divide by the number of values. The mean is useful because it shows where
the “center of gravity” exists for an observed set of values.

The mean is calculated the same way for both populations and samples. Example 3-1
shows a sample of eight values and how to calculate their mean in Python.

Example 3-1. Calculating mean in Python

# Number of pets each person owns
sample = [1, 3, 2, 5, 7, 0, 2, 3]

mean = sum(sample) / len(sample)

print(mean) # prints 2.875

As you can see, we polled eight people on the number of pets they own. The sum of
the sample is 23 and the number of items in the sample is 8, so this gives us a mean of
2.875 as 23/8 = 2.875.

There are two versions of the mean you will see: the sample mean x and the popula‐
tion mean μ as expressed here:

x =
x1 + x2 + x3 + . . . + xn

n
= ∑ xi

n

μ =
x1 + x2 + x3 + . . . + xn

N
= ∑ xi

N

Recall the summation symbol ∑ means add all the items together. The n and the
N represent the sample and population size, respectively, but mathematically they
represent the same thing: the number of items. The same goes for calling the sample
mean x (“x-bar”) and the population mean μ (“mu”). Both x and μ are the same
calculation, just different names depending on whether it’s a sample or population we
are working with.

The mean is likely familiar to you, but here’s something less known about the mean:
the mean is actually a weighted average called the weighted mean. The mean we
commonly use gives equal importance to each value. But we can manipulate the
mean and give each item a different weight:

weighted mean =
x1 ·w1 + x2 ·w2 + x3 ·w3 + . . . xn ·wn

w1 +w2 +w3 + . . . +wn
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This can be helpful when we want some values to contribute to the mean more than
others. A common example of this is weighting academic exams to give a final grade.
If you have three exams and a final exam, and we give each of the three exams 20%
weight and the final exam 40% weight of the final grade, how we express it is in
Example 3-2.

Example 3-2. Calculating a weighted mean in Python

# Three exams of .20 weight each and final exam of .40 weight
sample = [90, 80, 63, 87]
weights = [.20, .20, .20, .40]

weighted_mean = sum(s * w for s,w in zip(sample, weights)) / sum(weights)

print(weighted_mean) # prints 81.4

We weight each exam score through multiplication accordingly and instead of divid‐
ing by the value count, we divide by the sum of weights. Weightings don’t have to be
percentages, as any numbers used for weights will end up being proportionalized. In
Example 3-3, we weight each exam with “1” but weight the final exam with “2,” giving
it twice the weight of the exams. We will still get the same answer of 81.4 as these
values will still be proportionalized.

Example 3-3. Calculating a weighted mean in Python

# Three exams of .20 weight each and final exam of .40 weight
sample = [90, 80, 63, 87]
weights = [1.0, 1.0, 1.0, 2.0]

weighted_mean = sum(s * w for s,w in zip(sample, weights)) / sum(weights)

print(weighted_mean) # prints 81.4

Median
The median is the middlemost value in a set of ordered values. You sequentially order
the values, and the median will be the centermost value. If you have an even number
of values, you average the two centermost values. We can see in Example 3-4 that the
median number of pets owned in our sample is 7:

0, 1, 5, *7*, 9, 10, 14
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Example 3-4. Calculating the median in Python

# Number of pets each person owns
sample = [0, 1, 5, 7, 9, 10, 14]

def median(values):
    ordered = sorted(values)
    print(ordered)
    n = len(ordered)
    mid = int(n / 2) - 1 if n % 2 == 0 else int(n/2)

    if n % 2 == 0:
        return (ordered[mid] + ordered[mid+1]) / 2.0
    else:
        return ordered[mid]

print(median(sample)) # prints 7

The median can be a helpful alternative to the mean when data is skewed by outliers,
or values that are extremely large and small compared to the rest of the values.
Here’s an interesting anecdote to understand why. In 1986, the mean annual starting
salary of geography graduates from the University of North Carolina at Chapel Hill
was $250,000. Other universities averaged $22,000. Wow, UNC-CH must have an
amazing geography program!

But in reality, what was so lucrative about UNC’s geography program? Well…Michael
Jordan was one of their graduates. One of the most famous NBA players of all time
indeed graduated with a geography degree from UNC. However, he started his career
playing basketball, not studying maps. Obviously, this is a confounding variable that
has created a huge outlier, and it majorly skewed the income average.

This is why the median can be preferable in outlier-heavy situations (such as income-
related data) over the mean. It is less sensitive to outliers and cuts data strictly down
the middle based on their relative order, rather than where they fall exactly on a
number line. When your median is very different from your mean, that means you
have a skewed dataset with outliers.

The Median Is a Quantile
There is a concept of quantiles in descriptive statistics. The concept of quantiles is
essentially the same as a median, just cutting the data in other places besides the
middle. The median is actually the 50% quantile, or the value where 50% of ordered
values are behind it. Then there are the 25%, 50%, and 75% quantiles, which are
known as quartiles because they cut data in 25% increments.
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Mode
The mode is the most frequently occurring set of values. It primarily becomes useful
when your data is repetitive and you want to find which values occur the most
frequently.

When no value occurs more than once, there is no mode. When two values occur
with an equal amount of frequency, then the dataset is considered bimodal. In Exam‐
ple 3-5 we calculate the mode for our pet dataset, and sure enough we see this is
bimodal as both 2 and 3 occur the most (and equally) as often.

Example 3-5. Calculating the mode in Python

# Number of pets each person owns
from collections import defaultdict

sample = [1, 3, 2, 5, 7, 0, 2, 3]

def mode(values):
    counts = defaultdict(lambda: 0)

    for s in values:
        counts[s] += 1

    max_count = max(counts.values())
    modes = [v for v in set(values) if counts[v] == max_count]
    return modes

print(mode(sample)) # [2, 3]

In practicality, the mode is not used a lot unless your data is repetitive. This is
commonly encountered with integers, categories, and other discrete variables.

Variance and Standard Deviation
When we start talking about variance and standard deviation, this is where it gets
interesting. One thing that confuses people with variance and standard deviation is
there are some calculation differences for the sample versus the population. We will
do our best to cover these differences clearly.

Population Variance and Standard Deviation
In describing data, we are often interested in measuring the differences between the
mean and every data point. This gives us a sense of how “spread out” the data is.

Let’s say I’m interested in studying the number of pets owned by members of my
work staff (note that I’m defining this as my population, not a sample). I have seven
people on my staff.
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I take the mean of all the numbers of pets they own, and I get 6.571. Let’s subtract
this mean from each value. This will show us how far each value is from the mean as
shown in Table 3-1.

Table 3-1. Number of pets my staff owns

Value Mean Difference
0 6.571 -6.571

1 6.571 -5.571

5 6.571 -1.571

7 6.571 0.429

9 6.571 2.429

10 6.571 3.429

14 6.571 7.429

Let’s visualize this on a number line with “X” showing the mean in Figure 3-1.

Figure 3-1. Visualizing the spread of our data, where “X” is the mean

Hmmm…now consider why this information can be useful. The differences give us
a sense of how spread out the data is and how far values are from the mean. Is there
a way we can consolidate these differences into a single number to quickly describe
how spread out the data is?

You may be tempted to take the average of the differences, but the negatives and
positives will cancel each other out when they are summed. We could sum the
absolute values (rid the negative signs and make all values positive). An even better
approach would be to square these differences before summing them. This not only
rids the negative values (because squaring a negative number makes it positive), but it
amplifies larger differences and is mathematically easier to work with (derivatives are
not straightforward with absolute values). After that, average the squared differences.
This will give us the variance, a measure of how spread out our data is.
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Here is a math formula showing how to calculate variance:

population variance =
x1 −mean 2 + x2 −mean 2 + . . . + xn −mean 2

N

More formally, here is the variance for a population:

σ2 =
∑ xi − μ 2

N

Calculating the population variance of our pet example in Python is shown in Exam‐
ple 3-6.

Example 3-6. Calculating variance in Python

# Number of pets each person owns
data = [0, 1, 5, 7, 9, 10, 14]

def variance(values):
    mean = sum(values) / len(values)
    _variance = sum((v - mean) ** 2 for v in values) / len(values)
    return _variance

print(variance(data))  # prints 21.387755102040813

So the variance for number of pets owned by my office staff is 21.387755. OK, but
what does it exactly mean? It’s reasonable to conclude that a higher variance means
more spread, but how do we relate this back to our data? This number is larger than
any of our observations because we did a lot squaring and summing, putting it on an
entirely different metric. So how do we squeeze it back down so it’s back on the scale
we started with?

The opposite of a square is a square root, so let’s take the square root of the variance,
which gives us the standard deviation. This is the variance scaled into a number
expressed in terms of “number of pets,” which makes it a bit more meaningful:

σ =
∑ xi − μ 2

N

To implement in Python, we can reuse the variance() function and sqrt() its result.
We now have a std_dev() function, shown in Example 3-7.
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Example 3-7. Calculating standard deviation in Python

from math import sqrt

# Number of pets each person owns
data = [0, 1, 5, 7, 9, 10, 14]

def variance(values):
    mean = sum(values) / len(values)
    _variance = sum((v - mean) ** 2 for v in values) / len(values)
    return _variance

def std_dev(values):
    return sqrt(variance(values))

print(std_dev(data))  # prints 4.624689730353898

Running the code in Example 3-7, you will see our standard deviation is approxi‐
mately 4.62 pets. So we can express our spread on a scale we started with, and this
makes our variance a bit easier to interpret. We will see some important applications
of the standard deviation in Chapter 5.

Why the Square?

Regarding variance, if the exponent in σ2 bothers you, it’s because
it is prompting you to take the square root of it to get the stan‐
dard deviation. It’s a little nagging reminder you are dealing with
squared values that need to be square-rooted.

Sample Variance and Standard Deviation
In the previous section we talked about variance and standard deviation for a popula‐
tion. However, there is an important tweak we need to apply to these two formulas
when we calculate for a sample:

s2 =
∑ xi − x 2

n − 1

s =
∑ xi − x 2

n − 1
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Did you catch the difference? When we average the squared differences, we divide by
n–1 rather than the total number of items n. Why would we do this? We do this to
decrease any bias in a sample and not underestimate the variance of the population
based on our sample. By counting values short of one item in our divisor, we increase
the variance and therefore capture greater uncertainty in our sample.

Why Do We Subtract 1 for Sample Size?
On YouTube, Josh Starmer has an excellent video series called StatQuest. In one,
he gives an excellent breakdown of why we treat samples differently in calculating
variance and subtract one element from the number of items.

If our pets data were a sample, not a population, we should make that adjustment
accordingly. In Example 3-8, I modify my previous variance() and std_dev()
Python code to optionally provide a parameter is_sample, which if True will subtract
1 from the divisor in the variance.

Example 3-8. Calculating standard deviation for a sample

from math import sqrt

# Number of pets each person owns
data = [0, 1, 5, 7, 9, 10, 14]

def variance(values, is_sample: bool = False):
    mean = sum(values) / len(values)
    _variance = sum((v - mean) ** 2 for v in values) /
      (len(values) - (1 if is_sample else 0))

    return _variance

def std_dev(values, is_sample: bool = False):
    return sqrt(variance(values, is_sample))

print("VARIANCE = {}".format(variance(data, is_sample=True))) # 24.95238095238095
print("STD DEV = {}".format(std_dev(data, is_sample=True))) # 4.99523582550223

Notice in Example 3-8 my variance and standard deviation have increased compared
to previous examples that treated them as a population, not a sample. Recall in
Example 3-7 that the standard deviation was about 4.62 treating as a population.
But here treating as a sample (by subtracting 1 from the variance denominator), we
get approximately 4.99. This is correct as a sample could be biased and imperfect
representing the population. Therefore, we increase the variance (and thus the
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standard deviation) to increase our estimate of how spread out the values are. A
larger variance/standard deviation shows less confidence with a larger range.

Just like the mean (x for sample and μ for population), you will often see certain
symbols for variance and standard deviation. The standard deviation for a sample
and mean are specified by s and σ, respectively. Here again are the sample and
population standard deviation formulas:

s =
∑ xi − x 2

n − 1

σ =
∑ xi − μ 2

N

The variance will be the square of these two formulas, undoing the square root.
Therefore, the variance for sample and population are s2 and σ2, respectively:

s2 =
∑ xi − x 2

n − 1

σ2 =
∑ xi − μ 2

N

Again, the square helps imply that a square root should be taken to get the standard
deviation.

The Normal Distribution
We touched on probability distributions in the last chapter, particularly the binomial
distribution and beta distribution. However the most famous distribution of all is the
normal distribution. The normal distribution, also known as the Gaussian distribu‐
tion, is a symmetrical bell-shaped distribution that has most mass around the mean,
and its spread is defined as a standard deviation. The “tails” on either side become
thinner as you move away from the mean.

Figure 3-2 is a normal distribution for golden retriever weights. Notice how most of
the mass is around the mean of 64.43 pounds.
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Figure 3-2. A normal distribution

Discovering the Normal Distribution
The normal distribution is seen a lot in nature, engineering, science, and other
domains. How do we discover it? Let’s say we sample the weight of 50 adult golden
retrievers and plot them on a number line as shown in Figure 3-3.

Figure 3-3. A sample of 50 golden retriever weights

Notice how we have more values toward the center, but as we move farther left or
right we see fewer values. Based on our sample, it seems highly unlikely we would see
a golden retriever with a weight of 57 or 71. But having a weight of 64 or 65? Yeah,
that certainly seems likely.

Is there a better way to visualize this likelihood to see which golden retriever weights
we are more likely to see sampled from the population? We can try to create a
histogram, which buckets (or “bins”) up values based on numeric ranges of equal
length, and then uses a bar chart showing the number of values within each range. In
Figure 3-4 we create a histogram that bins up values in ranges of .5 pounds.

This histogram does not reveal any meaningful shape to our data. The reason is
because our bins are too small. We do not have an extremely large or infinite amount
of data to meaningfully have enough points in each bin. Therefore we will have to
make our bins larger. Let’s make the bins each have a length of three pounds, as in
Figure 3-5.
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Figure 3-4. A histogram of golden retriever weights

Figure 3-5. A more productive histogram

Now we are getting somewhere! As you can see, if we get the bin sizes just right
(in this case, each has a range of three pounds), we start to get a meaningful bell
shape to our data. It’s not a perfect bell shape because our samples are never going
to be perfectly representative of the population, but this is likely evidence our sample
follows a normal distribution. If we fit a histogram with adequate bin sizes, and scale
it so it has an area of 1.0 (which a probability distribution requires), we see a rough
bell curve representing our sample. Let’s show it alongside our original data points in
Figure 3-6.

Looking at this bell curve, we can reasonably expect a golden retriever to have a
weight most likely around 64.43 (the mean) but unlikely at 55 or 73. Anything more
extreme than that becomes very unlikely.
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Figure 3-6. A normal distribution fitted to data points

Properties of a Normal Distribution
The normal distribution has several important properties that make it useful:

• It’s symmetrical; both sides are identically mirrored at the mean, which is the•
center.

• Most mass is at the center around the mean.•
• It has a spread (being narrow or wide) that is specified by standard deviation.•
• The “tails” are the least likely outcomes and approach zero infinitely but never•

touch zero.
• It resembles a lot of phenomena in nature and daily life, and even generalizes•

nonnormal problems because of the central limit theorem, which we will talk
about shortly.

The Probability Density Function (PDF)
The standard deviation plays an important role in the normal distribution, because
it defines how “spread out” it is. It is actually one of the parameters alongside the
mean. The probability density function (PDF) that creates the normal distribution is as
follows:

f x = 1
σ

* 2π * e− 1
2
x − μ
σ

2

Wow that’s a mouthful, isn’t it? We even see our friend Euler’s Number e from
Chapter 1 and some crazy exponents. Here is how we can express it in Python in
Example 3-9.
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Example 3-9. The normal distribution function in Python

# normal distribution, returns likelihood
def normal_pdf(x: float, mean: float, std_dev: float) -> float:
    return (1.0 / (2.0 * math.pi * std_dev ** 2) ** 0.5) *
        math.exp(-1.0 * ((x - mean) ** 2 / (2.0 * std_dev ** 2)))

There’s a lot to take apart here in this formula, but what’s important is that it accepts a
mean and standard deviation as parameters, as well as an x-value so you can look up
the likelihood at that given value.

Just like the beta distribution in Chapter 2, the normal distribution is continuous.
This means to retrieve a probability we need to integrate a range of x values to find an
area.

In practice though, we will use SciPy to do these calculations for us.

The Cumulative Distribution Function (CDF)
With the normal distribution, the vertical axis is not the probability but rather the
likelihood for the data. To find the probability we need to look at a given range,
and then find the area under the curve for that range. Let’s say I want to find the
probability of a golden retriever weighing between 62 and 66 pounds. Figure 3-7
shows the range we want to find the area for.

Figure 3-7. A CDF measuring probability between 62 and 66 pounds
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We already did this task in Chapter 2 with the beta distribution, and just like the beta
distribution there is a cumulative density function (CDF). Let’s follow this approach.

As we learned in the last chapter, the CDF provides the area up to a given x-value for
a given distribution. Let’s see what the CDF looks like for our golden retriever normal
distribution and put it alongside the PDF for reference in Figure 3-8.

Figure 3-8. A PDF alongside its CDF

Notice there’s a relationship between the two graphs. The CDF, which is an S-shaped
curve (called a sigmoid curve), projects the area up to that range in the PDF. Observe
in Figure 3-9 that when we capture the area from negative infinity up to 64.43 (the
mean), our CDF shows a value of exactly .5 or 50%!
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Figure 3-9. A PDF and CDF for golden retriever weights measuring probability up to the
mean

This area of .5 or 50% up to the mean is known because of the symmetry of our
normal distribution, and we can expect the other side of the bell curve to also have
50% of the area.

To calculate this area up to 64.43 in Python using SciPy, use the norm.cdf() function
as shown in Example 3-10.

Example 3-10. The normal distribution CDF in Python

from scipy.stats import norm

mean = 64.43
std_dev = 2.99

x = norm.cdf(64.43, mean, std_dev)

print(x) # prints 0.5

Just like we did in Chapter 2, we can deductively find the area for a middle range by
subtracting areas. If we wanted to find the probability of observing a golden retriever
between 62 and 66 pounds, we would calculate the area up to 66 and subtract the area
up to 62 as visualized in Figure 3-10.
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Figure 3-10. Finding a middle range of probability

Doing this in Python using SciPy is as simple as subtracting the two CDF operations
shown in Example 3-11.

Example 3-11. Getting a middle range probability using the CDF

from scipy.stats import norm

mean = 64.43
std_dev = 2.99

x = norm.cdf(66, mean, std_dev) - norm.cdf(62, mean, std_dev)

print(x) # prints 0.4920450147062894

You should find the probability of observing a golden retriever between 62 and 66
pounds to be 0.4920, or approximately 49.2%.

The Inverse CDF
When we start doing hypothesis testing later in this chapter, we will encounter
situations where we need to look up an area on the CDF and then return the
corresponding x-value. Of course this is a backward usage of the CDF, so we will need
to use the inverse CDF, which flips the axes as shown in Figure 3-11.

This way, we can now look up a probability and then return the corresponding
x-value, and in SciPy we would use the norm.ppf() function. For example, I want to
find the weight that 95% of golden retrievers fall under. This is easy to do when I use
the inverse CDF in Example 3-12.
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Figure 3-11. The inverse CDF, also called the PPF or quantile function

Example 3-12. Using the inverse CDF (called ppf()) in Python

from scipy.stats import norm

x = norm.ppf(.95, loc=64.43, scale=2.99)
print(x) # 69.3481123445849

I find that 95% of golden retrievers are 69.348 or fewer pounds.

You can also use the inverse CDF to generate random numbers that follow the
normal distribution. If I want to create a simulation that generates one thousand
realistic golden retriever weights, I just generate a random value between 0.0 and 1.0,
pass it to the inverse CDF, and return the weight value as shown in Example 3-13.

Example 3-13. Generating random numbers from a normal distribution

import random
from scipy.stats import norm

for i in range(0,1000):
    random_p = random.uniform(0.0, 1.0)
    random_weight = norm.ppf(random_p,  loc=64.43, scale=2.99)
    print(random_weight)
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Of course NumPy and other libraries can generate random values off a distribution
for you, but this highlights one use case where the inverse CDF is handy.

CDF and Inverse CDF from Scratch

To learn how to implement the CDF and inverse CDF from scratch
in Python, refer to Appendix A.

Z-Scores
It is common to rescale a normal distribution so that the mean is 0 and the standard
deviation is 1, which is known as the standard normal distribution. This makes it easy
to compare the spread of one normal distribution to another normal distribution,
even if they have different means and variances.

Of particular importance with the standard normal distribution is it expresses all
x-values in terms of standard deviations, known as Z-scores. Turning an x-value into a
Z-score uses a basic scaling formula:

z = x − μ
σ

Here is an example. We have two homes from two different neighborhoods. Neigh‐
borhood A has a mean home value of $140,000 and standard deviation of $3,000.
Neighborhood B has a mean home value of $800,000 and standard deviation of
$10,000.

μA = 140,000
μB = 800,000
σA = 3,000
σB = 10,000

Now we have two homes from each neighborhood. House A from neighborhood A is
worth $150,000 and house B from neighborhood B is worth $815,000. Which home is
more expensive relative to the average home in its neighborhood?

xA = 150,000
xB = 815,000

If we express these two values in terms of standard deviations, we can compare them
relative to each neighborhood mean. Use the Z-score formula:

Descriptive Statistics | 87



z = x − mean
standard deviation

zA = 150000 − 140000
3000 = 3.333

zB = 815000 − 800000
10000 = 1.5

So the house in neighborhood A is actually much more expensive relative to its
neighborhood than the house in neighborhood B, as they have Z-scores of 3.333 and
1.5, respectively.

Here is how we can convert an x-value coming from a given distribution with a mean
and standard deviation into a Z-score, and vice versa, as shown in Example 3-14.

Example 3-14. Turn Z-scores into x-values and vice versa

def z_score(x, mean, std):
    return (x - mean) / std

def z_to_x(z, mean, std):
    return (z * std) + mean

mean = 140000
std_dev = 3000
x = 150000

# Convert to Z-score and then back to X
z = z_score(x, mean, std_dev)
back_to_x = z_to_x(z, mean, std_dev)

print("Z-Score: {}".format(z))  # Z-Score: 3.333
print("Back to X: {}".format(back_to_x))  # Back to X: 150000.0

The z_score() function will take an x-value and scale it in terms of standard devia‐
tions, given a mean and standard deviation. The z_to_x() function takes a Z-score
and converts it back to an x-value. Studying the two functions, you can see their
algebraic relationship, one solving for the Z-score and the other for the x-value. We
then turn an x-value of 8.0 into a Z-score of 3.333 and then turn that Z-score back
into an x-value.
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Coefficient of Variation
A helpful tool for measuring spread is the coefficient of variation. It compares two
distributions and quantifies how spread out each of them is. It is simple to calculate:
divide the standard deviation by the mean. Here is the formula alongside the example
comparing two neighborhoods:

cv = σ
μ

cvA = 3000
140000 = 0.0214

cvB = 10000
800000 = 0.0125

As seen here, neighborhood A, while cheaper than neighborhood B, has more spread
and therefore more price diversity than neighborhood B.

Inferential Statistics
Descriptive statistics, which we have covered so far, is commonly understood. How‐
ever, when we get into inferential statistics the abstract relationships between sample
and population come into full play. These abstract nuances are not something you
want to rush through but rather take your time and absorb thoughtfully. As stated
earlier, we are wired as humans to be biased and quickly come to conclusions. Being
a good data science professional requires you to suppress that primal desire and
consider the possibility that other explanations can exist. It is acceptable (perhaps
even enlightened) to theorize there is no explanation at all and a finding is just
coincidental and random.

First let’s start with the theorem that lays the foundation for all inferential statistics.

The Central Limit Theorem
One of the reasons the normal distribution is useful is because it appears a lot in
nature, such as adult golden retriever weights. However, it shows up in a more
fascinating context outside of natural populations. When we start measuring large
enough samples from a population, even if that population does not follow a normal
distribution, the normal distribution still makes an appearance.

Let’s pretend I am measuring a population that is truly and uniformly random. Any
value between 0.0 and 1.0 is equally likely, and no value has any preference. But
something fascinating happens when we take increasingly large samples from this
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population, take the average of each, and then plot them into a histogram. Run this
Python code in Example 3-15 and observe the plot in Figure 3-12.

Example 3-15. Exploring the central limit theorem in Python

# Samples of the uniform distribution will average out to a normal distribution.
import random
import plotly.express as px

sample_size = 31
sample_count = 1000

# Central limit theorem, 1000 samples each with 31
# random numbers between 0.0 and 1.0
x_values = [(sum([random.uniform(0.0, 1.0) for i in range(sample_size)]) / \
    sample_size)
            for _ in range(sample_count)]

y_values = [1 for _ in range(sample_count)]

px.histogram(x=x_values, y = y_values, nbins=20).show()

Figure 3-12. Taking the means of samples (each of size 31) and plotting them

Wait, how did uniformly random numbers, when sampled as groups of 31 and then
averaged, roughly form a normal distribution? Any number is equally likely, right?
Shouldn’t the distribution be flat rather than bell-curved?

Here’s what is happening. The individual numbers in the samples alone will not create
a normal distribution. The distribution will be flat where any number is equally likely
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(known as a uniform distribution). But when we group them as samples and average
them, they form a normal distribution.

This is because of the central limit theorem, which states that interesting things
happen when we take large enough samples of a population, calculate the mean of
each, and plot them as a distribution:

1. The mean of the sample means is equal to the population mean.1.
2. If the population is normal, then the sample means will be normal.2.
3. If the population is not normal, but the sample size is greater than 30, the sample3.

means will still roughly form a normal distribution.
4. The standard deviation of the sample means equals the population standard4.

deviation divided by the square root of n:

sample standard deviation = population standard deviation
sample size

Why is all of the above important? These behaviors allows us to infer useful things
about populations based on samples, even for nonnormal populations. If you modify
the preceding code and try smaller sample sizes of 1 or 2, you will not see a normal
distribution emerge. But as you approach 31 or more, you will see that we converge
onto a normal distribution as shown in Figure 3-13.

Figure 3-13. Larger sample sizes approach the normal distribution

Thirty-one is the textbook number in statistics because that is when our sample
distribution often converges onto the population distribution, particularly when we
measure sample means or other parameters. When you have fewer than 31 items
in your sample, that is when you have to rely on the T-distribution rather than the
normal distribution, which has increasingly fatter tails the smaller your sample size.
We will briefly talk about this later, but first let’s assume we have at least 31 items in
our samples when we talk about confidence intervals and testing.
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How Much Sample Is Enough?
While 31 is the textbook number of items you need in a sample to satisfy the central
limit theorem and see a normal distribution, this sometimes is not the case. There
are cases when you will need an even larger sample, such as when the underlying
distribution is asymmetrical or multimodal (meaning it has several peaks rather than
one at the mean).

In summary, having larger samples is better when you are uncertain of the underlying
probability distribution. You can read more in this article.

Confidence Intervals
You may have heard the term “confidence interval,” which often confuses statistics
newcomers and students. A confidence interval is a range calculation showing how
confidently we believe a sample mean (or other parameter) falls in a range for the
population mean.

Based on a sample of 31 golden retrievers with a sample mean of 64.408 and a sample
standard deviation of 2.05, I am 95% confident that the population mean lies between
63.686 and 65.1296. How do I know this? Let me show you, and if you get confused,
circle back to this paragraph and remember what we are trying to achieve. I highligh‐
ted it for a reason!

I first start out by choosing a level of confidence (LOC), which will contain the desired
probability for the population mean range. I want to be 95% confident that my
sample mean falls in the population mean range I will calculate. That’s my LOC. We
can leverage the central limit theorem and infer what this range for the population
mean is. First, I need the critical z-value which is the symmetrical range in a standard
normal distribution that gives me 95% probability in the center as highlighted in
Figure 3-14.

How do we calculate this symmetrical range containing .95 of the area? It’s easier to
grasp as a concept than as a calculation. You may instinctively want to use the CDF,
but then you may realize there are a few more moving parts here.

First you need to leverage the inverse CDF. Logically, to get 95% of the symmetrical
area in the center, we would chop off the tails that have the remaining 5% of area.
Splitting that remaining 5% area in half would give us 2.5% area in each tail. There‐
fore, the areas we want to look up the x-values for are .025 and .975 as shown in
Figure 3-15.
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Figure 3-14. 95% symmetrical probability in the center of a standard normal
distribution

Figure 3-15. We want the x-values that give us areas .025 and .975

We can look up the x-value for area .025 and the x-value for area .975, and that
will give us our center range containing 95% of the area. We will then return the
corresponding lower and upper z-values containing this area. Remember, we are
using standard normal distribution here so they will be the same other than being
positive/negative. Let’s calculate this in Python as shown in Example 3-16.
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Example 3-16. Retrieving a critical z-value

from scipy.stats import norm

def critical_z_value(p):
    norm_dist = norm(loc=0.0, scale=1.0)
    left_tail_area = (1.0 - p) / 2.0
    upper_area = 1.0 - ((1.0 - p) / 2.0)
    return norm_dist.ppf(left_tail_area), norm_dist.ppf(upper_area)

print(critical_z_value(p=.95))
# (-1.959963984540054, 1.959963984540054)

OK, so we get ±1.95996, which is our critical z-value capturing 95% of probability
at the center of the standard normal distribution. Next I’m going to leverage the
central limit theorem to produce the margin of error (E), which is the range around
the sample mean that contains the population mean at that level of confidence. Recall
that our sample of 31 golden retrievers has a mean of 64.408 and standard deviation
of 2.05. The formula to get this margin of error is:

E = ± zc
s

n

E = ± 1.95996 * 2.05
31

E = ± 0.72164

If we apply that margin of error against the sample mean, we finally get the confi‐
dence interval!

95% confidence interval = 64.408 ± 0.72164

Here is how we calculate this confidence interval in Python from beginning to end in
Example 3-17.

Example 3-17. Calculating a confidence interval in Python

from math import sqrt
from scipy.stats import norm

def critical_z_value(p):
    norm_dist = norm(loc=0.0, scale=1.0)
    left_tail_area = (1.0 - p) / 2.0
    upper_area = 1.0 - ((1.0 - p) / 2.0)
    return norm_dist.ppf(left_tail_area), norm_dist.ppf(upper_area)
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def confidence_interval(p, sample_mean, sample_std, n):
    # Sample size must be greater than 30

    lower, upper = critical_z_value(p)
    lower_ci = lower * (sample_std / sqrt(n))
    upper_ci = upper * (sample_std / sqrt(n))

    return sample_mean + lower_ci, sample_mean + upper_ci

print(confidence_interval(p=.95, sample_mean=64.408, sample_std=2.05, n=31))
# (63.68635915701992, 65.12964084298008)

So the way to interpret this is “based on my sample of 31 golden retriever weights
with sample mean 64.408 and sample standard deviation of 2.05, I am 95% confident
the population mean lies between 63.686 and 65.1296.” That is how we describe our
confidence interval.

One interesting thing to note here too is that in our margin of error formula, the
larger n becomes, the narrower our confidence interval becomes! This makes sense
because if we have a larger sample, we are more confident in the population mean
falling in a smaller range, hence why it’s called a confidence interval.

One caveat to put here is that for this to work, our sample size must be at least 31
items. This goes back to the central limit theorem. If we want to apply a confidence
interval to a smaller sample, we need to use a distribution with higher variance (fatter
tails reflecting more uncertainty). This is what the T-distribution is for, and we will
visit that at the end of this chapter.

In Chapter 5 we will continue to use confidence intervals for linear regressions.

Understanding P-Values
When we say something is statistically significant, what do we mean by that? We hear
it used loosely and frequently but what does it mean mathematically? Technically, it
has to do with something called the p-value, which is a hard concept for many folks
to grasp. But I think the concept of p-values makes more sense when you trace it back
to its invention. While this is an imperfect example, it gets across some big ideas.

In 1925, mathematician Ronald Fisher was at a party. One of his colleagues Muriel
Bristol claimed she could detect when tea was poured before milk simply by tasting it.
Intrigued by the claim, Ronald set up an experiment on the spot.

He prepared eight cups of tea. Four had milk poured first; the other four had tea
poured first. He then presented them to his connoisseur colleague and asked her to
identify the pour order for each. Remarkably, she identified them all correctly, and
the probability of this happening by chance is 1 in 70, or 0.01428571.
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This 1.4% probability is what we call the p-value, the probability of something occur‐
ring by chance rather than because of a hypothesized explanation. Without going
down a rabbit hole of combinatorial math, the probability that Muriel completely
guessed the cups correctly is 1.4%. What exactly does that tell you?

When we frame an experiment, whether it is determining if organic donuts cause
weight gain or living near power lines causes cancer, we always have to entertain
the possibility that random luck played a role. Just like there is a 1.4% chance
Muriel identified the cups of tea correctly simply by guessing, there’s always a chance
randomness just gave us a good hand like a slot machine. This helps us frame our null
hypothesis (H0), saying that the variable in question had no impact on the experiment
and any positive results are just random luck. The alternative hypothesis (H1) poses
that a variable in question (called the controlled variable) is causing a positive result.

Traditionally, the threshold for statistical significance is a p-value of 5% or less, or
.05. Since .014 is less than .05, this would mean we can reject our null hypothesis that
Muriel was randomly guessing. We can then promote the alternative hypothesis that
Muriel had a special ability to detect whether tea or milk was poured first.

Now one thing this tea-party example did not capture is that when we calculate a
p-value, we capture all probability of that event or rarer. We will address this as we
dive into the next example using the normal distribution.

Hypothesis Testing
Past studies have shown that the mean recovery time for a cold is 18 days, with a
standard deviation of 1.5 days, and follows a normal distribution.

This means there is approximately 95% chance of recovery taking between 15 and 21
days as shown in Figure 3-16 and Example 3-18.

Figure 3-16. There is 95% chance of recovery between 15 and 21 days
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Example 3-18. Calculating the probability of recovery between 15 and 21 days

from scipy.stats import norm

# Cold has 18 day mean recovery, 1.5 std dev
mean = 18
std_dev = 1.5

# 95% probability recovery time takes between 15 and 21 days.
x = norm.cdf(21, mean, std_dev) - norm.cdf(15, mean, std_dev)

print(x) # 0.9544997361036416

We can infer then from the remaining 5% probability that there’s a 2.5% chance of
recovery taking longer than 21 days and a 2.5% chance of it taking fewer than 15
days. Hold onto that bit of information because it will be critical later! That drives our
p-value.

Now let’s say an experimental new drug was given to a test group of 40 people, and it
took an average of 16 days for them to recover from the cold as shown in Figure 3-17.

Figure 3-17. A group taking a drug took 16 days to recover

Did the drug have an impact? If you reason long enough, you may realize what we
are asking is this: does the drug show a statistically signficant result? Or did the drug
not work and the 16-day recovery was a coincidence with the test group? That first
question frames our alternative hypothesis, while the second question frames our null
hypothesis.

There are two ways we can calculate this: the one-tailed and two-tailed test. We will
start with the one-tailed.

One-Tailed Test
When we approach the one-tailed test, we typically frame our null and alternative
hypotheses using inequalities. We hypothesize around the population mean and say
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that it either is greater than/equal to 18 (the null hypothesis H0) or less than 18 (the
alternative hypothesis H1):

H0:population mean ≥ 18
H1:population mean < 18

To reject our null hypothesis, we need to show that our sample mean of the patients
who took the drug is not likely to have been coincidental. Since a p-value of .05 or
less is traditionally considered statistically signficant, we will use that as our threshold
(Figure 3-17). When we calculate this in Python using the inverse CDF as shown in
Figure 3-18 and Example 3-19, we find that approximately 15.53 is the number of
recovery days that gives us .05 area on the left tail.

Figure 3-18. Getting the x-value with 5% of area behind it

Example 3-19. Python code for getting x-value with 5% of area behind it

from scipy.stats import norm

# Cold has 18 day mean recovery, 1.5 std dev
mean = 18
std_dev = 1.5

# What x-value has 5% of area behind it?
x = norm.ppf(.05, mean, std_dev)

print(x) # 15.53271955957279

Therefore, if we achieve an average 15.53 or fewer days of recovery time in our
sample group, our drug is considered statistically significant enough to have shown
an impact. However, our sample mean of recovery time is actually 16 days and does
not fall into this null hypothesis rejection zone. Therefore, the statistical significance
test has failed as shown in Figure 3-19.
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Figure 3-19. We have failed to prove our drug test result is statistically significant

The area up to that 16-day mark is our p-value, which is .0912, and we calculate it in
Python as shown in Example 3-20.

Example 3-20. Calculating the one-tailed p-value

from scipy.stats import norm

# Cold has 18 day mean recovery, 1.5 std dev
mean = 18
std_dev = 1.5

# Probability of 16 or less days
p_value = norm.cdf(16, mean, std_dev)

print(p_value) # 0.09121121972586788

Since the p-value of .0912 is greater than our statistical significance threshold of .05,
we do not consider the drug trial a success and fail to reject our null hypothesis.

Two-Tailed Test
The previous test we performed is called the one-tailed test because it looks for
statistical significance only on one tail. However, it is often safer and better practice to
use a two-tailed test. We will elaborate why, but first let’s calculate it.

To do a two-tailed test, we frame our null and alternative hypothesis in an “equal” and
“not equal” structure. In our drug test, we will say the null hypothesis has a mean
recovery time of 18 days. But our alternative hypothesis is the mean recovery time is
not 18 days, thanks to the new drug:

H0:population mean = 18
H1:population mean ≠ 18
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This has an important implication. We are structuring our alternative hypothesis to
not test whether the drug improves cold recovery time, but if it had any impact. This
includes testing if it increased the duration of the cold. Is this helpful? Hold that
thought.

Naturally, this means we spread our p-value statistical significance threshold to both
tails, not just one. If we are testing for a statistical significance of 5%, then we split it
and give each 2.5% half to each tail. If our drug’s mean recovery time falls in either
region, our test is successful and we reject the null hypothesis (Figure 3-20).

Figure 3-20. A two-tailed test

The x-values for the lower tail and upper tail are 15.06 and 20.93, meaning if we are
under or over, respectively, we reject the null hypothesis. Those two values are calcu‐
lated using the inverse CDF shown in Figure 3-21 and Example 3-21. Remember, to
get the upper tail we take .95 and then add the .025 piece of significance threshold to
it, giving us .975.

Figure 3-21. Calculating the central 95% of normal distribution area
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Example 3-21. Calculating a range for a statistical significance of 5%

from scipy.stats import norm

# Cold has 18 day mean recovery, 1.5 std dev
mean = 18
std_dev = 1.5

# What x-value has 2.5% of area behind it?
x1 = norm.ppf(.025, mean, std_dev)

# What x-value has 97.5% of area behind it
x2 = norm.ppf(.975, mean, std_dev)

print(x1) # 15.060054023189918
print(x2) # 20.93994597681008

The sample mean value for the drug test group is 16, and 16 is not less than 15.06
nor greater than 20.9399. So like the one-tailed test, we still fail to reject the null
hypothesis. Our drug still has not shown any statistical significance to have any
impact as shown in Figure 3-22.

Figure 3-22. The two-tailed test has failed to prove statistical significance

But what is the p-value? This is where it gets interesting with two-tailed tests. Our
p-value is going to capture not just the area to the left of 16 but also the symmetrical
equivalent area on the right tail. Since 16 is 4 days below the mean, we will also
capture the area above 20, which is 4 days above the mean (Figure 3-23). This is
capturing the probability of an event or rarer, on both sides of the bell curve.
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Figure 3-23. The p-value adds symmetrical sides for statistical significance

When we sum both those areas, we get a p-value of .1824. This is a lot greater than
.05, so it definitely does not pass our p-value threshold of .05 (Example 3-22).

Example 3-22. Calculating the two-tailed p-value

from scipy.stats import norm

# Cold has 18 day mean recovery, 1.5 std dev
mean = 18
std_dev = 1.5

# Probability of 16 or less days
p1 = norm.cdf(16, mean, std_dev)

# Probability of 20 or more days
p2 = 1.0 -  norm.cdf(20, mean, std_dev)

# P-value of both tails
p_value = p1 + p2

print(p_value) # 0.18242243945173575

So why do we also add the symmetrical area on the opposite side in a two-tailed test?
This may not be the most intuitive concept, but first remember how we structured
our hypotheses:

H0:population mean = 18
H1:population mean ≠ 18
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If we are testing in an “equals 18” versus “not equals 18” capacity, we have to capture
any probability that is of equal or less value on both sides. After all, we are trying
to prove significance, and that includes anything that is equally or less likely to
happen. We did not have this special consideration with the one-tailed test that used
only “greater/less than” logic. But when we are dealing with “equals/not equals” our
interest area goes in both directions.

So what are the practical implications of the two-tailed test? How does it affect
whether we reject the null hypothesis? Ask yourself this: which one sets a higher
threshold? You will notice that even when our objective is to show we may have
lessened something (the cold-recovery time using a drug), reframing our hypothesis
to show any impact (greater or lesser) creates a higher significance threshold. If our
significance threshold is a p-value of .05 or less, our one-tailed test was closer to
acceptance at p-value .0912 as opposed to the two-tailed test, which was about double
that at p-value .182.

This means the two-tailed test makes it harder to reject the null hypothesis and
demands stronger evidence to pass a test. Also think of this: what if our drug could
worsen colds and make them last longer? It may be helpful to capture that probability
too and account for variation in that direction. This is why two-tailed tests are
preferable in most cases. They tend to be more reliable and not bias the hypothesis in
just one direction.

We will use hypothesis testing and p-values again in Chapters 5 and 6.

Beware of P-Hacking!
There is a problem getting more awareness in the scientific research community
called p-hacking, where researchers shop for statistically significant p-values of .05
or less. This is not hard to do with big data, machine learning, and data mining
where we can traverse hundreds or thousands of variables and then find statistically
significant (but coincidental) relationships between them.

Why do so many researchers p-hack? Many are probably not aware they are doing
it. It’s easy to keep tuning and tuning a model, omitting “noisy” data and changing
parameters, until it gives the “right” result. Others are simply under pressure by
academia and industry to produce lucrative, not objective, results.

If you are hired by the Calvin Cereal Company to study whether Frosted Chocolate
Sugar Bombs causes diabetes, do you expect to give an honest analysis and get hired
again? What if a manager asks you to produce a forecast showing $15 million in sales
next quarter for a new product launch? You have no control over what sales will be,
but you’re asked for a model that produces a predetermined result. In the worst case,
you may even be held accountable when it proves wrong. Unfair, but it happens!
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This is why soft skills like diplomacy can make a difference in a data science pro‐
fessional’s career. If you can share difficult and inconvenient stories in a way that
productively gets an audience; that is a tremendous feat. Just be mindful of the organ‐
ization’s managerial climate and always propose alternate solutions. If you end up in
a no-win situation where you are asked to p-hack, and could be held accountable for
when it backfires, then definitely change work environments!

The T-Distribution: Dealing with Small Samples
Let’s briefly address how to deal with smaller samples of 30 or fewer; we will need this
when we do linear regression in Chapter 5. Whether we are calculating confidence
intervals or doing hypothesis testing, if we have 30 or fewer items in a sample we
would opt to use a T-distribution instead of a normal distribution. The T-distribution
is like a normal distribution but has fatter tails to reflect more variance and uncer‐
tainty. Figure 3-24 shows a normal distribution (dashed) alongside a T-distribution
with one degree of freedom (solid).

Figure 3-24. The T-distribution alongside a normal distribution; note the fatter tails

The smaller the sample size, the fatter the tails get in a T-distribution. But what’s
interesting is after you approach 31 items, the T-distribution is nearly indistinguisha‐
ble from the normal distribution, which neatly reflects the ideas behind the central
limit theorem.
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Example 3-23 shows how to find the critical t-value for 95% confidence. You can
use this for confidence intervals and hypothesis testing when you have a sample
size of 30 or less. It’s conceptually the same as the critical z-value, but we are using
a T-distribution instead of a normal distribution to reflect greater uncertainty. The
smaller the sample size, the larger the range, reflecting greater uncertainty.

Example 3-23. Getting a critical value range with a T-distribution

from scipy.stats import t

# get critical value range for 95% confidence
# with a sample size of 25

n = 25
lower = t.ppf(.025, df=n-1)
upper = t.ppf(.975, df=n-1)

print(lower, upper)
-2.063898561628021 2.0638985616280205

Note that df is the “degrees of freedom” parameter, and as outlined earlier it should
be one less of the sample size.

Beyond the Mean
We can use confidence intervals and hypothesis testing to measure other parameters
besides the mean, including variance/standard deviation as well as proportions (e.g.,
60% of people report improved happiness after walking one hour a day). These
require other distributions such as the chi-square distribution instead of the normal
distribution. As stated, these are all beyond the scope of this book but hopefully you
have a strong conceptual foundation to extend into these areas if needed.

We will, however, use confidence intervals and hypothesis testing throughout Chap‐
ters 5 and 6.

Big Data Considerations and the
Texas Sharpshooter Fallacy
One final thought before we close this chapter. As we have discussed, randomness
plays such a role in validating our findings and we always have to account for its
possibility. Unfortunately with big data, machine learning, and other data-mining
tools, the scientific method has suddenly become a practice done backward. This can
be precarious; allow me to demonstrate why, adapting an example from Gary Smith’s
book Standard Deviations (Overlook Press).
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Let’s pretend I draw four playing cards from a fair deck. There’s no game or objective
here other than to draw four cards and observe them. I get two 10s, a 3, and a 2.
“This is interesting,” I say. “I got two 10s, a 3, and a 2. Is this meaningful? Are the next
four cards I draw also going to be two consecutive numbers and a pair? What’s the
underlying model here?”

See what I did there? I took something that was completely random and I not only
looked for patterns, but I tried to make a predictive model out of them. What has
subtly happened here is I never made it my objective to get these four cards with
these particular patterns. I observed them after they occurred.

This is exactly what data mining falls victim to every day: finding coincidental
patterns in random events. With huge amounts of data and fast algorithms looking
for patterns, it’s easy to find things that look meaningful but actually are just random
coincidences.

This is also analogous to me firing a gun at a wall. I then draw a target around the
hole and bring my friends over to show off my amazing marksmanship. Silly, right?
Well, many people in data science figuratively do this every day and it is known as
the Texas Sharpshooter Fallacy. They set out to act without an objective, stumble on
something rare, and then point out that what they found somehow creates predictive
value.

The problem is the law of truly large numbers says rare events are likely to be found;
we just do not know which ones. When we encounter rare events, we highlight and
even speculate what might have caused them. The issue is this: the probability of a
specific person winning the lottery is highly unlikely, but yet someone is going to win
the lottery. Why should we be surprised when there is a winner? Unless somebody
predicted the winner, nothing meaningful happened other than a random person got
lucky.

This also applies to correlations, which we will study in Chapter 5. With an enormous
dataset with thousands of variables, is it easy to find statistically significant findings
with a .05 p-value? You betcha! I’ll find thousands of those. I’ll even show evidence
that the number of Nicolas Cage movies correlates with the number of pool drown‐
ings in a year.

So to prevent the Texas Sharpshooter Fallacy and falling victim to big data fallacies,
try to use structured hypothesis testing and gather data for that objective. If you
utilize data mining, try to obtain fresh data to see if your findings still hold up.
Finally, always consider the possibility that things can be coincidental; if there is not a
commonsense explanation, then it probably was coincidental.

We learned how to hypothesize before gathering data, but data mining gathers data,
then hypothesizes. Ironically, we are often more objective starting with a hypothesis,
because we then seek out data to deliberately prove and disprove our hypothesis.
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Conclusion
We learned a lot in this chapter, and you should feel good about getting this far. This
was probably one of the harder topics in this book! We not only learned descriptive
statistics from the mean to the normal distribution but also tackled confidence
intervals and hypothesis testing.

Hopefully, you see data a little differently. It is snapshots of something rather than a
complete capturing of reality. Data on its own is not very useful, and we need context,
curiosity, and analysis of where it came from before we can make meaningful insights
with it. We covered how to describe data as well as infer attributes about a larger
population based on a sample. Finally, we addressed some of the data-mining fallacies
we can stumble into if we are not careful, and how to remedy that with fresh data and
common sense.

Do not feel bad if you need to go back and review some of the content in this
chapter, because there’s a lot to digest. It is also important to get in the hypothesis-
testing mindset if you want to be successful at a data science and machine learning
career. Few practitioners take time to link statistics and hypothesis-testing concepts to
machine learning, and that is unfortunate.

Understandability and explainability is the next frontier of machine learning, so
continue to learn and integrate these ideas as you progress throughout the rest of this
book and the rest of your career.

Exercises
1. You bought a spool of 1.75 mm filament for your 3D printer. You want to1.

measure how close the filament diameter really is to 1.75 mm. You use a caliper
tool and sample the diameter five times on the spool:
1.78, 1.75, 1.72, 1.74, 1.77
Calculate the mean and standard deviation for this set of values.

2. A manufacturer says the Z-Phone smart phone has a mean consumer life of 422.
months with a standard deviation of 8 months. Assuming a normal distribution,
what is the probability a given random Z-Phone will last between 20 and 30
months?

3. I am skeptical that my 3D printer filament is not 1.75 mm in average diameter3.
as advertised. I sampled 34 measurements with my tool. The sample mean is
1.715588 and the sample standard deviation is 0.029252.
What is the 99% confidence interval for the mean of my entire spool of filament?

4. Your marketing department has started a new advertising campaign and wants to4.
know if it affected sales, which in the past averaged $10,345 a day with a standard

Conclusion | 107



deviation of $552. The new advertising campaign ran for 45 days and averaged
$11,641 in sales.
Did the campaign affect sales? Why or why not? (Use a two-tailed test for more
reliable significance.)

Answers are in Appendix B.
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CHAPTER 4

Linear Algebra

Changing gears a little bit, let’s venture away from probability and statistics and into
linear algebra. Sometimes people confuse linear algebra with basic algebra, thinking
maybe it has to do with plotting lines using the algebraic function y = mx + b. This
is why linear algebra probably should have been called “vector algebra” or “matrix
algebra” because it is much more abstract. Linear systems play a role but in a much
more metaphysical way.

So, what exactly is linear algebra? Well, linear algebra concerns itself with linear
systems but represents them through vector spaces and matrices. If you do not know
what a vector or a matrix is, do not worry! We will define and explore them in
depth. Linear algebra is hugely fundamental to many applied areas of math, statistics,
operations research, data science, and machine learning. When you work with data
in any of these areas, you are using linear algebra and perhaps you may not even
know it.

You can get away with not learning linear algebra for a while, using machine learning
and statistics libraries that do it all for you. But if you are going to get intuition
behind these black boxes and be more effective at working with data, understanding
the fundamentals of linear algebra is inevitable. Linear algebra is an enormous topic
that can fill thick textbooks, so of course we cannot gain total mastery in just one
chapter of this book. However, we can learn enough to be more comfortable with it
and navigate the data science domain effectively. There will also be opportunities to
apply it in the remaining chapters in this book, including Chapters 5 and 7.
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What Is a Vector?
Simply put, a vector is an arrow in space with a specific direction and length, often
representing a piece of data. It is the central building block of linear algebra, includ‐
ing matrices and linear transformations. In its fundamental form, it has no concept of
location so always imagine its tail starts at the origin of a Cartesian plane (0,0).

Figure 4-1 shows a vector v  that moves three steps in the horizontal direction and
two steps in the vertical direction.

Figure 4-1. A simple vector

To emphasize again, the purpose of the vector is to visually represent a piece of data.
If you have a data record for the square footage of a house 18,000 square feet and
its valuation $260,000, we could express that as a vector [18000, 2600000], stepping
18,000 steps in the horizontal direction and 260,000 steps in the vertical direction.

We declare a vector mathematically like this:

v = x

y
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v =
3
2

We can declare a vector using a simple Python collection, like a Python list as shown
in Example 4-1.

Example 4-1. Declaring a vector in Python using a list

v = [3, 2]
print(v)

However, when we start doing mathematical computations with vectors, especially
when doing tasks like machine learning, we should probably use the NumPy library
as it is more efficient than plain Python. You can also use SymPy to perform linear
algebra operations, and we will use it occasionally in this chapter when decimals
become inconvenient. However, NumPy is what you will likely use in practice so that
is what we will mainly stick to.

To declare a vector, you can use NumPy’s array() function and then can pass a
collection of numbers to it as shown in Example 4-2.

Example 4-2. Declaring a vector in Python using NumPy

import numpy as np
v = np.array([3, 2])
print(v)

Python Is Slow, Its Numerical Libraries Are Not

Python is a computationally slow language platform, as it does not
compile to lower-level machine code and bytecode like Java, C#,
C, etc. It is dynamically interpreted at runtime. However, Python’s
numeric and scientific libraries are not slow. Libraries like NumPy
are typically written in low-level languages like C and C++, hence
why they are computationally efficient. Python really acts as “glue
code” integrating these libraries for your tasks.

A vector has countless practical applications. In physics, a vector is often thought of
as a direction and magnitude. In math, it is a direction and scale on an XY plane,
kind of like a movement. In computer science, it is an array of numbers storing
data. The computer science context is the one we will become the most familiar with
as data science professionals. However, it is important we never forget the visual
aspect so we do not think of vectors as esoteric grids of numbers. Without a visual
understanding, it is almost impossible to grasp many fundamental linear algebra
concepts like linear dependence and determinants.
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Here are some more examples of vectors. In Figure 4-2 note that some of these vec‐
tors have negative directions on the X and Y scales. Vectors with negative directions
will have an impact when we combine them later, essentially subtracting rather than
adding them together.

Figure 4-2. A sampling of different vectors

Why Are Vectors Useful?
A struggle many people have with vectors (and linear algebra in general) is under‐
standing why they are useful. They are a highly abstract concept but they have many
tangible applications. Computer graphics are easier to work with when you have a
grasp of vectors and linear transformations (the fantastic Manim visualization library
defines animations and transformations with vectors). When doing statistics and
machine learning work, data is often imported and turned into numerical vectors so
we can work with it. Solvers like the one in Excel or Python PuLP use linear program‐
ming, which uses vectors to maximize a solution while meeting those constraints.
Even video games and flight simulators use vectors and linear algebra to model not
just graphics but also physics. I think what makes vectors so hard to grasp is not that
their application is unobvious, but rather these applications are so diverse it is hard to
see the generalization.

Note also vectors can exist on more than two dimensions. Next we declare a three-
dimensional vector along axes x, y, and z:

v =
x

y

z

=
4
1
2
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To create this vector, we are stepping four steps in the x direction, one in the
y direction, and two in the z direction. Here it is visualized in Figure 4-3. Note
that we no longer are showing a vector on a two-dimensional grid but rather a
three-dimensional space with three axes: x, y, and z.

Figure 4-3. A three-dimensional vector

Naturally, we can express this three-dimensional vector in Python using three
numeric values, as declared in Example 4-3.

Example 4-3. Declaring a three-dimensional vector in Python using NumPy

import numpy as np
v = np.array([4, 1, 2])
print(v)

Like many mathematical models, visualizing more than three dimensions is challeng‐
ing and something we will not expend energy doing in this book. But numerically, it
is still straightforward. Example 4-4 shows how we declare a five-dimensional vector
mathematically in Python.

v =

6
1
5
8
3

Example 4-4. Declaring a five-dimensional vector in Python using NumPy

import numpy as np
v = np.array([6, 1, 5, 8, 3])
print(v)
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Adding and Combining Vectors
On their own, vectors are not terribly interesting. You express a direction and size,
kind of like a movement in space. But when you start combining vectors, known as
vector addition, it starts to get interesting. We effectively combine the movements of
two vectors into a single vector.

Say we have two vectors v  and w  as shown in Figure 4-4. How do we add these two
vectors together?

Figure 4-4. Adding two vectors together

We will get to why adding vectors is useful in a moment. But if we wanted to combine
these two vectors, including their direction and scale, what would that look like?
Numerically, this is straightforward. You simply add the respective x-values and then
the y-values into a new vector as shown in Example 4-5.

v =
3
2

w =
2

−1

v +w =
3 + 2

2 + − 1
=

5
1
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Example 4-5. Adding two vectors in Python using NumPy

from numpy import array

v = array([3,2])
w = array([2,-1])

# sum the vectors
v_plus_w = v + w

# display summed vector
print(v_plus_w) # [5, 1]

But what does this mean visually? To visually add these two vectors together, connect
one vector after the other and walk to the tip of the last vector (Figure 4-5). The point
you end at is a new vector, the result of summing the two vectors.

Figure 4-5. Adding two vectors into a new vector

As seen in Figure 4-5, when we walk to the end of the last vector w  we end up with
a new vector [5, 1]. This new vector is the result of summing v  and w . In practice,
this can be simply adding data together. If we were totaling housing values and their
square footage in an area, we would be adding several vectors into a single vector in
this manner.

Note that it does not matter whether we add v  before w  or vice versa, which means
it is commutative and order of operation does not matter. If we walk w  before v  we
end up with the same resulting vector [5, 1] as visualized in Figure 4-6.
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Figure 4-6. Adding vectors is commutative

Scaling Vectors
Scaling is growing or shrinking a vector’s length. You can grow/shrink a vector by
multiplying or scaling it with a single value, known as a scalar. Figure 4-7 is vector v
being scaled by a factor of 2, which doubles it.

Figure 4-7. Scaling a vector
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Mathematically, you multiply each element of the vector by the scalar value:

v =
3
1

2v = 2
3
1

=
3 × 2
1 × 2

=
6
2

Performing this scaling operation in Python is as easy as multiplying a vector by the
scalar, as coded in Example 4-6.

Example 4-6. Scaling a number in Python using NumPy

from numpy import array

v = array([3,1])

# scale the vector
scaled_v = 2.0 * v

# display scaled vector
print(scaled_v) # [6 2]

Here in Figure 4-8 v  is being scaled down by factor of .5, which halves it.

Figure 4-8. Scaling down a vector by half
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Manipulating Data Is Manipulating Vectors
Every data operation can be thought of in terms of vectors, even simple averages.

Take scaling, for example. Let’s say we were trying to get the average house value
and average square footage for an entire neighborhood. We would add the vectors
together to combine their value and square footage respectively, giving us one giant
vector containing both total value and total square footage. We then scale down the
vector by dividing by the number of houses N, which really is multiplying by 1/N. We
now have a vector containing the average house value and average square footage.

An important detail to note here is that scaling a vector does not change its direction,
only its magnitude. But there is one slight exception to this rule as visualized in
Figure 4-9. When you multiply a vector by a negative number, it flips the direction of
the vector as shown in the image.

Figure 4-9. A negative scalar flips the vector direction

When you think about it, though, scaling by a negative number has not really
changed direction in that it still exists on the same line. This segues to a key concept
called linear dependence.
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Span and Linear Dependence
These two operations, adding two vectors and scaling them, brings about a simple
but powerful idea. With these two operations, we can combine two vectors and scale
them to create any resulting vector we want. Figure 4-10 shows six examples of taking
two vectors v  and w , and scaling and combining. These vectors v  and w , fixed in
two different directions, can be scaled and added to create any new vector v +w.

Figure 4-10. Scaling two added vectors allows us to create any new vector

Again, v  and w  are fixed in direction, except for flipping with negative scalars, but
we can use scaling to freely create any vector composed of v +w.

This whole space of possible vectors is called span, and in most cases our span can
create unlimited vectors off those two vectors, simply by scaling and summing them.
When we have two vectors in two different directions, they are linearly independent
and have this unlimited span.

But in what case are we limited in the vectors we can create? Think about it and read
on.

What happens when two vectors exist in the same direction, or exist on the same
line? The combination of those vectors is also stuck on the same line, limiting our
span to just that line. No matter how you scale it, the resulting sum vector is also
stuck on that same line. This makes them linearly dependent, as shown in Figure 4-11.
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Figure 4-11. Linearly dependent vectors

The span here is stuck on the same line as the two vectors it is made out of. Because
the two vectors exist on the same underlying line, we cannot flexibly create any new
vector through scaling.

In three or more dimensions, when we have a linearly dependent set of vectors, we
often get stuck on a plane in a smaller number of dimensions. Here is an example
of being stuck on a two-dimensional plane even though we have three-dimensional
vectors as declared in Figure 4-12.

Figure 4-12. Linear dependence in three dimensions; note our span is limited to a flat
plane

Later we will learn a simple tool called the determinant to check for linear depend‐
ence, but why do we care whether two vectors are linearly dependent or independent?
A lot of problems become difficult or unsolvable when they are linearly dependent.
For example, when we learn about systems of equations later in this chapter, a linearly
dependent set of equations can cause variables to disappear and make the problem
unsolvable. But if you have linear independence, that flexibility to create any vector
you need from two or more vectors becomes invaluable to solve for a solution!
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Linear Transformations
This concept of adding two vectors with fixed direction, but scaling them to get dif‐
ferent combined vectors, is hugely important. This combined vector, except in cases
of linear dependence, can point in any direction and have any length we choose. This
sets up an intuition for linear transformations where we use a vector to transform
another vector in a function-like manner.

Basis Vectors
Imagine we have two simple vectors i  and j  (“i-hat” and “j-hat”). These are known as
basis vectors, which are used to describe transformations on other vectors. They typi‐
cally have a length of 1 and point in perpendicular positive directions as visualized in
Figure 4-13.

Figure 4-13. Basis vectors i  and j

Think of the basis vectors as building blocks to build or transform any vector. Our
basis vector is expressed in a 2 × 2 matrix, where the first column is i  and the second
column is j :

i =
1
0
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j =
0
1

basis =
1 0
0 1

A matrix is a collection of vectors (such as i , j ) that can have multiple rows and
columns and is a convenient way to package data. We can use i  and j  to create any
vector we want by scaling and adding them. Let’s start with each having a length of 1
and showing the resulting vector v  in Figure 4-14.

Figure 4-14. Creating a vector from basis vectors

I want vector v  to land at [3, 2]. What happens to v  if we stretch i  by a factor of 3
and j  by a factor of 2? First we scale them individually as shown here:

3i = 3
1
0

=
3
0

2j = 2
0
1

=
0
2
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If we stretched space in these two directions, what does this do to v ? Well, it is
going to stretch with i  and j . This is known as a linear transformation, where we
transform a vector with stretching, squishing, sheering, or rotating by tracking basis
vector movements. In this case (Figure 4-15), scaling i  and j  has stretched space
along with our vector v .

Figure 4-15. A linear transformation

But where does v  land? It is easy to see where it lands here, which is [3, 2]. Recall that
vector v  is composed of adding i  and j . So we simply take the stretched i  and j  and
add them together to see where vector v  has landed:

v new =
3
0

+
0
2

=
3
2

Generally, with linear transformations, there are four movements you can achieve, as
shown in Figure 4-16.
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Figure 4-16. Four movements can be achieved with linear transformations

These four linear transformations are a central part of linear algebra. Scaling a vector
will stretch or squeeze it. Rotations will turn the vector space, and inversions will flip
the vector space so that i  and j  swap respective places.

It is important to note that you cannot have transformations that are nonlinear,
resulting in curvy or squiggly transformations that no longer respect a straight line.
This is why we call it linear algebra, not nonlinear algebra!

Matrix Vector Multiplication
This brings us to our next big idea in linear algebra. This concept of tracking where
i  and j  land after a transformation is important because it allows us not just to
create vectors but also to transform existing vectors. If you want true linear algebra
enlightenment, think why creating vectors and transforming vectors are actually the
same thing. It’s all a matter of relativity given your basis vectors being a starting point
before and after a transformation.

The formula to transform a vector v  given basis vectors i  and j  packaged as a
matrix is:
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xnew

ynew
= a b

c d

x

y

xnew

ynew
=
ax + by
cx + dy

i  is the first column [a, c] and j  is the column [b, d]. We package both of these
basis vectors as a matrix, which again is a collection of vectors expressed as a grid
of numbers in two or more dimensions. This transformation of a vector by applying
basis vectors is known as matrix vector multiplication. This may seem contrived at
first, but this formula is a shortcut for scaling and adding i  and j  just like we did
earlier adding two vectors, and applying the transformation to any vector v .

So in effect, a matrix really is a transformation expressed as basis vectors.

To execute this transformation in Python using NumPy, we will need to declare our
basis vectors as a matrix and then apply it to vector v  using the dot() operator
(Example 4-7). The dot() operator will perform this scaling and addition between
our matrix and vector as we just described. This is known as the dot product, and we
will explore it throughout this chapter.

Example 4-7. Matrix vector multiplication in NumPy

from numpy import array

# compose basis matrix with i-hat and j-hat
basis = array(
    [[3, 0],
     [0, 2]]
 )

# declare vector v
v = array([1,1])

# create new vector
# by transforming v with dot product
new_v = basis.dot(v)

print(new_v) # [3, 2]

When thinking in terms of basis vectors, I prefer to break out the basis vectors and
then compose them together into a matrix. Just note you will need to transpose, or
swap the columns and rows. This is because NumPy’s array() function will do the
opposite orientation we want, populating each vector as a row rather than a column.
Transposition in NumPy is demonstrated in Example 4-8.
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Example 4-8. Separating the basis vectors and applying them as a transformation

from numpy import array

# Declare i-hat and j-hat
i_hat = array([2, 0])
j_hat = array([0, 3])

# compose basis matrix using i-hat and j-hat
# also need to transpose rows into columns
basis = array([i_hat, j_hat]).transpose()

# declare vector v
v = array([1,1])

# create new vector
# by transforming v with dot product
new_v = basis.dot(v)

print(new_v) # [2, 3]

Here’s another example. Let’s start with vector v  being [2, 1] and i  and j  start at
[1, 0] and [0, 1], respectively. We then transform i  and j  to [2, 0] and [0, 3]. What
happens to vector v ? Working this out mathematically by hand using our formula,
we get this:

xnew

ynew
= a b

c d

x

y
=
ax + by
cx + dy

xnew

ynew
=

2 0
0 3

2
1

=
2 2 + 0 1
2 0 + 3 1

=
4
3

Example 4-9 shows this solution in Python.

Example 4-9. Transforming a vector using NumPy

from numpy import array

# Declare i-hat and j-hat
i_hat = array([2, 0])
j_hat = array([0, 3])

# compose basis matrix using i-hat and j-hat
# also need to transpose rows into columns
basis = array([i_hat, j_hat]).transpose()
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# declare vector v 0
v = array([2,1])

# create new vector
# by transforming v with dot product
new_v = basis.dot(v)

print(new_v) # [4, 3]

The vector v  now lands at [4, 3]. Figure 4-17 shows what this transformation looks
like.

Figure 4-17. A stretching linear transformation

Here is an example that jumps things up a notch. Let’s take vector v  of value [2, 1]. i
and j  start at [1, 0] and [0, 1], but then are transformed and land at [2, 3] and [2, -1].
What happens to v ? Let’s look in Figure 4-18 and Example 4-10.

Figure 4-18. A linear transformation that does a rotation, shear, and flipping of space
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Example 4-10. A more complicated transformation

from numpy import array

# Declare i-hat and j-hat
i_hat = array([2, 3])
j_hat = array([2, -1])

# compose basis matrix using i-hat and j-hat
# also need to transpose rows into columns
basis = array([i_hat, j_hat]).transpose()

# declare vector v 0
v = array([2,1])

# create new vector
# by transforming v with dot product
new_v = basis.dot(v)

print(new_v) # [6, 5]

A lot has happened here. Not only did we scale i  and j  and elongate vector v . We
actually sheared, rotated, and flipped space, too. You know space was flipped when i
and j  change places in their clockwise orientation, and we will learn how to detect
this with determinants later in this chapter.

Basis Vectors in 3D and Beyond
You might be wondering how we think of vector transformations in three dimen‐
sions or more. The concept of basis vectors extends quite nicely. If I have a three-
dimensional vector space, then I have basis vectors i , j , and k . I just keep adding
more letters from the alphabet for each new dimension (Figure 4-19).

Figure 4-19. 3D basis vector
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Something else that is worth pointing out is some linear transformations can shift
a vector space into fewer or more dimensions, and that is exactly what nonsquare
matrices will do (where number of rows and columns are not equal). In the interest
of time we cannot explore this. But 3Blue1Brown explains and animates this concept
beautifully.

Matrix Multiplication
We learned how to multiply a vector and a matrix, but what exactly does multiplying
two matrices accomplish? Think of matrix multiplication as applying multiple trans‐
formations to a vector space. Each transformation is like a function, where we apply
the innermost first and then apply each subsequent transformation outward.

Here is how we apply a rotation and then a shear to any vector v  with value [x, y]:

1 1
0 1

0 −1
1 0

x

y

We can actually consolidate these two transformations by using this formula, apply‐
ing one transformation onto the last. You multiply and add each row from the
first matrix to each respective column of the second matrix, in an “over-and-down!
over-and-down!” pattern:

a b

c d

e f

g ℎ
=
ae + bg af + bℎ
ce + dy cf + dℎ

So we can actually consolidate these two separate transformations (rotation and
shear) into a single transformation:

1 1
0 1

0 −1
1 0

x

y

=
1 0 + 1 1 − 1 1 + 1 0
0 0 + 1 1 0 − 1 + 1 0

x

y

=
1 −1
1 0

x

y

To execute this in Python using NumPy, you can combine the two matrices simply
using the matmul() or @ operator (Example 4-11). We will then turn around and use
this consolidated tranformation and apply it to a vector [1, 2].
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Example 4-11. Combining two transformations

from numpy import array

# Transformation 1
i_hat1 = array([0, 1])
j_hat1 = array([-1, 0])
transform1 = array([i_hat1, j_hat1]).transpose()

# Transformation 2
i_hat2 = array([1, 0])
j_hat2 = array([1, 1])
transform2 = array([i_hat2, j_hat2]).transpose()

# Combine Transformations
combined = transform2 @ transform1

# Test
print("COMBINED MATRIX:\n {}".format(combined))

v = array([1, 2])
print(combined.dot(v))  # [-1, 1]

Using dot() Versus matmul() and @

In general, you want to prefer matmul() and its shorthand @ to
combine matrices rather than the dot() operator in NumPy. The
former generally has a preferable policy for higher-dimensional
matrices and how the elements are broadcasted.
If you like diving into these kinds of implementation details, this
StackOverflow question is a good place to start.

Note that we also could have applied each transformation individually to vector v
and still have gotten the same result. If you replace the last line with these three lines
applying each transformation, you will still get [-1, 1] on that new vector:

rotated = transform1.dot(v)
sheered = transform2.dot(rotated)
print(sheered) # [-1, 1]

Note that the order you apply each transformation matters! If we apply transfor
mation1 on transformation2, we get a different result of [-2, 3] as calculated in
Example 4-12. So matrix dot products are not commutative, meaning you cannot flip
the order and expect the same result!
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Example 4-12. Applying the transformations in reverse

from numpy import array

# Transformation 1
i_hat1 = array([0, 1])
j_hat1 = array([-1, 0])
transform1 = array([i_hat1, j_hat1]).transpose()

# Transformation 2
i_hat2 = array([1, 0])
j_hat2 = array([1, 1])
transform2 = array([i_hat2, j_hat2]).transpose()

# Combine Transformations, apply sheer first and then rotation
combined = transform1 @ transform2

# Test
print("COMBINED MATRIX:\n {}".format(combined))

v = array([1, 2])
print(combined.dot(v)) # [-2, 3]

Think of each transformation as a function, and we apply them from the innermost
to outermost just like nested function calls.

Linear Transformations in Practice
You might be wondering what all these linear transformations and matrices have
to do with data science and machine learning. The answer is everything! From
importing data to numerical operations with linear regression, logistic regression, and
neural networks, linear transformations are the heart of mathematically manipulated
data.

In practice, however, you will rarely take the time to geometrically visualize your
data as vector spaces and linear transformations. You will be dealing with too many
dimensions to do this productively. But it is good to be mindful of of the geometric
interpretation just to understand what these contrived-looking numerical operations
do! Otherwise, you are just memorizing numerical operation patterns without any
context. It also makes new linear algebra concepts like determinants more obvious.

Determinants
When we perform linear transformations, we sometimes “expand” or “squish” space
and the degree this happens can be helpful. Take a sampled area from the vector
space in Figure 4-20: what happens to it after we scale i  and j ?
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Figure 4-20. A determinant measures how a linear transformation scales an area

Note it increases in area by a factor of 6.0, and this factor is known as a determinant.
Determinants describe how much a sampled area in a vector space changes in scale
with linear transformations, and this can provide helpful information about the
transformation.

Example 4-13 shows how to calculate this determinant in Python.

Example 4-13. Calculating a determinant

from numpy.linalg import det
from numpy import array

i_hat = array([3, 0])
j_hat = array([0, 2])

basis = array([i_hat, j_hat]).transpose()

determinant = det(basis)

print(determinant) # prints 6.0

Simple shears and rotations should not affect the determinant, as the area will not
change. Figure 4-21 and Example 4-14 shows a simple shear and the determinant
remains a factor 1.0, showing it is unchanged.
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Figure 4-21. A simple shear does not change the determinant

Example 4-14. A determinant for a shear

from numpy.linalg import det
from numpy import array

i_hat = array([1, 0])
j_hat = array([1, 1])

basis = array([i_hat, j_hat]).transpose()

determinant = det(basis)

print(determinant) # prints 1.0

But scaling will increase or decrease the determinant, as that will increase/decrease
the sampled area. When the orientation flips (i , j  swap clockwise positions), then the
determinant will be negative. Figure 4-22 and Example 4-15 illustrate a determinant
showing a transformation that not only scaled but also flipped the orientation of the
vector space.
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Figure 4-22. A determinant on a flipped space is negative

Example 4-15. A negative determinant

from numpy.linalg import det
from numpy import array

i_hat = array([-2, 1])
j_hat = array([1, 2])

basis = array([i_hat, j_hat]).transpose()

determinant = det(basis)

print(determinant) # prints -5.0

Because this determinant is negative, we quickly see that the orientation has flipped.
But by far the most critical piece of information the determinant tells you is whether
the transformation is linearly dependent. If you have a determinant of 0, that means
all of the space has been squished into a lesser dimension.

In Figure 4-23 we see two linearly dependent transformations, where a 2D space is
compressed into one dimension and a 3D space is compressed into two dimensions.
The area and volume respectively in both cases are 0!
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Figure 4-23. Linear dependence in 2D and 3D

Example 4-16 shows the code for the preceding 2D example squishing an entire 2D
space into a single one-dimensional number line.

Example 4-16. A determinant of zero

from numpy.linalg import det
from numpy import array

i_hat = array([-2, 1])
j_hat = array([3, -1.5])

basis = array([i_hat, j_hat]).transpose()

determinant = det(basis)

print(determinant) # prints 0.0

So testing for a 0 determinant is highly helpful to determine if a transformation
has linear dependence. When you encounter this you will likely find a difficult or
unsolvable problem on your hands.
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Special Types of Matrices
There are a few notable cases of matrices that we should cover.

Square Matrix
The square matrix is a matrix that has an equal number of rows and columns:

4 2 7
5 1 9
4 0 1

They are primarily used to represent linear transformations and are a requirement for
many operations like eigendecomposition.

Identity Matrix
The identity matrix is a square matrix that has a diagonal of 1s while the other values
are 0:

1 0 0
0 1 0
0 0 1

What’s the big deal with identity matrices? Well, when you have an identity matrix,
you essentially have undone a transformation and found your starting basis vectors.
This will play a big role in solving systems of equations in the next section.

Inverse Matrix
An inverse matrix is a matrix that undoes the transformation of another matrix. Let’s
say I have matrix A:

A =
4 2 4
5 3 7
9 3 6

The inverse of matrix A is called A−1. We will learn how to calculate the inverse using
Sympy or NumPy in the next section, but this is what the inverse of matrix A is:
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A−1 =

− 1
2 0 1

3

5 . 5 −2 4
3

−2 1 1
3

When we perform matrix multiplication between A−1 and A, we end up with an
identity matrix. We will see this in action with NumPy and Sympy in the next section
on systems of equations.

− 1
2 0 1

3

5 . 5 −2 4
3

−2 1 1
3

4 2 4
5 3 7
9 3 6

=
1 0 0
0 1 0
0 0 1

Diagonal Matrix
Similar to the identity matrix is the diagonal matrix, which has a diagonal of nonzero
values while the rest of the values are 0. Diagonal matrices are desirable in certain
computations because they represent simple scalars being applied to a vector space. It
shows up in some linear algebra operations.

4 0 0
0 2 0
0 0 5

Triangular Matrix
Similar to the diagonal matrix is the triangular matrix, which has a diagonal of
nonzero values in front of a triangle of values, while the rest of the values are 0.

4 2 9
0 1 6
0 0 5

Triangular matrices are desirable in many numerical analysis tasks, because they
typically are easier to solve in systems of equations. They also show up in certain
decomposition tasks like LU Decomposition.
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Sparse Matrix
Occasionally, you will run into matrices that are mostly zeroes and have very few
nonzero elements. These are called sparse matrices. From a pure mathematical
standpoint, they are not terribly interesting. But from a computing standpoint, they
provide opportunities to create efficiency. If a matrix has mostly 0s, a sparse matrix
implementation will not waste space storing a bunch of 0s, and instead only keep
track of the cells that are nonzero.

sparse:

0 0 0
0 0 2
0 0 0
0 0 0

When you have large matrices that are sparse, you might explicitly use a sparse
function to create your matrix.

Systems of Equations and Inverse Matrices
One of the basic use cases for linear algebra is solving systems of equations. It is also
a good application to learn about inverse matrices. Let’s say you are provided with the
following equations and you need to solve for x, y, and z:

4x + 2y + 4z = 44
5x + 3y + 7z = 56
9x + 3y + 6z = 72

You can try manually experimenting with different algebraic operations to isolate the
three variables, but if you want a computer to solve it you will need to express this
problem in terms of matrices as shown next. Extract the coefficients into matrix A,
the values on the right side of the equation into matrix B, and the unknown variables
into matrix X:

A =
4 2 4
5 3 7
9 3 6

B =
44
56
72
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X =
x

y

z

The function for a linear system of equations is AX = B. We need to transform matrix
A with some other matrix X that will result in matrix B:

AX = B

4 2 4
5 3 7
9 3 6

·
x

y

z

=
44
56
72

We need to “undo” A so we can isolate X and get the values for x, y, and z. The way
you undo A is to take the inverse of A denoted by A−1 and apply it to A via matrix
multiplication. We can express this algebraically:

AX = B
A−1AX = A−1B
X = A−1B

To calculate the inverse of matrix A, we probably use a computer rather than search‐
ing for solutions by hand using Gaussian elimination, which we will not venture into
in this book. Here is the inverse of matrix A:

A−1 =

− 1
2 0 1

3

5 . 5 −2 4
3

−2 1 1
3

Note when we matrix multiply A−1 against A it will create an identity matrix, a matrix
of all zeroes except for 1s in the diagonal. The identity matrix is the linear algebra
equivalent of multiplying by 1, meaning it essentially has no effect and will effectively
isolate values for x, y, and z:
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A−1 =

− 1
2 0 1

3

5 . 5 −2 4
3

−2 1 1
3

A =
4 2 4
5 3 7
9 3 6

A−1A =
1 0 0
0 1 0
0 0 1

To see this identity matrix in action in Python, you will want to use SymPy instead
of NumPy. The floating point decimals in NumPy will not make the identity matrix
as obvious, but doing it symbolically in Example 4-17 we will see a clean, symbolic
output. Note that to do matrix multiplication in SymPy we use the asterisk * rather
than @.

Example 4-17. Using SymPy to study the inverse and identity matrix

from sympy import *

# 4x + 2y + 4z = 44
# 5x + 3y + 7z = 56
# 9x + 3y + 6z = 72

A = Matrix([
    [4, 2, 4],
    [5, 3, 7],
    [9, 3, 6]
])

# dot product between A and its inverse
# will produce identity function
inverse = A.inv()
identity = inverse * A

# prints Matrix([[-1/2, 0, 1/3], [11/2, -2, -4/3], [-2, 1, 1/3]])
print("INVERSE: {}".format(inverse))

# prints Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
print("IDENTITY: {}".format(identity))
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In practice, the lack of floating point precision will not affect our answers too badly,
so using NumPy should be fine to solve for x. Example 4-18 shows a solution with
NumPy.

Example 4-18. Using NumPy to solve a system of equations

from numpy import array
from numpy.linalg import inv

# 4x + 2y + 4z = 44
# 5x + 3y + 7z = 56
# 9x + 3y + 6z = 72

A = array([
    [4, 2, 4],
    [5, 3, 7],
    [9, 3, 6]
])

B = array([
    44,
    56,
    72
])

X = inv(A).dot(B)

print(X) # [ 2. 34. -8.]

So x = 2, y = 34, and z = –8. Example 4-19 shows the full solution in SymPy as an
alternative to NumPy.

Example 4-19. Using SymPy to solve a system of equations

from sympy import *

# 4x + 2y + 4z = 44
# 5x + 3y + 7z = 56
# 9x + 3y + 6z = 72

A = Matrix([
    [4, 2, 4],
    [5, 3, 7],
    [9, 3, 6]
])

B = Matrix([
    44,
    56,
    72
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])

X = A.inv() * B

print(X) # Matrix([[2], [34], [-8]])

Here is the solution in mathematical notation:

A−1B = X

− 1
2 0 1

3

5 . 5 −2 4
3

−2 1 1
3

44
56
72

=
x

y

z

2
34
−8

=
x

y

z

Hopefully, this gave you an intuition for inverse matrices and how they can be used to
solve a system of equations.

Systems of Equations in Linear Programming

This method of solving systems of equations is used for linear
programming as well, where inequalities define constraints and an
objective is minimized/maximized.
PatrickJMT has a lot of good videos on Linear Programming. We
also cover it briefly in Appendix A.

In practicality, you should rarely find it necessary to calculate inverse matrices by
hand and can have a computer do it for you. But if you have a need or are curious,
you will want to learn about Gaussian elimination. PatrickJMT on YouTube has a
number of videos demonstrating Gaussian elimination.

Eigenvectors and Eigenvalues
Matrix decomposition is breaking up a matrix into its basic components, much like
factoring numbers (e.g., 10 can be factored to 2 × 5).

Matrix decomposition is helpful for tasks like finding inverse matrices and calculating
determinants, as well as linear regression. There are many ways to decompose a
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matrix depending on your task. In Chapter 5 we will use a matrix decomposition
technique, QR decomposition, to perform a linear regression.

But in this chapter let’s focus on a common method called eigendecomposition,
which is often used for machine learning and principal component analysis. At this
level we do not have the bandwidth to dive into each of these applications. For now,
just know eigendecomposition is helpful for breaking up a matrix into components
that are easier to work with in different machine learning tasks. Note also it only
works on square matrices.

In eigendecomposition, there are two components: the eigenvalues denoted by
lambda λ and eigenvector by v shown in Figure 4-24.

Figure 4-24. The eigenvector and eigenvalues

If we have a square matrix A, it has the following eigenvalue equation:

Av = λv

If A is the original matrix, it is composed of eigenvector v and eigenvalue λ. There is
one eigenvector and eigenvalue for each dimension of the parent matrix, and not all
matrices can be decomposed into an eigenvector and eigenvalue. Sometimes complex
(imaginary) numbers will even result.

Example 4-20 is how we calculate eigenvectors and eigenvalues in NumPy for a given
matrix A.

Example 4-20. Performing eigendecomposition in NumPy

from numpy import array, diag
from numpy.linalg import eig, inv

A = array([
    [1, 2],
    [4, 5]
])
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eigenvals, eigenvecs = eig(A)

print("EIGENVALUES")
print(eigenvals)
print("\nEIGENVECTORS")
print(eigenvecs)

"""
EIGENVALUES
[-0.46410162  6.46410162]

EIGENVECTORS
[[-0.80689822 -0.34372377]
 [ 0.59069049 -0.9390708 ]]
"""

So how do we rebuild matrix A from the eigenvectors and eigenvalues? Recall this
formula:

Av = λv

We need to make a few tweaks to the formula to reconstruct A:

A = QΛQ−1

In this new formula, Q is the eigenvectors, Λ is the eigenvalues in diagonal form,
and Q−1 is the inverse matrix of Q. Diagonal form means the vector is padded into
a matrix of zeroes and occupies the diagonal line in a similar pattern to an identity
matrix.

Example 4-21 brings the example full circle in Python, starting with decomposing the
matrix and then recomposing it.

Example 4-21. Decomposing and recomposing a matrix in NumPy

from numpy import array, diag
from numpy.linalg import eig, inv

A = array([
    [1, 2],
    [4, 5]
])

eigenvals, eigenvecs = eig(A)

print("EIGENVALUES")
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print(eigenvals)
print("\nEIGENVECTORS")
print(eigenvecs)

print("\nREBUILD MATRIX")
Q = eigenvecs
R = inv(Q)

L = diag(eigenvals)
B = Q @ L @ R

print(B)

"""
EIGENVALUES
[-0.46410162  6.46410162]

EIGENVECTORS
[[-0.80689822 -0.34372377]
 [ 0.59069049 -0.9390708 ]]

REBUILD MATRIX
[[1. 2.]
 [4. 5.]]
"""

As you can see, the matrix we rebuilt is the one we started with.

Conclusion
Linear algebra can be maddeningly abstract and it is full of mysteries and ideas to
ponder. You may find the whole topic is one big rabbit hole, and you would be
right! However, it is a good idea to continue being curious about it if you want
to have a long, successful data science career. It is the foundation for statistical
computing, machine learning, and other applied data science areas. Ultimately, it is
the foundation for computer science in general. You can certainly get away with not
knowing it for a while but you will encounter limitations in your understanding at
some point.

You may wonder how these ideas are practical as they may feel theoretical. Do not
worry; we will see some practical applications throughout this book. But the theory
and geometric interpretations are important to have intuition when you work with
data, and by understanding linear transformations visually you are prepared to take
on more advanced concepts that may be thrown at you later in your pursuits.
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If you want to learn more about linear programming, there is no better place than
3Blue1Brown’s YouTube playlist “Essence of Linear Algebra”. The linear algebra vid‐
eos from PatrickJMT are helpful as well.

If you want to get more comfortable with NumPy, the O’Reilly book Python for Data
Analysis (2nd edition) by Wes McKinney is a recommended read. It does not focus
much on linear algebra, but it does provide practical instruction on using NumPy,
Pandas, and Python on datasets.

Exercises
1. Vector v  has a value of [1, 2] but then a transformation happens. i  lands at [2, 0]1.

and j  lands at [0, 1.5]. Where does v  land?

2. Vector v  has a value of [1, 2] but then a transformation happens. i  lands at2.
[-2, 1] and j  lands at [1, -2]. Where does v  land?

3. A transformation i  lands at [1, 0] and j  lands at [2, 2]. What is the determinant3.
of this transformation?

4. Can two or more linear transformations be done in single linear transformation?4.
Why or why not?

5. Solve the system of equations for x, y, and z:5.

3x + 1y + 0z = = 54
2x + 4y + 1z = 12
3x + 1y + 8z = 6

6. Is the following matrix linearly dependent? Why or why not?6.

2 1
6 3

Answers are in Appendix B.
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CHAPTER 5

Linear Regression

One of the most practical techniques in data analysis is fitting a line through
observed data points to show a relationship between two or more variables. A regres‐
sion attempts to fit a function to observed data to make predictions on new data.
A linear regression fits a straight line to observed data, attempting to demonstrate
a linear relationship between variables and make predictions on new data yet to be
observed.

It might make more sense to see a picture rather than read a description of linear
regression. There is an example of a linear regression in Figure 5-1.

Linear regression is a workhorse of data science and statistics and not only applies
concepts we learned in previous chapters but sets up new foundations for later
topics like neural networks (Chapter 7) and logistic regression (Chapter 6). This
relatively simple technique has been around for more than two hundred years and
contemporarily is branded as a form of machine learning.

Machine learning practitioners often take a different approach to validation, starting
with a train-test split of the data. Statisticians are more likely to use metrics like
prediction intervals and correlation for statistical significance. We will cover both
schools of thought so readers can bridge the ever-widening gap between the two
disciplines, and thus find themselves best equipped to wear both hats.
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Figure 5-1. Example of a linear regression, which fits a line to observed data

Wait, Regression Is Machine Learning?
Machine learning has several techniques under its umbrella, but the one with the
most use cases currently is supervised learning, and regressions play a big role here.
This is why linear regression is branded as a form of machine learning. Confusingly,
statisticians may refer to their regression models as statistical learning, whereas data
science and machine learning professionals call their models machine learning.

While supervised learning is often regression, unsupervised machine learning is
more about clustering and anomaly detection. Reinforcement learning often pairs
supervised machine learning with simulation to rapidly generate synthetic data.

We will learn two more forms of supervised machine learning in Chapter 6 on logistic
regression and Chapter 7 on neural networks.
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A Basic Linear Regression
I want to study the relationship between the age of a dog and the number of veteri‐
nary visits it had. In a fabricated sample we have 10 random dogs. I am a fan of
understanding complex techniques with simple datasets (real or otherwise), so we
understand the strengths and limitations of the technique without complex data
muddying the water. Let’s plot this dataset as shown in Figure 5-2.

Figure 5-2. Plotting a sample of 10 dogs with their age and number of vet visits

We can clearly see there is a linear correlation here, meaning when one of these
variables increases/decreases, the other increases/decreases in a roughly proportional
amount. We could draw a line through these points to show a correlation like this in
Figure 5-3.
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Figure 5-3. Fitting a line through our data

I will show how to calculate this fitted line later in this chapter. We will also explore
how to calculate the quality of this fitted line. For now, let’s focus on the benefits of
performing a linear regression. It allows us to make predictions on data we have not
seen before. I do not have a dog in my sample that is 8.5 years old, but I can look at
this line and estimate the dog will have 21 veterinary visits in its life. I just look at the
line where x = 8.5 and I see that y = 21.218 as shown in Figure 5-4. Another benefit
is we can analyze variables for possible relationships and hypothesize that correlated
variables are causal to one another.

Now what are the downsides of a linear regression? I cannot expect that every
outcome is going to fall exactly on that line. After all, real-world data is noisy and
never perfect and will not follow a straight line. It may not remotely follow a straight
line at all! There is going to be error around that line, where the point will fall above
or below the line. We will cover this mathematically when we talk about p-values,
statistical significance, and prediction intervals, which describes how reliable our
linear regression is. Another catch is we should not use the linear regression to
make predictions outside the range of data we have, meaning we should not make
predictions where x < 0 and x > 10 because we do not have data outside those values.

150 | Chapter 5: Linear Regression



Figure 5-4. Making a prediction using a linear regression, seeing that an 8.5-year-old dog
is predicted to have about 21.2 vet visits

Don’t Forget Sampling Bias!

We should question this data and how it was sampled to detect
bias. Was this at a single veterinary clinic? Multiple random clinics?
Is there self-selection bias by using veterinary data, only polling
dogs that visit the vet? If the dogs were sampled in the same geog‐
raphy, can that sway the data? Perhaps dogs in hot desert climates
go to vets more for heat exhaustion and snake bites, and this would
inflate our veterinary visits in our sample.
As discussed in Chapter 3, it has become fashionable to make
data an oracle for truth. However data is simply a sample from
a population, and we need to practice discernment on how well
represented our sample is. Be just as interested (if not more) in
where the data comes from and not just what the data says.

Basic Linear Regression with SciPy
We have a lot to learn regarding linear regression in this chapter, but let’s start out
with some code to execute what we know so far.

There are plenty of platforms to perform a linear regression, from Excel to Python
and R. But we will stick with Python in this book, starting with scikit-learn to do the
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work for us. I will show how to build a linear regression “from scratch” later in this
chapter so we grasp important concepts like gradient descent and least squares.

Example 5-1 is how we use scikit-learn to perform a basic, unvalidated linear regres‐
sion on the sample of 10 dogs. We pull in this data using Pandas, convert it into
NumPy arrays, perform linear regression using scikit-learn, and use Plotly to display
it in a chart.

Example 5-1. Using scikit-learn to do a linear regression

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# Import points
df = pd.read_csv('https://bit.ly/3goOAnt', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)
Y = df.values[:, -1]

# Fit a line to the points
fit = LinearRegression().fit(X, Y)

# m = 1.7867224, b = -16.51923513
m = fit.coef_.flatten()
b = fit.intercept_.flatten()
print("m = {0}".format(m))
print("b = {0}".format(b))

# show in chart
plt.plot(X, Y, 'o') # scatterplot
plt.plot(X, m*X+b) # line
plt.show()

First we import the data from this CSV on GitHub. We separate the two columns into
X and Y datasets using Pandas. We then fit() the LinearRegression model to the
input X data and the output Y data. We can then get the m and b coefficients that
describe our fitted linear function.

In the plot, sure enough you will get a fitted line running through these points shown
in Figure 5-5.
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Figure 5-5. SciPy will fit a regression line to your data

What decides the best fit line to these points? Let’s discuss that next.

Residuals and Squared Errors
How do statistics tools like scikit-learn come up with a line that fits to these points? It
comes down to two questions that are fundamental to machine learning training:

• What defines a “best fit”?•
• How do we get to that “best fit”?•

The first question has a pretty established answer: we minimize the squares, or more
specifically the sum of the squared residuals. Let’s break that down. Draw any line
through the points. The residual is the numeric difference between the line and the
points, as shown in Figure 5-6.
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Figure 5-6. The residuals are the differences between the line and the points

Points above the line will have a positive residual, and points below the line will
have a negative residual. In other words, it is the subtracted difference between the
predicted y-values (derived from the line) and the actual y-values (which came from
the data). Another name for residuals are errors, because they reflect how wrong our
line is in predicting the data.

Let’s calculate these differences between these 10 points and the line y = 1.93939x +
4.73333 in Example 5-2 and the residuals for each point in Example 5-3.

Example 5-2. Calculating the residuals for a given line and data

import pandas as pd

# Import points
points = pd.read_csv('https://bit.ly/3goOAnt', delimiter=",").itertuples()

# Test with a given line
m = 1.93939
b = 4.73333

# Calculate the residuals
for p in points:
    y_actual = p.y
    y_predict = m*p.x + b
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    residual = y_actual - y_predict
    print(residual)

Example 5-3. The residuals for each point

-1.67272
1.3878900000000005
-0.5515000000000008
2.5091099999999997
-0.4302799999999998
-1.3696699999999993f
0.6909400000000012
-2.2484499999999983
2.812160000000002
-1.1272299999999973

If we are fitting a straight line through our 10 data points, we likely want to minimize
these residuals in total so there is the least gap possible between the line and points.
But how do we measure the “total”? The best approach is to take the sum of squares,
which simply squares each residual, or multiplies each residual by itself, and sums
them. We take each actual y-value and subtract from it the predicted y-value taken
from the line, then square and sum all those differences.

Why Not Absolute Values?
You might wonder why we have to square the residuals before summing them. Why
not just add them up without squaring? That will not work because the negatives
will cancel out the positives. What if we add the absolute values, where we turn all
negative values into positive values? That sounds promising, but absolute values are
mathematically inconvenient. More specifically, absolute values do not work well with
calculus derivatives that we are going to use later for gradient descent. This is why we
choose the squared residuals as our way of totaling the loss.

A visual way to think of it is shown in Figure 5-7, where we overlay a square on
each residual and each side is the length of the residual. We sum the area of all these
squares, and later we will learn how to find the minimum sum we can achieve by
identifying the best m and b.
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Figure 5-7. Visualizing the sum of squares, which would be the sum of all areas where
each square has a side length equal to the residual

Let’s modify our code in Example 5-4 to find the sum of squares.

Example 5-4. Calculating the sum of squares for a given line and data

import pandas as pd

# Import points
points = pd.read_csv("https://bit.ly/2KF29Bd").itertuples()

# Test with a given line
m = 1.93939
b = 4.73333

sum_of_squares = 0.0

# calculate sum of squares
for p in points:
    y_actual = p.y
    y_predict = m*p.x + b
    residual_squared = (y_predict - y_actual)**2
    sum_of_squares += residual_squared

print("sum of squares = {}".format(sum_of_squares))
# sum of squares = 28.096969704500005
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Next question: how do we find the m and b values that will produce the minimum
sum of squares, without using a library like scikit-learn? Let’s look at that next.

Finding the Best Fit Line
We now have a way to measure the quality of a given line against the data points: the
sum of squares. The lower we can make that number, the better the fit. Now how do
we find the right m and b values that create the least sum of squares?

There are a couple of search algorithms we can employ, which try to find the right
set of values to solve a given problem. You can try a brute force approach, generating
random m and b values millions of times and choosing the ones that produce the
least sum of squares. This will not work well because it will take an endless amount
of time to find even a decent approximation. We will need something a little more
guided. I will curate five techniques you can use: closed form, matrix inversion,
matrix decomposition, gradient descent, and stochastic gradient descent. There are
other search algorithms like hill climbing that could be used (and are covered in
Appendix A), but we will stick with what’s common.

Machine Learning Training Is Fitting a Regression
This is the heart of “training” a machine learning algorithm. We provide some data
and an objective function (the sum of squares) and it will find the right coefficients m
and b to fulfill that objective. So when we “train” a machine learning model we really
are minimizing a loss function.

Closed Form Equation
Some readers may ask if there is a formula (called a closed form equation) to fit a
linear regression by exact calculation. The answer is yes, but only for a simple linear
regression with one input variable. This luxury does not exist for many machine
learning problems with several input variables and a large amount of data. We can
use linear algebra techniques to scale up, and we will talk about this shortly. We will
also take the opportunity to learn about search algorithms like stochastic gradient
descent.

For a simple linear regression with only one input and one output variable, here are
the closed form equations to calculate m and b. Example 5-5 shows how you can do
these calculations in Python.

m = n∑xy − ∑x∑y
n∑x2 − ∑x 2
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b = ∑y
n

−m∑x
n

Example 5-5. Calculating m and b for a simple linear regression

import pandas as pd

# Load the data
points = list(pd.read_csv('https://bit.ly/2KF29Bd', delimiter=",").itertuples())

n = len(points)

m = (n*sum(p.x*p.y for p in points) - sum(p.x for p in points) *
    sum(p.y for p in points)) / (n*sum(p.x**2 for p in points) -
    sum(p.x for p in points)**2)

b = (sum(p.y for p in points) / n) - m * sum(p.x for p in points) / n

print(m, b)
# 1.9393939393939394 4.7333333333333325

These equations to calculate m and b are derived from calculus, and we will do some
calculus work with SymPy later in this chapter if you have the itch to discover where
formulas come from. For now, you can plug in the number of data points n as well as
iterate the x- and y-values to do the operations just described.

Going forward, we will learn approaches that are more oriented to contemporary
techniques that cope with larger amounts of data. Closed form equations tend not to
scale well.

Computational Complexity

The reason the closed form equations do not scale well with larger
datasets is due to a computer science concept called computational
complexity, which measures how long an algorithm takes as a prob‐
lem size grows. This might be worth getting familiar with; here are
two great YouTube videos on the topic:

• “P vs. NP and the Computational Complexity Zoo”•
• “What Is Big O Notation?”•

Inverse Matrix Techniques
Going forward, I will sometimes alternate the coefficients m and b with different
names, β1 and β0, respectively. This is the convention you will see more often in the
professional world, so it might be a good time to graduate.
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While we dedicated an entire chapter to linear algebra in Chapter 4, applying it can
be a bit overwhelming when you are new to math and data science. This is why most
examples in this book will use plain Python or scikit-learn. However, I will sprinkle in
linear algebra where it makes sense, just to show how linear algebra is useful. If you
find this section overwhelming, feel free to move on to the rest of the chapter and
come back later.

We can use transposed and inverse matrices, which we covered in Chapter 4, to fit a
linear regression. Next, we calculate a vector of coefficients b given a matrix of input
variable values X  and a vector of output variable values y. Without going down a
rabbit hole of calculus and linear algebra proofs, here is the formula:

b = XT · X
−1

· XT · y

You will notice transposed and inverse operations are performed on the matrix X
and combined with matrix multiplication. Here is how we perform this operation in
NumPy in Example 5-6 to get our coefficients m and b.

Example 5-6. Using inverse and transposed matrices to fit a linear regression

import pandas as pd
from numpy.linalg import inv
import numpy as np

# Import points
df = pd.read_csv('https://bit.ly/3goOAnt', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1].flatten()

# Add placeholder "1" column to generate intercept
X_1 = np.vstack([X, np.ones(len(X))]).T

# Extract output column (all rows, last column)
Y = df.values[:, -1]

# Calculate coefficents for slope and intercept
b = inv(X_1.transpose() @ X_1) @ (X_1.transpose() @ Y)
print(b) # [1.93939394, 4.73333333]

# Predict against the y-values
y_predict = X_1.dot(b)

It is not intuitive, but note we have to stack a “column” of 1s next to our X column.
The reason is this will generate the intercept β0 coefficient. Since this column is all 1s,
it effectively generates the intercept and not just a slope β1.
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When you have a lot of data with a lot of dimensions, computers can start to choke
and produce unstable results. This is a use case for matrix decomposition, which we
learned about in Chapter 4 on linear algebra. In this specific case, we take our matrix
X, append an additional column of 1s to generate the intercept β0 just like before, and
then decompose it into two component matrices Q and R:

X = Q · R

Avoiding more calculus rabbit holes, here is how we use Q and R to find the beta
coefficient values in the matrix form b:

b = R−1 · QT · y

And Example 5-7 shows how we use the preceding QR decomposition formula in
Python using NumPy to perform a linear regression.

Example 5-7. Using QR decomposition to perform a linear regression

import pandas as pd
from numpy.linalg import qr, inv
import numpy as np

# Import points
df = pd.read_csv('https://bit.ly/3goOAnt', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1].flatten()

# Add placeholder "1" column to generate intercept
X_1 = np.vstack([X, np.ones(len(X))]).transpose()

# Extract output column (all rows, last column)
Y = df.values[:, -1]

# calculate coefficents for slope and intercept
# using QR decomposition
Q, R = qr(X_1)
b = inv(R).dot(Q.transpose()).dot(Y)

print(b) # [1.93939394, 4.73333333]

Typically, QR decomposition is the method used by many scientific libraries for linear
regression because it copes with large amounts of data more easily and is more
stable. What do I mean by stable? Numerical stability is how well an algorithm keeps
errors minimized, rather than amplifying errors in approximations. Remember that
computers work only to so many decimal places and have to approximate, so it
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becomes important our algorithms do not deteriorate with compounding errors in
those approximations.

Overwhelmed?

If you find these linear algebra examples of linear regression over‐
whelming, do not worry! I just wanted to provide exposure to a
practical use case for linear algebra. Going forward, we will focus
on other techniques you can use.

Gradient Descent
Gradient descent is an optimization technique that uses derivatives and iterations to
minimize/maximize a set of parameters against an objective. To learn about gradient
descent, let’s do a quick thought experiment and then apply it on a simple example.

A Thought Experiment on Gradient Descent
Imagine you are in a mountain range at night and given a flashlight. You are trying
to get to the lowest point of the mountain range. You can see the slope around
you before you even take a step. You step in directions where the slope visibly goes
downward. You take bigger steps for bigger slopes, and smaller steps for smaller
slopes. Ultimately, you will find yourself at a low point where the slope is flat, a
value of 0. Sounds pretty good, right? This approach with the flashlight is known as
gradient descent, where we step in directions where the slope goes downward.

In machine learning, we often think of all possible sum of square losses we will
encounter with different parameters as a mountainous landscape. We want to mini‐
mize our loss, and we navigate the loss landscape to do it. To solve this problem,
gradient descent has an attractive feature: the partial derivative is that flashlight,
allowing us to see the slopes for every parameter (in this case m and b, or β0 and β1).
We step in directions for m and b where the slope goes downward. We take bigger
steps for bigger slopes and smaller steps for smaller slopes. We can simply calculate
the length of this step by taking a fraction of the slope. This fraction is known as
our learning rate. The higher the learning rate, the faster it will run at the cost of
accuracy. But the lower the learning rate, the longer it will take to train and require
more iterations.

Deciding a learning rate is like choosing between an ant, a human, or a giant to
step down the slope. An ant (small learning rate) will take tiny steps and take an
unacceptably long time to get to the bottom but will do so precisely. A giant (large
learning rate) may keep stepping over the minimum to the point he may never reach
it no matter how many steps he takes. The human (moderate learning rate) probably
has most balanced step size, having the right trade between speed and accuracy in
arriving at the minimum.
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Let’s Walk Before We Run

For the function f x = x − 3 2 + 4, let’s find the x-value that produces the lowest
point of that function. While we could solve this algebraically, let’s use gradient
descent to do it.

Here is visually what we are trying to do. As shown in Figure 5-8, we want to “step” x
toward the minimum where the slope is 0.

Figure 5-8. Stepping toward the local minimum where the slope approaches 0

In Example 5-8, the function f(x) and its derivative with respect to x is dx_f(x).
Recall we covered in Chapter 1 how to use SymPy to calculate derivatives. After
finding the derivative, we then proceed to perform gradient descent.

Example 5-8. Using gradient descent to find the minimum of a parabola

import random

def f(x):
    return (x - 3) ** 2 + 4

def dx_f(x):
    return 2*(x - 3)

# The learning rate
L = 0.001

# The number of iterations to perform gradient descent
iterations = 100_000

 # start at a random x
x = random.randint(-15,15)

for i in range(iterations):

    # get slope
    d_x = dx_f(x)
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    # update x by subtracting the (learning rate) * (slope)
    x -= L * d_x

print(x, f(x)) # prints 2.999999999999889 4.0

If we graph the function (as shown in Figure 5-8), we should see the lowest point of
the function is clearly where x = 3, and the preceding code should get very close to
that. The learning rate is used to take a fraction of the slope and subtract it from the
x-value on each iteration. Bigger slopes will result in bigger steps, and smaller slopes
will result in smaller steps. After enough iterations, x will end up at the lowest point
of the function (or close enough to it) where the slope is 0.

Gradient Descent and Linear Regression
You now might be wondering how we use this for linear regression. Well, it’s the
same idea except our “variables” are m and b (or β0 and β1) rather than x. Here’s
why: in a simple linear regression we already know the x- and y-values because those
are provided as the training data. The “variables” we need to solve are actually the
parameters m and b, so we can find the best fit line that will then accept an x variable
to predict a new y-value.

How do we calculate the slopes for m and b? We need the partial derivatives for each
of these. What function are we taking the derivative of? Remember we are trying to
minimize loss and that will be the sum of squares. So we need to find the derivatives
of our sum of squares function with respect to m and b.

I implement these two partial derivatives for m and b as shown in Example 5-9. We
will learn how to do this shortly in SymPy. I then perform gradient descent to find m
and b: 100,000 iterations with a learning rate of .001 will be sufficient. Note that the
smaller you make that learning rate, the slower it will be and the more iterations you
will need. But if you make it too high, it will run fast but have a poor approximation.
When someone says a machine learning algorithm is “learning” or “training,” it really
is just fitting a regression like this.

Example 5-9. Performing gradient descent for a linear regression

import pandas as pd

# Import points from CSV
points = list(pd.read_csv("https://bit.ly/2KF29Bd").itertuples())

# Building the model
m = 0.0
b = 0.0
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# The learning Rate
L = .001

# The number of iterations
iterations = 100_000

n = float(len(points))  # Number of elements in X

# Perform Gradient Descent
for i in range(iterations):

    # slope with respect to m
    D_m = sum(2 * p.x * ((m * p.x + b) - p.y) for p in points)

    # slope with respect to b
    D_b = sum(2 * ((m * p.x + b) - p.y) for p in points)

    # update m and b
    m -= L * D_m
    b -= L * D_b

print("y = {0}x + {1}".format(m, b))
# y = 1.9393939393939548x + 4.733333333333227

Well, not bad! That approximation got close to our closed form equation solution.
But what’s the catch? Just because we found the “best fit line” by minimizing sum of
squares, that does not mean our linear regression is any good. Does minimizing the
sum of squares guarantee a great model to make predictions? Not exactly. Now that I
showed you how to fit a linear regression, let’s take a step back, revisit the big picture,
and determine whether a given linear regression is the right way to make predictions
in the first place. But before we do that, here’s one more detour showing the SymPy
solution.

Gradient Descent for Linear Regression Using SymPy
If you want the SymPy code that came up with these two derivatives for the sum of
squares function, for m and b respectively, here is the code in Example 5-10.

Example 5-10. Calculating partial derivatives for m and b

from sympy import *

m, b, i, n = symbols('m b i n')
x, y = symbols('x y', cls=Function)

sum_of_squares = Sum((m*x(i) + b - y(i)) ** 2, (i, 0, n))

d_m = diff(sum_of_squares, m)
d_b = diff(sum_of_squares, b)
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print(d_m)
print(d_b)

# OUTPUTS
# Sum(2*(b + m*x(i) - y(i))*x(i), (i, 0, n))
# Sum(2*b + 2*m*x(i) - 2*y(i), (i, 0, n))

You will see the two derivatives for m and b, respectively, printed. Note the Sum()
function will iterate and add items together (in this case all the data points), and we
treat x and y as functions that look up a value for a given point at index i.

In mathematical notation, where e(x) represents the sum of squares loss function,
here are the partial derivatives for m and b:

e x = ∑
i = 0

n
mxi + b − yi

2

d
dm

e x = ∑
i = 0

n
2 b +mxi − yi xi

d
db
e x = ∑

i = 0

n
2b + 2mxi − 2yi

If you want to apply our dataset and execute a linear regression using gradient
descent, you will have to perform a few additional steps as shown in Example 5-11.
We will need to substitute for the n, x(i) and y(i) values, iterating all of our data
points for the d_m and d_b derivative functions. That should leave only the m and b
variables, which we will search for the optimal values using gradient descent.

Example 5-11. Solving linear regression using SymP

import pandas as pd
from sympy import *

# Import points from CSV
points = list(pd.read_csv("https://bit.ly/2KF29Bd").itertuples())

m, b, i, n = symbols('m b i n')
x, y = symbols('x y', cls=Function)

sum_of_squares = Sum((m*x(i) + b - y(i)) ** 2, (i, 0, n))

d_m = diff(sum_of_squares, m) \
    .subs(n, len(points) - 1).doit() \
    .replace(x, lambda i: points[i].x) \
    .replace(y, lambda i: points[i].y)

d_b = diff(sum_of_squares, b) \
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    .subs(n, len(points) - 1).doit() \
    .replace(x, lambda i: points[i].x) \
    .replace(y, lambda i: points[i].y)

# compile using lambdify for faster computation
d_m = lambdify([m, b], d_m)
d_b = lambdify([m, b], d_b)

# Building the model
m = 0.0
b = 0.0

# The learning Rate
L = .001

# The number of iterations
iterations = 100_000

# Perform Gradient Descent
for i in range(iterations):

    # update m and b
    m -= d_m(m,b) * L
    b -= d_b(m,b) * L

print("y = {0}x + {1}".format(m, b))
# y = 1.939393939393954x + 4.733333333333231

As shown in Example 5-11, it is a good idea to call lambdify() on both of our partial
derivative functions to convert them from SymPy to an optimized Python function.
This will cause computations to perform much more quickly when we do gradient
descent. The resulting Python functions are backed by NumPy, SciPy, or whatever
numerical libraries SymPy detects you have available. After that, we can perform
gradient descent.

Finally, if you are curious about what the loss function looks like for this simple linear
regression, Example 5-12 shows the SymPy code that plugs the x, y, and n values into
our loss function and then plots m and b as the input variables. Our gradient descent
algorithm gets us to the lowest point in this loss landscape shown in Figure 5-9.

Example 5-12. Plotting the loss function for linear regression

from sympy import *
from sympy.plotting import plot3d
import pandas as pd

points = list(pd.read_csv("https://bit.ly/2KF29Bd").itertuples())
m, b, i, n = symbols('m b i n')
x, y = symbols('x y', cls=Function)
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sum_of_squares = Sum((m*x(i) + b - y(i)) ** 2, (i, 0, n)) \
    .subs(n, len(points) - 1).doit() \
    .replace(x, lambda i: points[i].x) \
    .replace(y, lambda i: points[i].y)

plot3d(sum_of_squares)

Figure 5-9. The loss landscape for a simple linear regression

Overfitting and Variance
Riddle me this: if we truly wanted to minimize loss, as in reduce the sum of squares to
0, what would we do? Are there options other than linear regression? One conclusion
you may arrive at is simply fit a curve that touches all the points. Heck, why not
just connect the points in segments and use that to make predictions as shown in
Figure 5-10? That gives us a loss of 0!

Shoot, why did we go through all that trouble with linear regression and not do this
instead? Well, remember our big-picture objective is not to minimize the sum of
squares but to make accurate predictions on new data. This connect-the-dots model
is severely overfit, meaning it shaped the regression to the training data too exactly
to the point it will predict poorly on new data. This simple connect-the-dots model
is sensitive to outliers that are far away from the rest of the points, meaning it will
have high variance in predictions. While the points in this example are relatively close
to a line, this problem will be a lot worse with other datasets with more spread and
outliers. Because overfitting increases variance, predictions are going to be all over
the place!
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Figure 5-10. Performing a regression by simply connecting the points, resulting in zero
loss

Overfitting Is Memorization

When you hear someone say a regression “memorized” the data
rather than generalizing it, they are talking about overfitting.
As you can guess, we want to find effective generalizations in
our model rather than memorize data. Otherwise, our regression
simply turns into a database where we look up values.

This is why in machine learning you will find bias is added to the model, and linear
regression is considered a highly biased model. This is not the same as bias in the
data, which we talked about extensively in Chapter 3. Bias in a model means we
prioritize a method (e.g., maintaining a straight line) as opposed to bending and
fitting to exactly what the data says. A biased model leaves some wiggle room hoping
to minimize loss on new data for better predictions, as opposed to minimizing loss
on data it was trained on. I guess you could say adding bias to a model counteracts
overfitting with underfitting, or fitting less to the training data.

As you can imagine, this is a balancing act because it is two contradictory objectives.
In machine learning, we basically are saying, “I want to fit a regression to my data,
but I don’t want to fit it too much. I need some wiggle room for predictions on new
data that will be different.”
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Lasso and Ridge Regression

Two somewhat popular variants of linear regression are lasso
regression and ridge regression. Ridge regression adds a further
bias to a linear regression in the form of a penalty, therefore
causing it to fit less to the data. Lasso regression will attempt to
marginalize noisy variables, making it useful when you want to
automatically remove variables that might be irrelevant.

Still, we cannot just apply a linear regression to some data, make some predictions
with it, and assume all is OK. A linear regression can overfit even with the bias of
a straight line. Therefore, we need to check and mitigate for both overfitting and
underfitting to find the sweet spot between the two. That is, unless there is not one at
all, in which case you should abandon the model altogether.

Stochastic Gradient Descent
In a machine learning context, you are unlikely to do gradient descent in practice like
we did earlier, where we trained on all training data (called batch gradient descent). In
practice, you are more likely to perform stochastic gradient descent, which will train
on only one sample of the dataset on each iteration. In mini-batch gradient descent,
multiple samples of the dataset are used (e.g., 10 or 100 data points) on each iteration.

Why use only part of the data on each iteration? Machine learning practitioners cite
a few benefits. First, it reduces computation significantly, as each iteration does not
have to traverse the entire training dataset but only part of it. The second benefit is it
reduces overfitting. Exposing the training algorithm to only part of the data on each
iteration keeps changing the loss landscape so it does not settle in the loss minimum.
After all, minimizing the loss is what causes overfitting and so we introduce some
randomness to create a little bit of underfitting (but hopefully not too much).

Of course, our approximation becomes loose so we have to be careful. This is why we
will talk about train/test splits shortly, as well as other metrics to evaluate our linear
regression’s reliability.

Example 5-13 shows how to perform stochastic gradient descent in Python. If you
change the sample size to be more than 1, it will perform mini-batch gradient
descent.

Example 5-13. Performing stochastic gradient descent for a linear regression

import pandas as pd
import numpy as np

# Input data
data = pd.read_csv('https://bit.ly/2KF29Bd', header=0)
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X = data.iloc[:, 0].values
Y = data.iloc[:, 1].values

n = data.shape[0]  # rows

# Building the model
m = 0.0
b = 0.0

sample_size = 1  # sample size
L = .0001  # The learning Rate
epochs = 1_000_000  # The number of iterations to perform gradient descent

# Performing Stochastic Gradient Descent
for i in range(epochs):
    idx = np.random.choice(n, sample_size, replace=False)
    x_sample = X[idx]
    y_sample = Y[idx]

    # The current predicted value of Y
    Y_pred = m * x_sample + b

    # d/dm derivative of loss function
    D_m = (-2 / sample_size) * sum(x_sample * (y_sample - Y_pred))

    # d/db derivative of loss function
    D_b = (-2 / sample_size) * sum(y_sample - Y_pred)
    m = m - L * D_m  # Update m
    b = b - L * D_b  # Update b

    # print progress
    if i % 10000 == 0:
        print(i, m, b)

print("y = {0}x + {1}".format(m, b))

When I ran this, I got a linear regression of y = 1.9382830354181135x +
4.753408787648379. Obviously, your results are going to be different, and because
of stochastic gradient descent we really aren’t going to converge toward a specific
minimum but will end up in a broader neighborhood.
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Is Randomness Bad?

If this randomness feels uncomfortable where you get a different
answer every time you run a piece of code, welcome to the world of
machine learning, optimization, and stochastic algorithms! Many
algorithms that do approximations are random-based, and while
some are extremely useful, others can be sloppy and perform
poorly, as you might expect.
A lot of people look to machine learning and AI as some tool
that gives objective and precise answers, but that cannot be farther
from the truth. Machine learning produces approximations with a
degree of uncertainty, often without ground truth once in produc‐
tion. Machine learning can be misused if one is not aware of how
it works, and it is remiss not to acknowledge its nondeterministic
and approximate nature.
While randomness can create some powerful tools, it can also
be abused. Be careful to not use seed values and randomness to
p-hack a “good” result, and put effort into analyzing your data and
model.

The Correlation Coefficient
Take a look at this scatterplot in Figure 5-11 alongside its linear regression. Why
might a linear regression not work too well here?

Figure 5-11. A scatterplot of data with high variance
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The problem here is that the data has high variance. If the data is extremely spread
out, it is going to drive up the variance to the point predictions become less accurate
and useful, resulting in large residuals. Of course we can introduce a more biased
model, such as linear regression, to not bend and respond to the variance so easily.
However, the underfitting is also going to undermine our predictions because the
data is so spread out. We need to numerically measure how “off ” our predictions are.

So how do you measure these residuals in aggregate? How do you also get a sense
for how bad the variance in the data is? Let me introduce you to the correlation
coefficient, also called the Pearson correlation, which measures the strength of the
relationship between two variables as a value between –1 and 1. A correlation coeffi‐
cient closer to 0 indicates there is no correlation. A correlation coefficient closer to
1 indicates a strong positive correlation, meaning when one variable increases, the
other proportionally increases. If it is closer to –1 then it indicates a strong negative
correlation, which means as one variable increases the other proportionally decreases.

Note the correlation coefficient is often denoted as r. The highly scattered data in
Figure 5-11 has a correlation coefficient of 0.1201. Since it is much closer to 0 than 1,
we can infer the data has little correlation.

Here are four other scatterplots in Figure 5-12 showing their correlation coefficients.
Notice that the more the points follow a line, the stronger the correlation. More
dispersed points result in weaker correlations.

Figure 5-12. Correlation coefficients for four scatterplots

As you can imagine, the correlation coefficient is useful for seeing if there is a
possible relationship between two variables. If there is a strong positive-negative
relationship, it will be useful in our linear regression. If there is not a relationship,
they may just add noise and hurt model accuracy.

How do we use Python to calculate the correlation coefficient? Let’s use the simple
10-point dataset we used earlier. A quick and easy way to analyze correlations for
all pairs of variables is using Pandas’s corr() function. This makes it easy to see
the correlation coefficient between every pair of variables in a dataset, which in this
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case will only be x and y. This is known as a correlation matrix. Take a look in
Example 5-14.

Example 5-14. Using Pandas to see the correlation coefficient between every pair of
variables

import pandas as pd

# Read data into Pandas dataframe
df = pd.read_csv('https://bit.ly/2KF29Bd', delimiter=",")

# Print correlations between variables
correlations = df.corr(method='pearson')
print(correlations)

# OUTPUT:
#           x         y
# x  1.000000  0.957586
# y  0.957586  1.000000

As you can see, the correlation coefficient 0.957586 between x and y indicates a
strong positive correlation between the two variables. You can ignore the parts of the
matrix where x or y is set to itself and has a value of 1.0. Obviously, when x or y is
set to itself, the correlation will be perfect at 1.0, because the values match themselves
exactly. When you have more than two variables, the correlation matrix will show a
larger grid because there are more variables to pair and compare.

If you change the code to use a different dataset with a lot of variance, where the
data is spread out, you will see that the correlation coefficient decreases. This again
indicates a weaker correlation.

Calculating the Correlation Coefficient
For those who are mathematically curious how the correlation coefficient is calcula‐
ted, here is the formula:

r = n∑xy − ∑x ∑y
n∑x2 − ∑x2 n∑y2 − ∑y2

If you want to see this fully implemented in Python, I like to use one-line for loops
to do those summations. Example 5-15 shows a correlation coefficient implemented
from scratch in Python.
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Example 5-15. Calculating correlation coefficient from scratch in Python

import pandas as pd
from math import sqrt

# Import points from CSV
points = list(pd.read_csv("https://bit.ly/2KF29Bd").itertuples())
n = len(points)

numerator = n * sum(p.x * p.y for p in points) - \
            sum(p.x for p in points) * sum(p.y for p in points)

denominator = sqrt(n*sum(p.x**2 for p in points) - sum(p.x for p in points)**2) \
              * sqrt(n*sum(p.y**2 for p in points) - sum(p.y for p in points)**2)

corr = numerator / denominator

print(corr)

# OUTPUT:
# 0.9575860952087218

Statistical Significance
Here is another aspect to a linear regression you must consider: is my data correlation
coincidental? In Chapter 3 we studied hypothesis testing and p-values, and we are
going to extend those ideas here with a linear regression.

The statsmodel Library
While we are not going to introduce yet another library in this book, it is worth
mentioning that statsmodel is noteworthy if you want to do statistical analysis.

Scikit-learn and other machine learning libraries do not provide tools for statistical
significance and confidence intervals for reasons we will discuss in another sidebar.
We are going to code those techniques ourselves. But know this library exists and it is
worth checking out!

Let’s start with a fundamental question: is it possible I see a linear relationship in
my data due to random chance? How can we be 95% sure the correlation between
these two variables is significant and not coincidental? If this sounds like a hypothesis
test from Chapter 3, it’s because it is! We need to not just express the correlation
coefficient but also quantify how confident we are that the correlation coefficient did
not occur by chance.
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Rather than estimating a mean like we did in Chapter 3 with the drug-testing exam‐
ple, we are estimating the population correlation coefficient based on a sample. We
denote the population correlation coefficient with the Greek symbol ρ (Rho) while
our sample correlation coefficient is r. Just like we did in Chapter 3, we will have a
null hypothesis H0 and alternative hypothesis H1:

H0:ρ = 0 (implies no relationship)
H1:ρ ≠ 0 (relationship is present)

Our null hypothesis H0 is that there is no relationship between two variables, or
more technically, the correlation coefficient is 0. The alternative hypothesis H1 is
there is a relationship, and it can be a positive or negative correlation. This is why
the alternative hypothesis is defined as ρ ≠ 0 to support both a positive and negative
correlation.

Let’s return to our dataset of 10 points as shown in Figure 5-13. How likely is it we
would see these data points by chance? And they happen to produce what looks like a
linear relationship?

Figure 5-13. How likely would we see this data, which seems to have a linear correlation,
by random chance?

We already calculated the correlation coefficient for this dataset in Example 5-14,
which is 0.957586. That’s a strong and compelling positive correlation. But again, we
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need to evaluate if this was by random luck. Let’s pursue our hypothesis test with 95%
confidence using a two-tailed test, exploring if there is a relationship between these
two variables.

We talked about the T-distribution in Chapter 3, which has fatter tails to capture
more variance and uncertainty. We use a T-distribution rather than a normal distri‐
bution to do hypothesis testing with linear regression. First, let’s plot a T-distribution
with a 95% critical value range as shown in Figure 5-14. We account for the fact there
are 10 records in our sample and therefore we have 9 degrees of freedom (10 – 1 = 9).

Figure 5-14. A T-distribution with 9 degrees of freedom, as there are 10 records and we
subtract 1

The critical value is approximately ±2.262, and we can calculate that in Python as
shown in Example 5-16. This captures 95% of the center area of our T-distribution.

Example 5-16. Calculating the critical value from a T-distribution

from scipy.stats import t

n = 10
lower_cv = t(n-1).ppf(.025)
upper_cv = t(n-1).ppf(.975)

print(lower_cv, upper_cv)
# -2.262157162740992 2.2621571627409915
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If our test value happens to fall outside this range of (–2.262, 2.262), then we can
reject our null hypothesis. To calculate the test value t, we need to use the following
formula. Again r is the correlation coefficient and n is the sample size:

t = r

1 − r2
n − 2

t = .957586
1 − .9575862

10 − 2

= 9.339956

Let’s put the whole test together in Python as shown in Example 5-17. If our test value
falls outside the critical range of 95% confidence, we accept that our correlation was
not by chance.

Example 5-17. Testing significance for linear-looking data

from scipy.stats import t
from math import sqrt

# sample size
n = 10

lower_cv = t(n-1).ppf(.025)
upper_cv = t(n-1).ppf(.975)

# correlation coefficient
# derived from data https://bit.ly/2KF29Bd
r = 0.957586

# Perform the test
test_value = r / sqrt((1-r**2) / (n-2))

print("TEST VALUE: {}".format(test_value))
print("CRITICAL RANGE: {}, {}".format(lower_cv, upper_cv))

if test_value < lower_cv or test_value > upper_cv:
    print("CORRELATION PROVEN, REJECT H0")
else:
    print("CORRELATION NOT PROVEN, FAILED TO REJECT H0 ")

# Calculate p-value
if test_value > 0:
    p_value = 1.0 - t(n-1).cdf(test_value)
else:
    p_value = t(n-1).cdf(test_value)
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# Two-tailed, so multiply by 2
p_value = p_value * 2
print("P-VALUE: {}".format(p_value))

The test value here is approximately 9.39956, which is definitely outside the range of
(–2.262, 2.262) so we can reject the null hypothesis and say our correlation is real.
That’s because the p-value is remarkably significant: .000005976. This is well below
our .05 threshold, so this is virtually not coincidence: there is a correlation. It makes
sense the p-value is so small because the points strongly resemble a line. It is highly
unlikely these points randomly arranged themselves near a line this closely by chance.

Figure 5-15 shows some other datasets with their correlation coefficients and p-
values. Analyze each one of them. Which one is likely the most useful for predic‐
tions? What are the problems with the other ones?

Figure 5-15. Different datasets and their correlation coefficients and p-values

Now that you’ve had a chance to work through the analysis on the datasets from
Figure 5-15, let’s walk through the findings. The left figure has a high positive correla‐
tion, but it only has three points. The lack of data drives up the p-value significantly
to 0.34913 and increases the likelihood the data happened by chance. This makes
sense because having just three data points makes it likely to see a linear pattern, but
it’s not much better than having two points that will simply connect a line between
them. This brings up an important rule: having more data will decrease your p-value,
especially if that data gravitates toward a line.

The second figure is what we just covered. It has only 10 data points, but it forms
a linear pattern so nicely, we not only have a strong positive correlation but also
an extremely low p-value. When you have a p-value this low, you can bet you are
measuring an engineered and tightly controlled process, not something sociological
or natural.

The right two images in Figure 5-15 fail to identify a linear relationship. Their
correlation coefficient is close to 0, indicating no correlation, and the p-values unsur‐
prisingly indicate randomness played a role.
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The rule is this: the more data you have that consistently resembles a line, the more
significant the p-value for your correlation will be. The more scattered or sparse the
data, the more the p-value will increase and thus indicate your correlation occurred
by random chance.

Coefficient of Determination
Let’s learn an important metric you will see a lot in statistics and machine learning
regressions. The coefficient of determination, called r2, measures how much variation
in one variable is explainable by the variation of the other variable. It is also the
square of the correlation coefficient r. As r approaches a perfect correlation (–1 or
1), r2 approaches 1. Essentially, r2 shows how much two variables interact with each
other.

Let’s continue looking at our data from Figure 5-13. In Example 5-18, take our
dataframe code from earlier that calculates the correlation coefficient and then simply
square it. That will multiply each correlation coefficient by itself.

Example 5-18. Creating a correlation matrix in Pandas

import pandas as pd

# Read data into Pandas dataframe
df = pd.read_csv('https://bit.ly/2KF29Bd', delimiter=",")

# Print correlations between variables
coeff_determination = df.corr(method='pearson') ** 2
print(coeff_determination)

# OUTPUT:
#           x         y
# x  1.000000  0.916971
# y  0.916971  1.000000

A coefficient of determination of 0.916971 is interpreted as 91.6971% of the variation
in x is explained by y (and vice versa), and the remaining 8.3029% is noise caused
by other uncaptured variables; 0.916971 is a pretty good coefficient of determination,
showing that x and y explain each other’s variance. But there could be other variables
at play making up that remaining 0.083029. Remember, correlation does not equal
causation, so there could be other variables contributing to the relationship we are
seeing.
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Correlation Is Not Causation!

It is important to note that while we put a lot of emphasis on meas‐
uring correlation and building metrics around it, please remember
correlation is not causation! You probably have heard that mantra
before, but I want to expand on why statisticians say it.
Just because we see a correlation between x and y does not mean
x causes y. It could actually be y causes x! Or maybe there is a
third uncaptured variable z that is causing x and y. It could be that
x and y do not cause each other at all and the correlation is just
coincidental, hence why it is important we measure the statistical
significance.
Now I have a more pressing question for you. Can comput‐
ers discern between correlation and causation? The answer is a
resounding “NO!” Computers have concept of correlation but not
causation. Let’s say I load a dataset to scikit-learn showing gallons
of water consumed and my water bill. My computer, or any pro‐
gram including scikit-learn, does not have any notion whether
more water usage causes a higher bill or a higher bill causes more
water usage. An AI system could easily conclude the latter, as
nonsensical as that is. This is why many machine learning projects
require a human in the loop to inject common sense.
In computer vision, this happens too. Computer vision often uses
a regression on the numeric pixels to predict a category. If I train a
computer vision system to recognize cows using pictures of cows,
it can easily make correlations with the field rather than the cows.
Therefore, if I show a picture of an empty field, it will label the
grass as cows! This again is because computers have no concept of
causality (the cow shape should cause the label “cow”) and instead
get lost in correlations we are not interested in.

Standard Error of the Estimate
One way to measure the overall error of a linear regression is the SSE, or sum of
squared error. We learned about this earlier where we squared each residual and
summed them. If y  (pronounced “y-hat”) is each predicted value from the line and y
represents each actual y-value from the data, here is the calculation:

SSE = ∑ y − y 2

However, all of these squared values are hard to interpret so we can use some square
root logic to scale things back into their original units. We will also average all of
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them, and this is what the standard error of the estimate (Se) does. If n is the number
of data points, Example 5-19 shows how we calculate the standard error Se in Python.

Se = ∑ y − y 2

n − 2

Example 5-19. Calculating the standard error of the estimate

Here is how we calculate it in Python:

import pandas as pd
from math import sqrt

# Load the data
points = list(pd.read_csv('https://bit.ly/2KF29Bd', delimiter=",").itertuples())

n = len(points)

# Regression line
m = 1.939
b = 4.733

# Calculate Standard Error of Estimate
S_e = sqrt((sum((p.y - (m*p.x +b))**2 for p in points))/(n-2))

print(S_e)
# 1.87406793500129

Why n − 2 instead of n − 1, like we did in so many variance calculations in Chap‐
ter 3? Without going too deep into mathematical proofs, this is because a linear
regression has two variables, not just one, so we have to increase the uncertainty by
one more in our degrees of freedom.

You will notice the standard error of the estimate looks remarkably similar to the
standard deviation we studied in Chapter 3. This is not by accident. That is because it
is the standard deviation for a linear regression.

Prediction Intervals
As mentioned earlier, our data in a linear regression is a sample from a population.
Therefore, our regression is only as good as our sample. Our linear regression line
also has a normal distribution running along it. Effectively, this makes each predicted
y-value a sample statistic just like the mean. As a matter of fact, the “mean” is shifting
along the line.
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Remember when we talked statistics in Chapter 2 about variance and standard
deviation? The concepts apply here too. With a linear regression, we hope that data
follows a normal distribution in a linear fashion. A regression line serves as the
shifting “mean” of our bell curve, and the spread of the data around the line reflects
the variance/standard deviation, as shown in Figure 5-16.

Figure 5-16. A linear regression assumes a normal distribution is following the line

When we have a normal distribution following a linear regression line, we have
not just one variable but a second one steering a distribution as well. There is a
confidence interval around each y prediction, and this is known as a prediction
interval.

Let’s bring back some context with our veterinary example, estimating the age of a
dog and number of vet visits. I want to know the prediction interval for number of
vet visits with 95% confidence for a dog that is 8.5 years old. What this prediction
interval looks like is shown in Figure 5-17. We are 95% confident that an 8.5 year old
dog will have between 16.462 and 25.966 veterinary visits.
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Figure 5-17. A prediction interval for a dog that is 8.5 years old with 95% confidence

How do we calculate this? We need to get the margin of error and plus/minus it
around the predicted y-value. It’s a beastly equation that involves a critical value from
the T-distribution as well as the standard error of the estimate. Let’s take a look:

E = t.025 * Se * 1 + 1
n

+
n x0 + x 2

n ∑x2 − ∑x 2

The x-value we are interested in is specified as x0, which in this case is 8.5. Here is
how we solve this in Python, shown in Example 5-20.

Example 5-20. Calculating a prediction interval of vet visits for a dog that’s 8.5 years old

import pandas as pd
from scipy.stats import t
from math import sqrt

# Load the data
points = list(pd.read_csv('https://bit.ly/2KF29Bd', delimiter=",").itertuples())

n = len(points)

# Linear Regression Line
m = 1.939
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b = 4.733

# Calculate Prediction Interval for x = 8.5
x_0 = 8.5
x_mean = sum(p.x for p in points) / len(points)

t_value = t(n - 2).ppf(.975)

standard_error = sqrt(sum((p.y - (m * p.x + b)) ** 2 for p in points) / (n - 2))

margin_of_error = t_value * standard_error * \
                  sqrt(1 + (1 / n) + (n * (x_0 - x_mean) ** 2) / \
                       (n * sum(p.x ** 2 for p in points) - \
                            sum(p.x for p in points) ** 2))

predicted_y = m*x_0 + b

# Calculate prediction interval
print(predicted_y - margin_of_error, predicted_y + margin_of_error)
# 16.462516875955465 25.966483124044537

Oy vey! That’s a lot of calculation, and unfortunately, SciPy and other mainstream
data science libraries do not do this. But if you are inclined to statistical analysis,
this is very useful information. We not only create a prediction based on a linear
regression (e.g., a dog that’s 8.5 years old will have 21.2145 vet visits), but we also are
actually able to say something much less absolute: there’s a 95% probability an 8.5
year old dog will visit the vet between 16.46 and 25.96 times. Brilliant, right? And it’s
a much safer claim because it captures a range rather than a single value, and thus
accounts for uncertainty.

Confidence Intervals for the Parameters
When you think about it, the linear regression line itself is a sample statistic, and
there is a linear regression line for the whole population we are trying to infer. This
means parameters like m and b have their own distributions, and we can model
confidence intervals around m and b individually to reflect the population’s slope and
y-intercept. This is beyond the scope of this book but it’s worth noting this type of
analysis can be done.

You can find resources to do these calculations from scratch but it might just be easier
to use Excel’s regression tools or libraries for Python.
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Train/Test Splits
This analysis I just did with the correlation coefficient, statistical significance, and
coefficient of determination unfortunately is not always done by practitioners. Some‐
times they are dealing with so much data they do not have the time or technical
ability to do so. For example a 128 × 128 pixel image is at least 16,384 variables. Do
you have time to do statistical analysis on each of those pixel variables? Probably not!
Unfortunately, this leads many data scientists to not learn these statistical metrics at
all.

In an obscure online forum, I once read a post saying statistical regression is a scalpel,
while machine learning is a chainsaw. When operating with massive amounts of data
and variables, you cannot sift through all of that with a scalpel. You have to resort
to a chainsaw and while you lose explainability and precision, you at least can scale
to make broader predictions on more data. That being said, statistical concerns like
sampling bias and overfitting do not go away. But there are a few practices that can be
employed for quick validation.

Why Are There No Confidence Intervals and P-Values in scikit-learn?

Scikit-learn does not support confidence intervals and P-values, as
these two techniques are open problems for higher-dimensional
data. This only emphasizes the gap between statisticians and
machine learning practitioners. As one of the maintainers of
scikit-learn, Gael Varoquaux, said, “In general computing correct
p-values requires assumptions on the data that are not met by the
data used in machine learning (no multicollinearity, enough data
compared to the dimensionality)….P-values are something that are
expected to be well checked (they are a guard in medical research).
Implementing them is asking for trouble….We can give p-values
only in very narrow settings [with few variables].”
If you want to go down the rabbit hole, there are some interesting
discussions on GitHub:

• https://github.com/scikit-learn/scikit-learn/issues/6773•
• https://github.com/scikit-learn/scikit-learn/issues/16802•

As mentioned before, statsmodel is a library that provides helpful
tools for statistical analysis. Just know it will likely not scale to
larger-dimensional models because of the aforementioned reasons.

A basic technique machine learning practitioners use to mitigate overfitting is a
practice called the train/test split, where typically 1/3 of the data is set aside for testing
and the other 2/3 is used for training (other ratios can be used as well). The training
dataset is used to fit the linear regression, while the testing dataset is used to measure

Train/Test Splits | 185

http://disq.us/p/1jas3zg
https://github.com/scikit-learn/scikit-learn/issues/6773
https://github.com/scikit-learn/scikit-learn/issues/16802
https://oreil.ly/8oEHo


the linear regression’s performance on data it has not seen before. This technique is
generally used for all supervised machine learning, including logistic regression and
neural networks. Figure 5-18 shows a visualization of how we break up our data into
2/3 for training and 1/3 for testing.

This Is a Small Dataset

As we will learn later, there are other ways to split a training/test‐
ing dataset than 2/3 and 1/3. If you have a dataset this small,
you will probably be better off with 9/10 and 1/10 paired with
cross-validation, or even just leave-one-out cross-validation. See
“Do Train/Test Splits Have to be Thirds?” on page 189 to learn
more.

Figure 5-18. Splitting into training/testing data—the line is fitted to the training data
(dark blue) using least squares, while the testing data (light red) is analyzed afterward to
see how off the predictions are on data that was not seen before

Example 5-21 shows how to perform a train/test split using scikit-learn, where 1/3 of
the data is set aside for testing and the other 2/3 is used for training.

Training Is Fitting a Regression

Remember that “fitting” a regression is synonymous with “train‐
ing.” The latter word is used by machine learning practitioners.
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Example 5-21. Doing a train/test split on linear regression

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# Load the data
df = pd.read_csv('https://bit.ly/3cIH97A', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)
Y = df.values[:, -1]

# Separate training and testing data
# This leaves a third of the data out for testing
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1/3)

model = LinearRegression()
model.fit(X_train, Y_train)
result = model.score(X_test, Y_test)
print("r^2: %.3f" % result)

Notice that the train_test_split() will take our dataset (X and Y columns), shuffle
it, and then return our training and testing datasets based on our testing-dataset size.
We use the LinearRegression’s fit() function to fit on the training datasets X_train
and Y_train. Then we use the score() function on the testing datasets X_test and
Y_test to evaluate the r2, giving us a sense how the regression performs on data it
has not seen before. The higher the r2 is for our testing dataset, the better. Having
that higher number indicates the regression performs well on data it has not seen
before.

Using R-Square for Testing
Note the r2 is calculated a little bit differently here as we have a predefined linear
regression from training. We are comparing the testing data to a regression line built
from training data. The objective is still the same: being closer to 1.0 is desirable to
show the regression correlation is strong even with the training data, while being
closer to 0.0 indicates the testing dataset performs poorly. Here is how it is calculated,
where yi is each actual y-value, yi is each predicted y-value, and y is the average
y-value for all data points:
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r2 = 1 −
∑ yi − yi

2

∑ yi − y 2

Figure 5-19 shows different r2 values from different linear regressions.

Figure 5-19. An r2 applied to different testing datasets with a trained linear regression

We can also alternate the testing dataset across each 1/3 fold. This is known as
cross-validation and is often considered the gold standard of validation techniques.
Figure 5-20 shows how each 1/3 of the data takes a turn being the testing dataset.

Figure 5-20. A visualization of cross-validation with three folds

The code in Example 5-22 shows a cross-validation performed across three folds, and
then the scoring metric (in this case the mean sum of squares [MSE]) is averaged
alongside its standard deviation to show how consistently each test performed.
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Example 5-22. Using three-fold cross-validation for a linear regression

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import KFold, cross_val_score

df = pd.read_csv('https://bit.ly/3cIH97A', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)\
Y = df.values[:, -1]

# Perform a simple linear regression
kfold = KFold(n_splits=3, random_state=7, shuffle=True)
model = LinearRegression()
results = cross_val_score(model, X, Y, cv=kfold)
print(results)
print("MSE: mean=%.3f (stdev-%.3f)" % (results.mean(), results.std()))

Do Train/Test Splits Have to be Thirds?
We do not have to fold our data by thirds. You can use k-fold validation to split on any
proportion. Typically, 1/3, 1/5, or 1/10 is used for the proportion of testing data, but
1/3 is the most common.

Generally, the k you choose has to result in a testing dataset that has a large enough
sample for the problem. You also need enough alternating/shuffled testing datasets
to provide a fair estimate of performance on data that was not seen before. Modestly
sized datasets can use k values of 3, 5, or 10. Leave-one-out cross-validation (LOOCV)
will alternate each individual data record as the only sample in the testing dataset, and
this can be helpful when the whole dataset is small.

When you get concerned about variance in your model, one thing you can do, rather
than a simple train/test split or cross-validation, is use random-fold validation to
repeatedly shuffle and train/test split your data an unlimited number of times and
aggregate the testing results. In Example 5-23 there are 10 iterations of randomly
sampling 1/3 of the data for testing and the other 2/3 for training. Those 10 testing
results are then averaged alongside their standard deviations to see how consistently
the testing datasets perform.

What’s the catch? It’s computationally very expensive as we are training the regression
many times.
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Example 5-23. Using a random-fold validation for a linear regression

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score, ShuffleSplit

df = pd.read_csv('https://bit.ly/38XwbeB', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)\
Y = df.values[:, -1]

# Perform a simple linear regression
kfold = ShuffleSplit(n_splits=10, test_size=.33, random_state=7)
model = LinearRegression()
results = cross_val_score(model, X, Y, cv=kfold)

print(results)
print("mean=%.3f (stdev-%.3f)" % (results.mean(), results.std()))

So when you are crunched for time or your data is too voluminous to statistically
analyze, a train/test split is going to provide a way to measure how well your linear
regression will perform on data it has not seen before.

Train/Test Splits Are Not Guarantees

It is important to note that just because you apply machine learning
best practices of splitting your training and testing data, it does
not mean your model is going to perform well. You can easily
overtune your model and p-hack your way into a good test result,
only to find it does not work well out in the real world. This is
why holding out another dataset called the validation set is some‐
times necessary, especially if you are comparing different models
or configurations. That way, your tweaks on the training data to
get better performance on the testing data do not leak info into the
training. You can use the validation dataset as one last stopgap to
see if p-hacking caused you to overfit to your testing dataset.
Even then, your whole dataset (including training, testing, and
validation) could have been biased to begin with, and no split is
going to mitigate that. Andrew Ng discussed this as a large prob‐
lem with machine learning during his Q&A with DeepLearning.AI
and Stanford HAI. He walked through an example showing why
machine learning has not replaced radiologists.

190 | Chapter 5: Linear Regression

https://oreil.ly/x23SJ
https://oreil.ly/x23SJ


Multiple Linear Regression
We put almost exclusive focus on doing linear regression on one input variable and
one output variable in this chapter. However, the concepts we learned here should
largely apply to multivariable linear regression. Metrics like r2, standard error, and
confidence intervals can be used but it gets harder with more variables. Example 5-24
is an example of a linear regression with two input variables and one output variable
using scikit-learn.

Example 5-24. A linear regression with two input variables

import pandas as pd
from sklearn.linear_model import LinearRegression

# Load the data
df = pd.read_csv('https://bit.ly/2X1HWH7', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)\
Y = df.values[:, -1]

# Training
fit = LinearRegression().fit(X, Y)

# Print coefficients
print("Coefficients = {0}".format(fit.coef_))
print("Intercept = {0}".format(fit.intercept_))
print("z = {0} + {1}x + {2}y".format(fit.intercept_, fit.coef_[0], fit.coef_[1]))

There is a degree of precariousness when a model becomes so inundated with vari‐
ables it starts to lose explainability, and this is when machine learning practices start
to come in and treat the model as as black box. I hope that you are convinced
statistical concerns do not go away, and data becomes increasingly sparse the more
variables you add. But if you step back and analyze the relationships between each
pair of variables using a correlation matrix, and seek understanding on how each pair
of variables interact, it will help your efforts to create a productive machine learning
model.

Conclusion
We covered a lot in this chapter. We attempted to go beyond a cursory understanding
of linear regression and making train/test splits our only validation. I wanted to
show you both the scalpel (statistics) and the chainsaw (machine learning) so you
can judge which is best for a given problem you encounter. There are a lot of

Multiple Linear Regression | 191



metrics and analysis methods available in linear regression alone, and we covered a
number of them to understand whether a linear regression is reliable for predictions.
You may find yourself in a position to do regressions as broad approximations or
meticulously analyze and comb your data using statistical tools. Which approach you
use is situational, and if you want to learn more about statistical tools available for
Python, check out the statsmodel library.

In Chapter 6 covering logistic regression, we will revisit the r2 and statistical sig‐
nificance. I hope that this chapter convinced you there are ways to analyze data
meaningfully, and the investment can make the difference in a successful project.

Exercises
A dataset of two variables, x and y, is provided here.

1. Perform a simple linear regression to find the m and b values that minimizes the1.
loss (sum of squares).

2. Calculate the correlation coefficient and statistical significance of this data (at2.
95% confidence). Is the correlation useful?

3. If I predict where x = 50, what is the 95% prediction interval for the predicted3.
value of y?

4. Start your regression over and do a train/test split. Feel free to experiment with4.
cross-validation and random-fold validation. Does the linear regression perform
well and consistently on the testing data? Why or why not?

Answers are in Appendix B.
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CHAPTER 6

Logistic Regression and Classification

In this chapter we are going to cover logistic regression, a type of regression that
predicts a probability of an outcome given one or more independent variables. This
in turn can be used for classification, which is predicting categories rather than real
numbers as we did with linear regression.

We are not always interested in representing variables as continuous, where they can
represent an infinite number of real decimal values. There are situations where we
would rather variables be discrete, or representative of whole numbers, integers, or
booleans (1/0, true/false). Logistic regression is trained on an output variable that is
discrete (a binary 1 or 0) or a categorical number (which is a whole number). It does
output a continuous variable in the form of probability, but that can be converted into
a discrete value with a threshold.

Logistic regression is easy to implement and fairly resilient against outliers and other
data challenges. Many machine learning problems can best be solved with logistic
regression, offering more practicality and performance than other types of supervised
machine learning.

Just like we did in Chapter 5 when we covered linear regression, we will attempt to
walk the line between statistics and machine learning, using tools and analysis from
both disciplines. Logistic regression will integrate many concepts we have learned
from this book, from probability to linear regression.

Understanding Logistic Regression
Imagine there was a small industrial accident and you are trying to understand the
impact of chemical exposure. You have 11 patients who were exposed for differing
numbers of hours to this chemical (please note this is fabricated data). Some have
shown symptoms (value of 1) and others have not shown symptoms (value of 0).
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Let’s plot them in Figure 6-1, where the x-axis is hours of exposure and the y-axis is
whether or not (1 or 0) they have showed symptoms.

Figure 6-1. Plotting whether patients showed symptoms (1) or not (0) over x hours of
exposure

At what length of time do patients start showing symptoms? Well it is easy to see at
almost four hours, we immediately transition from patients not showing symptoms
(0) to showing symptoms (1). In Figure 6-2, we see the same data with a predictive
curve.

Figure 6-2. After four hours, we see a clear jump where patients start showing symptoms

Doing a cursory analysis on this sample, we can say that there is nearly 0% probabil‐
ity a patient exposed for fewer than four hours will show symptoms, but there is
100% probability for greater than four hours. Between these two groups, there is an
immediate jump to showing symptoms at approximately four hours.
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Of course, nothing is ever this clear-cut in the real world. Let’s say you gathered more
data, where the middle of the range has a mix of patients showing symptoms versus
not showing symptoms as shown in Figure 6-3.

Figure 6-3. A mix of patients who show symptoms (1) and do not show symptoms (0)
exists in the middle

The way to interpret this is the probability of patients showing symptoms gradually
increases with each hour of exposure. Let’s visualize this with a logistic function, or an
S-shaped curve where the output variable is squeezed between 0 and 1, as shown in
Figure 6-4.

Figure 6-4. Fitting a logistic function to the data

Because of this overlap of points in the middle, there is no distinct cutoff when
patients show symptoms but rather a gradual transition from 0% probability to 100%
probability (0 and 1). This example demonstrates how a logistic regression results in
a curve indicating a probability of belonging to the true category (a patient showed
symptoms) across an independent variable (hours of exposure).

We can repurpose a logistic regression to not just predict a probability for given input
variables but also add a threshold to predict whether it belongs to that category. For
example, if I get a new patient and find they have been exposed for six hours, I predict
a 71.1% chance they will show symptoms as traced in Figure 6-5. If my threshold is
at least 50% probability to show symptoms, I will simply classify that the patient will
show symptoms.
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Figure 6-5. We can expect a patient exposed for six hours to be 71.1% likely to have
symptoms, and because that’s greater than a threshold of 50% we predict they will show
symptoms

Performing a Logistic Regression
So how do we perform a logistic regression? Let’s first take a look at the logistic
function and explore the math behind it.

Logistic Function
The logistic function is an S-shaped curve (also known as a sigmoid curve) that, for a
given set of input variables, produces an output variable between 0 and 1. Because the
output variable is between 0 and 1 it can be used to represent a probability.

Here is the logistic function that outputs a probability y for one input variable x:

y = 1.0
1.0 + e− β0 + β1x

Note this formula uses Euler’s number e, which we covered in Chapter 1. The x
variable is the independent/input variable. β0 and β1 are the coefficients we need to
solve for.

β0 and β1 are packaged inside an exponent resembling a linear function, which you
may recall looks identical to y = mx + b or y = β0 + β1x. This is not a coincidence;
logistic regression actually has a close relationship to linear regression, which we
will discuss later in this chapter. β0 indeed is the intercept (which we call b in a
simple linear regression) and β1 is the slope for x (which we call m in a simple linear
regression). This linear function in the exponent is known as the log-odds function,
but for now just know this whole logistic function produces this S-shaped curve we
need to output a shifting probability across an x-value.

To declare the logistic function in Python, use the exp() function from the math
package to declare the e exponent as shown in Example 6-1.

196 | Chapter 6: Logistic Regression and Classification



Example 6-1. The logistic function in Python for one independent variable

import math

def predict_probability(x, b0, b1):
    p = 1.0 / (1.0 + math.exp(-(b0 + b1 * x)))
    return p

Let’s plot to see what it looks like, and assume Β0 = –2.823 and Β1 = 0.62. We will use
SymPy in Example 6-2 and the output graph is shown in Figure 6-6.

Example 6-2. Using SymPy to plot a logistic function

from sympy import *
b0, b1, x = symbols('b0 b1 x')

p = 1.0 / (1.0 + exp(-(b0 + b1 * x)))

p = p.subs(b0,-2.823)
p = p.subs(b1, 0.620)
print(p)

plot(p)

Figure 6-6. A logistic function

In some textbooks, you may alternatively see the logistic function declared like this:

p = e
β0 + β1x

1 + eβ0 + β1x

Do not fret about it, because it is the same function, just algebraically expressed
differently. Note like linear regression we can also extend logistic regression to more
than one input variable (x1, x2, . . . xn), as shown in this formula. We just add more
βx coefficients:
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p = 1
1 + e− β0 + β1x1 + β2x2 + . . .βnxn

Fitting the Logistic Curve
How do you fit the logistic curve to a given training dataset? First, the data can have
any mix of decimal, integer, and binary variables, but the output variable must be
binary (0 or 1). When we actually do prediction, the output variable will be between 0
and 1, resembling a probability.

The data provides our input and output variable values, but we need to solve for the
β0 and β1 coefficients to fit our logistic function. Recall how we used least squares
in Chapter 5. However, this does not apply here. Instead we use maximum likelihood
estimation, which, as the name suggests, maximizes the likelihood a given logistic
curve would output the observed data.

To calculate the maximum likelihood estimation, there really is no closed form
equation like in linear regression. We can still use gradient descent, or have a library
do it for us. Let’s cover both of these approaches starting with the library SciPy.

Using SciPy
The nice thing about SciPy is the models often have a standardized set of functions
and APIs, meaning in many cases you can copy/paste your code and can then reuse
it between models. In Example 6-3 you will see a logistic regression performed on
our patient data. If you compare it to our linear regression code in Chapter 5, you
will see it has nearly identical code in importing, separating, and fitting our data.
The main difference is I use a LogisticRegression() for my model instead of a
LinearRegression().

Example 6-3. Using a plain logistic regression in SciPy

import pandas as pd
from sklearn.linear_model import LogisticRegression

# Load the data
df = pd.read_csv('https://bit.ly/33ebs2R', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)
Y = df.values[:, -1]

# Perform logistic regression
# Turn off penalty
model = LogisticRegression(penalty='none')
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model.fit(X, Y)

# print beta1
print(model.coef_.flatten()) # 0.69267212

# print beta0
print(model.intercept_.flatten()) # -3.17576395

Making Predictions
To make specific predictions, use the predict() and predict_prob() functions on
the model object in SciPy, whether it is a LogisticRegression or any other type of
classification model. The predict() function will predict a specific class (e.g., True
1.0 or False 1.0) while the predict_prob() will output probabilities for each class.

After running the model in SciPy, I get a logistic regression where β0 = –3.17576395
and β1 = 0.69267212. When I plot this, it should look pretty good as shown in
Figure 6-7.

Figure 6-7. Plotting the logistic regression

There are a couple of things to note here. When I created the LogisticRegression()
model, I specified no penalty argument, which chooses a regularization technique
like l1 or l2. While this is beyond the scope of this book, I have included brief
insights in the following note “Learning About SciPy Parameters” so that you have
helpful references on hand.

Finally, I am going to flatten() the coefficient and intercept, which come out
as multidimensional matrices but with one element. Flattening means collapsing a
matrix of numbers into lesser dimensions, particularly when there are fewer elements
than there are dimensions. For example, I use flatten() here to take a single number
nested into a two-dimensional matrix and pull it out as a single value. I then have my
β0 and β1 coefficients.
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Learning About SciPy Parameters

SciPy offers a lot of options in its regression and classification
models. Unfortunately, there is not enough bandwidth or pages to
cover them as this is not a book focusing exclusively on machine
learning.
However, the SciPy docs are well-written and the page on logistic
regression is found here.
If a lot of terms are unfamiliar, such as regularization and l1
and l2 penalties, there are other great O’Reilly books exploring
these topics. One of the more helpful texts I have found is Hands-
On Machine Learning with Scikit-Learn, Keras, and TensorFlow by
Aurélien Géron.

Using Maximum Likelihood and Gradient Descent
As I have done throughout this book, I aim to provide insights on building techni‐
ques from scratch even if libraries can do it for us. There are several ways to fit a
logistic regression ourselves, but all methods typically turn to maximum likelihood
estimation (MLE). MLE maximizes the likelihood a given logistic curve would output
the observed data. It is different than sum of squares, but we can still apply gradient
descent or stochastic gradient descent to solve it.

I’ll try to streamline the mathematical jargon and minimize the linear algebra here.
Essentially, the idea is to find the β0 and β1 coefficients that bring our logistic curve
to those points as closely as possible, indicating it is most likely to have produced
those points. If you recall from Chapter 2 when we studied probability, we combine
probabilities (or likelihoods) of multiple events by multiplying them together. In this
application, we are calculating the likelihood we would see all these points for a given
logistic regression curve.

Applying the idea of joint probabilities, each patient has a likelihood they would show
symptoms based on the fitted logistic function as shown in Figure 6-8.

Figure 6-8. Every input value has a corresponding likelihood on the logistic curve
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We fetch each likelihood off the logistic regression curve above or below each point.
If the point is below the logistic regression curve, we need to subtract the resulting
probability from 1.0 because we want to maximize the false cases too.

Given coefficients β0 = –3.17576395 and β1 = 0.69267212, Example 6-4 shows how we
calculate the joint likelihood for this data in Python.

Example 6-4. Calculating the joint likelihood of observing all the points for a given
logistic regression

import math
import pandas as pd

patient_data = pd.read_csv('https://bit.ly/33ebs2R', delimiter=",").itertuples()

b0 = -3.17576395
b1 = 0.69267212

def logistic_function(x):
    p = 1.0 / (1.0 + math.exp(-(b0 + b1 * x)))
    return p

# Calculate the joint likelihood
joint_likelihood = 1.0

for p in patient_data:
    if p.y == 1.0:
        joint_likelihood *= logistic_function(p.x)
    elif p.y == 0.0:
        joint_likelihood *= (1.0 - logistic_function(p.x))

print(joint_likelihood) # 4.7911180221699105e-05

Here’s a mathematical trick we can do to compress that if expression. As we covered
in Chapter 1, when you set any number to the power of 0 it will always be 1. Take
a look at this formula and note the handling of true (1) and false (0) cases in the
exponents:

joint likelihood = ∏
i = 1

n 1.0
1.0 + e− β0 + β1xi

yi

× 1.0
1.0 + e− β0 + β1xi

1.0 − yi

To do this in Python, compress everything inside that for loop into Example 6-5.
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Example 6-5. Compressing the joint likelihood calculation without an if expression

for p in patient_data:
    joint_likelihood *= logistic_function(p.x) ** p.y * \
                        (1.0 - logistic_function(p.x)) ** (1.0 - p.y)

What exactly did I do? Notice that there are two halves to this expression, one for
when y = 1 and the other where y = 0. When any number is raised to exponent 0, it
will result in 1. Therefore, whether y is 1 or 0, it will cause the opposite condition on
the other side to evaluate to 1 and have no effect in multiplication. We get to express
our if expression but do it completely in a mathematical expression. We cannot do
derivatives on expressions that use if, so this will be helpful.

Note that computers can get overwhelmed multiplying several small decimals
together, known as floating point underflow. This means that as decimals get smaller
and smaller, which can happen in multiplication, the computer runs into limitations
keeping track of that many decimal places. There is a clever mathematical hack to
get around this. You can take the log() of each decimal you are multiplying and
instead add them together. This is thanks to the additive properties of logarithms
we covered in Chapter 1. This is more numerically stable, and you can then call the
exp() function to convert the total sum back to get the product.

Let’s revise our code to use logarithmic addition instead of multiplication (see Exam‐
ple 6-6). Note that the log() function will default to base e and while any base
technically works, this is preferable because ex is the derivative of itself and will
computationally be more efficient.

Example 6-6. Using logarithmic addition

# Calculate the joint likelihood
joint_likelihood = 0.0

for p in patient_data:
    joint_likelihood += math.log(logistic_function(p.x) ** p.y * \
                                 (1.0 - logistic_function(p.x)) ** (1.0 - p.y))

joint_likelihood = math.exp(joint_likelihood)

To express the preceding Python code in mathematical notation:

joint likelihood = ∑
i = 1

n
log

1.0
1.0 + e− β0 + β1xi

yi

× 1.0 − 1.0
1.0 + e− β0 + β1xi

1.0 − yi
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Would you like to calculate the partial derivatives for β0 and β1 in the preceding
expression? I didn’t think so. It’s a beast. Goodness, expressing that function in SymPy
alone is a mouthful! Look at this in Example 6-7.

Example 6-7. Expressing a joint likelihood for logistic regression in SymPy

joint_likelihood = Sum(log((1.0 / (1.0 + exp(-(b + m * x(i)))))**y(i) * \
(1.0 - (1.0 / (1.0 + exp(-(b + m * x(i))))))**(1-y(i))), (i, 0, n))

So let’s just allow SymPy to do the partial derivatives for us, for β0 and β1 respectively.
We will then immediately compile and use them for gradient descent, as shown in
Example 6-8.

Example 6-8. Using gradient descent on logistic regression

from sympy import *
import pandas as pd

points = list(pd.read_csv("https://tinyurl.com/y2cocoo7").itertuples())

b1, b0, i, n = symbols('b1 b0 i n')
x, y = symbols('x y', cls=Function)
joint_likelihood = Sum(log((1.0 / (1.0 + exp(-(b0 + b1 * x(i))))) ** y(i) \

* (1.0 - (1.0 / (1.0 + exp(-(b0 + b1 * x(i)))))) ** (1 - y(i))), (i, 0, n))

# Partial derivative for m, with points substituted
d_b1 = diff(joint_likelihood, b1) \

   .subs(n, len(points) - 1).doit() \
   .replace(x, lambda i: points[i].x) \
   .replace(y, lambda i: points[i].y)

# Partial derivative for m, with points substituted
d_b0 = diff(joint_likelihood, b0) \

   .subs(n, len(points) - 1).doit() \
   .replace(x, lambda i: points[i].x) \
   .replace(y, lambda i: points[i].y)

# compile using lambdify for faster computation
d_b1 = lambdify([b1, b0], d_b1)
d_b0 = lambdify([b1, b0], d_b0)

# Perform Gradient Descent
b1 = 0.01
b0 = 0.01
L = .01

for j in range(10_000):
    b1 += d_b1(b1, b0) * L
    b0 += d_b0(b1, b0) * L
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print(b1, b0)
# 0.6926693075370812 -3.175751550409821

After calculating the partial derivatives for β0 and β1, we substitute the x- and
y-values as well as the number of data points n. Then we use lambdify() to compile
the derivative function for efficiency (it uses NumPy behind the scenes). After that,
we perform gradient descent like we did in Chapter 5, but since we are trying to
maximize rather than minimize, we add each adjustment to β0 and β1 rather than
subtract like in least squares.

As you can see in Example 6-8, we got β0 = –3.17575 and β1 = 0.692667. This is highly
comparable to the coefficient values we got in SciPy earlier.

As we learned to do in Chapter 5, we can also use stochastic gradient descent
and only sample one or a handful of records on each iteration. This would extend
the benefits of increasing computational speed and performance as well as prevent
overfitting. It would be redundant to cover it again here, so we will keep moving on.

Multivariable Logistic Regression
Let’s try an example that uses logistic regression on multiple input variables.
Table 6-1 shows a sample of a few records from a fictitious dataset containing some
employment-retention data (full dataset is here).

Table 6-1. Sample of employment-retention data

SEX AGE PROMOTIONS YEARS_EMPLOYED DID_QUIT
1 32 3 7 0

1 34 2 5 0

1 29 2 5 1

0 42 4 10 0

1 43 4 10 0

There are 54 records in this dataset. Let’s say we want to use it to predict whether
other employees are going to quit and logistic regression can be utilized here
(although none of this is a good idea, and I will elaborate why later). Recall we
can support more than one input variable as shown in this formula:

y = 1
1 + e− β0 + β1x1 + β2x2 + . . .βnxn

I will create β coefficients for each of the variables sex, age, promotions, and
years_employed. The output variable did_quit is binary, and that is going to drive
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the logistic regression outcome we are predicting. Because we are dealing with multi‐
ple dimensions, it is going to be hard to visualize the curvy hyperplane that is our
logistic curve. So we will steer clear from visualization.

Let’s make it interesting. We will use scikit-learn but make an interactive shell we
can test employees with. Example 6-9 shows the code, and when we run it, a logistic
regression will be performed, and then we can type in new employees to predict
whether they quit or not. What can go wrong? Nothing, I’m sure. We are only making
predictions on people’s personal attributes and making decisions accordingly. I’m
sure it will be fine.

(If it was not clear, I’m being very tongue in cheek).

Example 6-9. Doing a multivariable logistic regression on employee data

import pandas as pd
from sklearn.linear_model import LogisticRegression

employee_data = pd.read_csv("https://tinyurl.com/y6r7qjrp")

# grab independent variable columns
inputs = employee_data.iloc[:, :-1]

# grab dependent "did_quit" variable column
output = employee_data.iloc[:, -1]

# build logistic regression
fit = LogisticRegression(penalty='none').fit(inputs, output)

# Print coefficients:
print("COEFFICIENTS: {0}".format(fit.coef_.flatten()))
print("INTERCEPT: {0}".format(fit.intercept_.flatten()))

# Interact and test with new employee data
def predict_employee_will_stay(sex, age, promotions, years_employed):
    prediction = fit.predict([[sex, age, promotions, years_employed]])
    probabilities = fit.predict_proba([[sex, age, promotions, years_employed]])
    if prediction == [[1]]:
        return "WILL LEAVE: {0}".format(probabilities)
    else:
        return "WILL STAY: {0}".format(probabilities)

# Test a prediction
while True:
    n = input("Predict employee will stay or leave {sex},
        {age},{promotions},{years employed}: ")
    (sex, age, promotions, years_employed) = n.split(",")
    print(predict_employee_will_stay(int(sex), int(age), int(promotions),
          int(years_employed)))
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Figure 6-9 shows the result whether an employee is predicted to quit. The employee
is a sex “1,” age is 34, had 1 promotion, and has been at the company for 5 years. Sure
enough, the prediction is “WILL LEAVE.”

Figure 6-9. Making a prediction whether a 34-year-old employee with 1 promotion and
5 years, employment will quit

Note that the predict_proba() function will output two values, the first being the
probability of 0 (false) and the second being 1 (true).

You will notice that the coefficients for sex, age, promotions, and years_employed
are displayed in that order. By the weight of the coefficients, you can see that sex and
age play very little role in the prediction (they both have a weight near 0). However,
promotions and years_employed have significant weights of –2.504 and 0.97. Here’s
a secret with this toy dataset: I fabricated it so that an employee quits if they do not
get a promotion roughly every two years. Sure enough, my logistic regression picked
up this pattern and you can try it out with other employees as well. However, if you
venture outside the ranges of data it was trained on, the predictions will likely start
falling apart (e.g., if put in a 70-year-old employee who hasn’t been promoted in three
years, it’s hard to say what this model will do since it has no data around that age).

Of course, real life is not always this clean. An employee who has been at a company
for eight years and has never gotten a promotion is likely comfortable with their role
and not leaving anytime soon. If that is the case, variables like age then might play
a role and get weighted. Then of course we can get concerned about other relevant
variables that are not being captured. See the following warning to learn more.
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Be Careful Making Classifications on People!

A quick and surefire way to shoot yourself in the foot is to collect
data on people and use it to make predictions haphazardly. Not
only can data privacy concerns come about, but legal and PR
issues can emerge if the model is found to be discriminatory. Input
variables like race and gender can become weighted from machine
learning training. After that, undesirable outcomes are inflicted on
those demographics like not being hired or being denied loans.
More extreme applications include being falsely flagged by sur‐
veillance systems or being denied criminal parole. Note too that
seemingly benign variables like commute time have been found to
correlate with discriminatory variables.
At the time of writing, a number of articles have been citing
machine learning discrimination as an issue:

• Katyanna Quach, “Teen turned away from roller rink after AI•
wrongly identifies her as banned troublemaker”, The Register,
July 16, 2021.

• Kashmir Hill, “Wrongfully Accused by an Algorithm”, New•
York Times, June 24, 2020.

As data privacy laws continue to evolve, it is advisable to err on the
side of caution and engineer personal data carefully. Think about
what automated decisions will be propagated and how that can
cause harm. Sometimes it is better to just leave a “problem” alone
and keep doing it manually.

Finally, on this employee-retention example, think about where this data came from.
Yes, I made up this dataset but in the real world you always want to question what
process created the data. Over what period of time did this sample come from? How
far back do we go looking for employees who quit? What constitutes an employee
who stayed? Are they current employees at this point in time? How do we know they
are not about to quit, making them a false negative? Data scientists easily fall into
traps analyzing only what data says, but not questioning where it came from and what
assumptions are built into it.

The best way to get answers to these questions is to understand what the predictions
are being used for. Is it to decide when to give people promotions to retain them? Can
this create a circular bias promoting people with a set of attributes? Will that bias be
reaffirmed when those promotions start becoming the new training data?

These are all important questions, and perhaps even inconvenient ones that cause
unwanted scope to creep into the project. If this scrutiny is not welcomed by your
team or leadership on a project, consider empowering yourself with a different role
where curiosity becomes a strength.
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Understanding the Log-Odds
At this point, it is time to discuss the logistic regression and what it is mathematically
made of. This can be a bit dizzying so take your time here. If you get overwhelmed,
you can always revisit this section later.

Starting in the 1900s, it has always been of interest to mathematicians to take a
linear function and scale its output to fall between 0 and 1, and therefore be useful
for predicting probability. The log-odds, also called the logit function, lends itself to
logistic regression for this purpose.

Remember earlier I pointed out the exponent value β0 + β1x is a linear function?
Look at our logistic function again:

p = 1.0
1.0 + e− β0 + β1x

This linear function being raised to e is known as the log-odds function, which takes
the logarithm of the odds for the event of interest. Your response might be, “Wait, I
don’t see any log() or odds. I just see a linear function!” Bear with me, I will show the
hidden math.

As an example, let’s use our logistic regression from earlier where Β0 = -3.17576395
and Β1 = 0.69267212. What is the probability of showing symptoms after six hours,
where x = 6? We already know how to do this: plug these values into our logistic
function:

p = 1.0
1.0 + e− − 3.17576395 + 0.69267212 6 = 0.727161542928554

We plug in these values and output a probability of 0.72716. But let’s look at this from
an odds perspective. Recall in Chapter 2 we learned how to calculate odds from a
probability:

odds = p
1 − p

odds = .72716
1 − .72716 = 2.66517246407876

So at six hours, a patient is 2.66517 times more likely to show symptoms than not
show symptoms.
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When we wrap the odds function in a natural logarithm (a logarithm with base e),
we call this the logit function. The output of this formula is what we call the log-odds,
named…shockingly…because we take the logarithm of the odds:

logit = log p
1 − p

logit = log .72716
1 − .72716 = 0.98026877

Our log-odds at six hours is 0.9802687. What does this mean and why do we care?
When we are in “log-odds land” it is easier to compare one set of odds against
another. We treat anything greater than 0 as favoring odds an event will happen,
whereas anything less than 0 is against an event. A log-odds of –1.05 is linearly the
same distance from 0 as 1.05. In plain odds, though, the equivalents are 0.3499 and
2.857, respectively, which is not as interpretable. That is the convenience of log-odds.

Odds and Logs

Logarithms and odds have an interesting relationship. Odds are
against an event when it is between 0.0 and 1.0, but anything
greater than 1.0 favors the event and extends into positive infinity.
This lack of symmetry is awkward. However, logarithms rescale an
odds so that it is completely linear, where a log-odds of 0.0 means
fair odds. A log-odds of –1.05 is linearly the same distance from 0
as 1.05, thus make comparing odds much easier.
Josh Starmer has a great video talking about this relationship
between odds and logs.

Recall I said the linear function in our logistic regression formula β0 + β1x is our
log-odds function. Check this out:

log‐odds = β0 + β1x
log‐odds = − 3.17576395 + 0.69267212 6
log‐odds = 0.98026877

It’s the same value 0.98026877 as our previous calculation, the odds of our logistic
regression at x = 6 and then taking the log() of it! So what is the link? What ties all
this together? Given a probability from a logistic regression p and input variable x, it
is this:

log
p

1 − p = β0 + β1x
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Let’s plot the log-odds line alongside the logistic regression, as shown in Figure 6-10.

Figure 6-10. The log-odds line is converted into a logistic function that outputs a
probability

Every logistic regression is actually backed by a linear function, and that linear
function is a log-odds function. Note in Figure 6-10 that when the log-odds is 0.0 on
the line, then the probability of the logistic curve is at 0.5. This makes sense because
when our odds are fair at 1.0, the probability is going to be 0.50 as shown in the
logistic regression, and the log-odds are going to be 0 as shown by the line.

Another benefit we get looking at the logistic regression from an odds perspective
is we can compare the effect between one x-value and another. Let’s say I want
to understand how much my odds change between six hours and eight hours of
exposure to the chemical. I can take the odds at six hours and then eight hours, and
then ratio the two odds against each other in an odds ratio. This is not to be confused
with a plain odds which, yes, is a ratio, but it is not an odds ratio.

Let’s first find the probabilities of symptoms for six hours and eight hours,
respectively:

p = 1.0
1.0 + e− β0 + β1x
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p6 = 1.0
1.0 + e− − 3.17576395 + 0.69267212 6 = 0.727161542928554

p8 = 1.0
1.0 + e− − 3.17576395 + 0.69267212 8 = 0.914167258137741

Now let’s convert those into odds, which we will declare as ox:

o = p
1 − p

o6 = 0.727161542928554
1 − 0.727161542928554 = 2.66517246407876

o8 = 0.914167258137741
1 − 0.914167258137741 = 10.6505657200694

Finally, set the two odds against each other as an odds ratio, where the odds for eight
hours is the numerator and the odds for six hours is in the denominator. We get a
value of approximately 3.996, meaning that our odds of showing symptoms increases
by nearly a factor of four with an extra two hours of exposure:

odds ratio = 10.6505657200694
2.66517246407876 = 3.99620132040906

You will find this odds ratio value of 3.996 holds across any two-hour range, like 2
hours to 4 hours, 4 hours to 6 hours, 8 hours to 10 hours, and so forth. As long as it’s
a two-hour gap, you will find that odds ratio stays consistent. It will differ for other
range lengths.

R-Squared
We covered quite a few statistical metrics for linear regression in Chapter 5, and we
will try to do the same for logistic regression. We still worry about many of the same
problems as in linear regression, including overfitting and variance. As a matter of
fact, we can borrow and adapt several metrics from linear regression and apply them
to logistic regression. Let’s start with R2.

Just like linear regression, there is an R2 for a given logistic regression. If you recall
from Chapter 5, the R2 indicates how well a given independent variable explains
a dependent variable. Applying this to our chemical exposure problem, it makes
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sense we want to measure how much chemical exposure hours explains showing
symptoms.

There is not really a consensus on the best way to calculate the R2 on a logistic
regression, but a popular technique known as McFadden’s Pseudo R2 closely mimics
the R2 used in linear regression. We will use this technique in the following examples
and here is the formula:

R2 = log likelihood − log likelihood fit
log likelihood

We will learn how to calculate the “log likelihood fit” and “log likelihood” so we can
calculate the R2.

We cannot use residuals here like in linear regression, but we can project the out‐
comes back onto the logistic curve as shown in Figure 6-11, and look up their
corresponding likelihoods between 0.0 and 1.0.

Figure 6-11. Projecting the output values back onto the logistic curve

We can then take the log() of each of those likelihoods and sum them together.
This will be the log likelihood of the fit (Example 6-10). Just like we did calculating
maximum likelihood, we will convert the “false” likelihoods by subtracting from 1.0.

Example 6-10. Calculating the log likelihood of the fit

from math import log, exp
import pandas as pd

patient_data = pd.read_csv('https://bit.ly/33ebs2R', delimiter=",").itertuples()

b0 = -3.17576395
b1 = 0.69267212

def logistic_function(x):
    p = 1.0 / (1.0 + exp(-(b0 + b1 * x)))
    return p
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# Sum the log-likelihoods
log_likelihood_fit = 0.0

for p in patient_data:
    if p.y == 1.0:
        log_likelihood_fit += log(logistic_function(p.x))
    elif p.y == 0.0:
        log_likelihood_fit += log(1.0 - logistic_function(p.x))

print(log_likelihood_fit) # -9.946161673231583

Using some clever binary multiplication and Python comprehensions, we can con‐
solidate that for loop and if expression into one line that returns the log_likeli
hood_fit. Similar to what we did in the maximum likelihood formula, we can use
some binary subtraction between the true and false cases to mathematically eliminate
one or the other. In this case, we multiply by 0 and therefore apply either the true or
the false case, but not both, to the sum accordingly (Example 6-11).

Example 6-11. Consolidating our log likelihood logic into a single line

log_likelihood_fit = sum(log(logistic_function(p.x)) * p.y +
                         log(1.0 - logistic_function(p.x)) * (1.0 - p.y)
                         for p in patient_data)

If we were to express the likelihood of the fit in mathematic notation, this is what it
would look like. Note that f xi  is the logistic function for a given input variable xi:

log likelihood fit = ∑
i = 1

n
log f xi × yi + log 1.0 − f xi × 1 − yi

As calculated in Examples 6-10 and 6-11, we have -9.9461 as our log likelihood of the
fit. We need one more datapoint to calculate the R2: the log likelihood that estimates
without using any input variables and simply uses the number of true cases divided
by all cases (effectively leaving only the intercept). Note we can count the number of
symptomatic cases by summing all the y-values together ∑yi, because only the 1s and
not the 0s will count into the sum. Here is the formula:

log likelihood =
∑yi
n

× yi + 1 −
∑yi
n

× 1 − yi

Here is the expanded Python equivalent of this formula applied in Example 6-12.
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Example 6-12. Log likelihood of patients

import pandas as pd
from math import log, exp

patient_data = list(pd.read_csv('https://bit.ly/33ebs2R', delimiter=",") \
     .itertuples())

likelihood = sum(p.y for p in patient_data) / len(patient_data)

log_likelihood = 0.0

for p in patient_data:
    if p.y == 1.0:
        log_likelihood += log(likelihood)
    elif p.y == 0.0:
        log_likelihood += log(1.0 - likelihood)

print(log_likelihood) # -14.341070198709906

To consolidate this logic and reflect the formula, we can compress that for loop and
if expression into a single line, using some binary multiplication logic to handle both
true and false cases (Example 6-13).

Example 6-13. Consolidating the log likelihood into a single line

log_likelihood = sum(log(likelihood)*p.y + log(1.0 - likelihood)*(1.0 - p.y) \
for p in patient_data)

Finally, just plug these values in and get your R2:

R2 = (log likelihood)−(log likelihood fit)
log likelihood

R2 = −0.5596 − − 9.9461
−0.5596 R2 = 0.306456

And here is the Python code shown in Example 6-14, calculating the R2 in its
entirety.

Example 6-14. Calculating the R2 for a logistic regression

import pandas as pd
from math import log, exp

patient_data = list(pd.read_csv('https://bit.ly/33ebs2R', delimiter=",") \
                                .itertuples())
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# Declare fitted logistic regression
b0 = -3.17576395
b1 = 0.69267212

def logistic_function(x):
    p = 1.0 / (1.0 + exp(-(b0 + b1 * x)))
    return p

# calculate the log likelihood of the fit
log_likelihood_fit = sum(log(logistic_function(p.x)) * p.y +
                         log(1.0 - logistic_function(p.x)) * (1.0 - p.y)
                         for p in patient_data)

# calculate the log likelihood without fit
likelihood = sum(p.y for p in patient_data) / len(patient_data)

log_likelihood = sum(log(likelihood) * p.y + log(1.0 - likelihood) * (1.0 - p.y) \
for p in patient_data)

# calculate R-Square
r2 = (log_likelihood - log_likelihood_fit) / log_likelihood

print(r2)  # 0.306456105756576

OK, so we got an R2 = 0.306456, so do hours of chemical exposure explain whether
someone shows symptoms? As we learned in Chapter 5 on linear regression, a poor
fit will be closer to an R2 of 0.0 and a greater fit will be closer to 1.0. Therefore,
we can conclude that hours of exposure is mediocre for predicting symptoms, as the
R2 is 0.30645. There must be variables other than time exposure that better predict
if someone will show symptoms. This makes sense because we have a large mix of
patients showing symptoms versus not showing symptoms for most of our observed
data, as shown in Figure 6-12.

Figure 6-12. Our data has a mediocre R2 of 0.30645 because there is a lot of variance in
the middle of our curve
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But if we did have a clean divide in our data, where 1 and 0 outcomes are cleanly
separated as shown in Figure 6-13, we would have a perfect R2 of 1.0.

Figure 6-13. This logistic regression has a perfect R2 of 1.0 because there is a clean divide
in outcomes predicted by hours of exposure

P-Values
Just like linear regression, we are not done just because we have an R2. We need to
investigate how likely we would have seen this data by chance rather than because of
an actual relationship. This means we need a p-value.

To do this, we will need to learn a new probability distribution called the chi-square
distribution, annotated as χ2 distribution. It is continuous and used in several areas of
statistics, including this one!

If we take each value in a standard normal distribution (mean of 0 and standard
deviation of 1) and square it, that will give us the χ2 distribution with one degree
of freedom. For our purposes, the degrees of freedom will depend on how many
parameters n are in our logistic regression, which will be n − 1. You can see examples
of different degrees of freedom in Figure 6-14. 

Figure 6-14. A χ2 distribution with differing degrees of freedom
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Since we have two parameters (hours of exposure and whether symptoms were
shown), our degree of freedom will be 1 because 2 − 1 = 1.

We will need the log likelihood fit and log likelihood as calculated in the previous
subsection on R2. Here is the formula that will produce the χ2 value we need to
look up:

χ2 = 2 log likelihood fit − log likelihood

We then take that value and look up the probability from the χ2 distribution. That
will give us our p-value:

p‐value = chi 2 log likelihood fit − log likelihood

Example 6-15 shows our p-value for a given fitted logistic regression. We use SciPy’s
chi2 module to use the chi-square distribution.

Example 6-15. Calculating a p-value for a given logistic regression

import pandas as pd
from math import log, exp
from scipy.stats import chi2

patient_data = list(pd.read_csv('https://bit.ly/33ebs2R', delimiter=",").itertuples())

# Declare fitted logistic regression
b0 = -3.17576395
b1 = 0.69267212

def logistic_function(x):
    p = 1.0 / (1.0 + exp(-(b0 + b1 * x)))
    return p

# calculate the log likelihood of the fit
log_likelihood_fit = sum(log(logistic_function(p.x)) * p.y +
                         log(1.0 - logistic_function(p.x)) * (1.0 - p.y)
                         for p in patient_data)

# calculate the log likelihood without fit
likelihood = sum(p.y for p in patient_data) / len(patient_data)

log_likelihood = sum(log(likelihood) * p.y + log(1.0 - likelihood) * (1.0 - p.y) \
                     for p in patient_data)

# calculate p-value
chi2_input = 2 * (log_likelihood_fit - log_likelihood)
p_value = chi2.pdf(chi2_input, 1) # 1 degree of freedom (n - 1)
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print(p_value)  # 0.0016604875618753787

So we have a p-value of 0.00166, and if our threshold for signifiance is .05, we say this
data is statistically significant and was not by random chance.

Train/Test Splits
As covered in Chapter 5 on linear regression, we can use train/test splits as a way to
validate machine learning algorithms. This is the more machine learning approach to
assessing the performance of a logistic regression. While it is a good idea to rely on
traditional statistical metrics like R2 and p-values, when you are dealing with more
variables, this becomes less practical. This is where train/test splits come in handy
once again. To review, Figure 6-15 visualizes a three-fold cross-validation alternating
a testing dataset.

Figure 6-15. A three-fold cross-validation alternating each third of the dataset as a
testing dataset

In Example 6-16 we perform a logistic regression on the employee-retention dataset,
but we split the data into thirds. We then alternate each third as the testing data.
Finally, we summarize the three accuracies with an average and standard deviation.

Example 6-16. Performing a logistic regression with three-fold cross-validation

import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold, cross_val_score

# Load the data
df = pd.read_csv("https://tinyurl.com/y6r7qjrp", delimiter=",")

218 | Chapter 6: Logistic Regression and Classification



X = df.values[:, :-1]
Y = df.values[:, -1]

# "random_state" is the random seed, which we fix to 7
kfold = KFold(n_splits=3, random_state=7, shuffle=True)
model = LogisticRegression(penalty='none')
results = cross_val_score(model, X, Y, cv=kfold)

print("Accuracy Mean: %.3f (stdev=%.3f)" % (results.mean(), results.std()))

We can also use random-fold validation, leave-one-out cross-validation, and all the
other folding variants we performed in Chapter 5. With that out of the way, let’s talk
about why accuracy is a bad measure for classification.

Confusion Matrices
Suppose a model observed people with the name “Michael” quit their job. The reason
why first and last names are captured as input variables is indeed questionable, as
it is doubtful someone’s name has any impact on whether they quit. However, to
simplify the example, let’s go with it. The model then predicts that any person named
“Michael” will quit their job.

Now this is where accuracy falls apart. I have one hundred employees, including one
named “Michael” and another named “Sam.” Michael is wrongly predicted to quit,
and it is Sam that ends up quitting. What’s the accuracy of my model? It is 98%
because there were only two wrong predictions out of one hundred employees as
visualized in Figure 6-16.

Figure 6-16. The employee named “Michael” is predicted to quit, but it’s actually another
employee that does, giving us 98% accuracy

Confusion Matrices | 219



Especially for imbalanced data where the event of interest (e.g., a quitting employee)
is rare, the accuracy metric is horrendously misleading for classification problems. If
a vendor, consultant, or data scientist ever tries to sell you a classification system on
claims of accuracy, ask for a confusion matrix.

A confusion matrix is a grid that breaks out the predictions against the actual out‐
comes showing the true positives, true negatives, false positives (type I error), and
false negatives (type II error). Here is a confusion matrix presented in Figure 6-17.

Figure 6-17. A simple confusion matrix

Generally, we want the diagonal values (top-left to bottom-right) to be higher because
these reflect correct classifications. We want to evaluate how many employees who
were predicted to quit actually did quit (true positives). Conversely, we also want
to evaluate how many employees who were predicted to stay actually did stay (true
negatives).

The other cells reflect wrong predictions, where an employee predicted to quit ended
up staying (false positive), and where an employee predicted to stay ends up quitting
(false negative).

What we need to do is dice up that accuracy metric into more specific accuracy
metrics targeting different parts of the confusion matrix. Let’s look at Figure 6-18,
which adds some useful measures.

From the confusion matrix, we can derive all sorts of useful metrics beyond just
accuracy. We can easily see that precision (how accurate positive predictions were)
and sensitivity (rate of identified positives) are 0, meaning this machine learning
model fails entirely at positive predictions.
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Figure 6-18. Adding useful metrics to the confusion matrix

Example 6-17 shows how to use the confusion matrix API in SciPy on a logistic
regression with a train/test split. Note that the confusion matrix is only applied to the
testing dataset.

Example 6-17. Creating a confusion matrix for a testing dataset in SciPy

import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split

# Load the data
df = pd.read_csv('https://bit.ly/3cManTi', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)\
Y = df.values[:, -1]

model = LogisticRegression(solver='liblinear')

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.33,
    random_state=10)
model.fit(X_train, Y_train)
prediction = model.predict(X_test)

"""
The confusion matrix evaluates accuracy within each category.
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[[truepositives falsenegatives]
 [falsepositives truenegatives]]

The diagonal represents correct predictions,
so we want those to be higher
"""
matrix = confusion_matrix(y_true=Y_test, y_pred=prediction)
print(matrix)

Bayes’ Theorem and Classification
Do you recall Bayes’ Theorem in Chapter 2? You can use Bayes’ Theorem to bring in
outside information to further validate findings on a confusion matrix. Figure 6-19
shows a confusion matrix of one thousand patients tested for a disease.

Figure 6-19. A confusion matrix for a medical test identifying a disease

We are told that for patients that have a health risk, 99% will be identified successfully
(sensitivity). Using the confusion matrix, we can see this mathematically checks out:

sensitivity = 198
198 + 2 = .99

But what if we flip the condition? What percentage of those who tested positive have
the health risk (precision)? While we are flipping a conditional probability, we do
not have to use Bayes’ Theorem here because the confusion matrix gives us all the
numbers we need:

precision = 198
198 + 50 = .798

OK, so 79.8% is not terrible, and that’s the percentage of people who tested positive
that actually have the disease. But ask yourself this…what are we assuming about our
data? Is it representative of the population?
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Some quick research found 1% of the population actually has the disease. There is
an opportunity to use Bayes’ Theorem here. We can account for the proportion of
the population that actually has the disease and incorporate that into our confusion
matrix findings. We then discover something significant.

P At Risk if Positive = P Positive if At Risk × P(At Risk)
P Positive

P At Risk if Positive = .99 × .01
.248

P At Risk if Positive = .0339

When we account for the fact that only 1% of the population is at risk, and 20% of
our test patients are at risk, the probability of being at risk given a positive test is
3.39%! How did it drop from 99%? This just shows how easily we can get duped by
probabilities that are high only in a specific sample like the vendor’s one thousand
test patients. So if this test has only a 3.39% probability of successfully identifying a
true positive, we probably should not use it.

Receiver Operator Characteristics/Area Under Curve
When we are evaluating different machine learning configurations, we may end up
with dozens, hundreds, or thousands of confusion matrices. These can be tedious
to review, so we can summarize all of them with a receiver operator characteristic
(ROC) curve as shown in Figure 6-20. This allows us to see each testing instance (each
represented by a black dot) and find an agreeable balance between true positives and
false positives.

We can also compare different machine learning models by creating separate ROC
curves for each. For example, if in Figure 6-21 our top curve represents a logistic
regression and the bottom curve represents a decision tree (a machine learning
technique we did not cover in this book), we can see the performance of them side
by side. The area under the curve (AUC) is a good metric for choosing which model
to use. Since the top curve (logistic regression) has a greater area, this suggests it is a
superior model.
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Figure 6-20. A receiver operator characteristic curve

Figure 6-21. Comparing two models by their area under the curve (AUC) with their
respective ROC curves
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To use the AUC as a scoring metric, change the scoring parameter in the scikit-learn
API to use roc_auc as shown for a cross-validation in Example 6-18.

Example 6-18. Using the AUC as the scikit-learn parameter

# put Scikit_learn model here

results = cross_val_score(model, X, Y, cv=kfold, scoring='roc_auc')
print("AUC: %.3f (%.3f)" % (results.mean(), results.std()))
# AUC: 0.791 (0.051)

Class Imbalance
There is one last thing to cover before we close this chapter. As we saw earlier
when discussing confusion matrices, class imbalance, which happens when data is not
equally represented across every outcome class, is a problem in machine learning.
Unfortunately, many problems of interest are imbalanced, such as disease prediction,
security breaches, fraud detection, and so on. Class imbalance is still an open prob‐
lem with no great solution. However, there are a few techniques you can try.

First, you can do obvious things like collect more data or try different models as
well as use confusion matrices and ROC/AUC curves. All of this will help track poor
predictions and proactively catch errors.

Another common technique is to duplicate samples in the minority class until it
is equally represented in the dataset. You can do this in scikit-learn as shown in
Example 6-19 when doing your train-test splits. Pass the stratify option with the
column containing the class values, and it will attempt to equally represent the data of
each class.

Example 6-19. Using the stratify option in scikit-learn to balance classes in the data

X, Y = ...
X_train, X_test, Y_train, Y_test =  \

train_test_split(X, Y, test_size=.33, stratify=Y)

There is also a family of algorithms called SMOTE, which generate synthetic samples
of the minority class. What would be most ideal though is to tackle the problem in a
way that uses anomaly-detection models, which are deliberately designed for seeking
out a rare event. These seek outliers, however, and are not necessarily a classification
since they are unsupervised algorithms. All these techniques are beyond the scope of
this book but are worth mentioning as they might provide better solutions to a given
problem.
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Conclusion
Logistic regression is the workhorse model for predicting probabilities and classifica‐
tions on data. Logistic regressions can predict more than one category rather than
just a true/false. You just build separate logistic regressions modeling whether or not
it belongs to that category, and the model that produces the highest probability is the
one that wins. You may discover that scikit-learn, for the most part, will do this for
you and detect when your data has more than two classes.

In this chapter, we covered not just how to fit a logistic regression using gradient
descent and scikit-learn but also statistical and machine learning approaches to
validation. On the statistical front we covered the R2 and p-value, and in machine
learning we explored train/test splits, confusion matrices, and ROC/AUC.

If you want to learn more about logistic regression, probably the best resource to
jump-start further is Josh Starmer’s StatQuest playlist on Logistic Regression. I have
to credit Josh’s work in assisting some portions of this chapter, particularly in how to
calculate R2 and p-values for logistic regression. If nothing else, watch his videos for
the fantastic opening jingles!

As always, you will find yourself walking between the two worlds of statistics and
machine learning. Many books and resources right now cover logistic regression
from a machine learning perspective, but try to seek out statistics resources too.
There are advantages and disadvantages to both schools of thought, and you can win
only by being adaptable to both!

Exercises
A dataset of three input variables RED, GREEN, and BLUE as well as an output variable
LIGHT_OR_DARK_FONT_IND is provided here. It will be used to predict whether a light/
dark font (0/1 respectively) will work for a given background color (specified by RGB
values).

1. Perform a logistic regression on the preceding data, using three-fold cross-1.
validation and accuracy as your metric.

2. Produce a confusion matrix comparing the predictions and actual data.2.
3. Pick a few different background colors (you can use an RGB tool like this one)3.

and see if the logistic regression sensibly chooses a light (0) or dark (1) font for
each one.

4. Based on the preceding exercises, do you think logistic regression is effective for4.
predicting a light or dark font for a given background color?

Answers are in Appendix B.

226 | Chapter 6: Logistic Regression and Classification

https://oreil.ly/tueJJ
https://bit.ly/3imidqa
https://bit.ly/3FHywrZ


CHAPTER 7

Neural Networks

A regression and classification technique that has enjoyed a renaissance over the
past 10 years is neural networks. In the simplest definition, a neural network is a
multilayered regression containing layers of weights, biases, and nonlinear functions
that reside between input variables and output variables. Deep learning is a popular
variant of neural networks that utilizes multiple “hidden” (or middle) layers of nodes
containing weights and biases. Each node resembles a linear function before being
passed to a nonlinear function (called an activation function). Just like linear regres‐
sion, which we learned about in Chapter 5, optimization techniques like stochastic
gradient descent are used to find the optimal weight and bias values to minimize the
residuals.

Neural networks offer exciting solutions to problems previously difficult for com‐
puters to solve. From identifying objects in images to processing words in audio,
neural networks have created tools that affect our everyday lives. This includes virtual
assistants and search engines, as well as photo tools in our iPhones.

Given the media hoopla and bold claims dominating news headlines about neural
networks, it may be surprising that they have been around since the 1950s. The
reason for their sudden popularity after 2010 is due to the growing availability of
data and computing power. The ImageNet challenge between 2011 and 2015 was
probably the largest driver of the renaissance, boosting performance on classifying
one thousand categories on 1.4 million images to an accuracy of 96.4%.

However, like any machine learning technique it only works on narrowly defined
problems. Even projects to create “self-driving” cars do not use end-to-end deep
learning, and primarily use hand-coded rule systems with convoluted neural net‐
works acting as a “label maker” for identifying objects on the road. We will discuss
this later in this chapter to understand where neural networks are actually used. But
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first we will build a simple neural network in NumPy, and then use scikit-learn as a
library implementation.

When to Use Neural Networks and Deep Learning
Neural networks and deep learning can be used for classification and regression,
so how do they size up to linear regression, logistic regression, and other types of
machine learning? You might have heard the expression “when all you have is a ham‐
mer, everything starts to look like a nail.” There are advantages and disadvantages that
are situational for each type of algorithm. Linear regression and logistic regression,
as well as gradient boosted trees (which we did not cover in this book), do a pretty
fantastic job making predictions on structured data. Think of structured data as data
that is easily represented as a table, with rows and columns. But perceptual problems
like image classification are much less structured, as we are trying to find fuzzy
correlations between groups of pixels to identify shapes and patterns, not rows of data
in a table. Trying to predict the next four or five words in a sentence being typed, or
deciphering the words being said in an audio clip, are also perceptual problems and
examples of neural networks being used for natural language processing.

In this chapter, we will primarily focus on simple neural networks with only one
hidden layer.

Variants of Neural Networks
Variants of neural networks include convolutional neural networks, which are often
used for image recognition. Long short-term memory (LSTM) is used for predicting
time series, or forecasting. Recurrent neural networks are often used for text-to-
speech applications.

Is Using a Neural Network Overkill?

Using neural networks for the upcoming example is probably over‐
kill, as a logistic regression would probably be more practical. Even
a formulaic approach can be used. However, I have always been
a fan of understanding complex techniques by applying them to
simple problems. You learn about the strengths and limitations of
the technique rather than be distracted by large datasets. So with
that in mind, try not to use neural networks where simpler models
will be more practical. We will break this rule in this chapter for the
sake of understanding the technique.
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A Simple Neural Network
Here is a simple example to get a feel for neural networks. I want to predict whether
a font should be light (1) or dark (0) for a given color background. Here are a few
examples of different background colors in Figure 7-1. The top row looks best with
light font, and the bottom row looks best with dark font.

Figure 7-1. Light background colors look best with dark font, and dark background
colors look best with light font

In computer science one way to represent a color is with RGB values, or the red,
green, and blue values. Each of these values is between 0 and 255 and expresses
how these three colors are mixed to create the desired color. For example, if we
express the RGB as (red, green, blue), then dark orange would have an RGB of
(255,140,0) and pink would be (255,192,203). Black would be (0,0,0) and white would
be (255,255,255).

From a machine learning and regression perspective, we have three numeric input
variables red, green, and blue to capture a given background color. We need to fit
a function to these input variables and output whether a light (1) or dark (0) font
should be used for that background color.

Representing Colors Through RGB

There are hundreds of color picker palettes online to experiment
with RGB values. W3 Schools has one here.
Note this example is not far from how neural networks work rec‐
ognizing images, as each pixel is often modeled as three numeric
RGB values. In this case, we are just focusing on one “pixel” as a
background color.

Let’s start high level and put all the implementation details aside. We are going to
approach this topic like an onion, starting with a higher understanding and peeling
away slowly into the details. For now, this is why we simply label as “mystery math”
a process that takes inputs and produces outputs. We have three numeric input
variables R, G, and B, which are processed by this mystery math. Then it outputs a
prediction between 0 and 1 as shown in Figure 7-2.
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Figure 7-2. We have three numeric RGB values used to make a prediction for a light or
dark font

This prediction output expresses a probability. Outputting probabilities is the most
common model for classification with neural networks. Once we replace RGB with
their numerical values, we see that less than 0.5 will suggest a dark font whereas
greater than 0.5 will suggest a light font as demonstrated in Figure 7-3.

Figure 7-3. If we input a background color of pink (255,192,203), then the mystery math
recommends a light font because the output probability 0.89 is greater than 0.5

So what is going on inside that mystery math black box? Let’s take a look in
Figure 7-4.

We are missing another piece of this neural network, the activation functions, but
we will get to that shortly. Let’s first understand what’s going on here. The first layer
on the left is simply an input of the three variables, which in this case are the red,
green, and blue values. In the hidden (middle) layer, notice that we produce three
nodes, or functions of weights and biases, between the inputs and outputs. Each node
essentially is a linear function with slopes W i and intercepts Bi being multiplied and
summed with input variables X i. There is a weight W i between each input node and
hidden node, and another set of weights between each hidden node and output node.
Each hidden and output node gets an additional bias Bi added.
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Figure 7-4. The hidden layer of the neural network applies weight and bias values to
each input variable, and the output layer applies another set of weights and biases to
that output

Notice the output node repeats the same operation, taking the resulting weighted and
summed outputs from the hidden layer and making them inputs into the final layer,
where another set of weights and biases will be applied.

In a nutshell, this is a regression just like linear or logistic regression, but with many
more parameters to solve for. The weight and bias values are analogous to the m
and b, or β1 and β0, parameters in a linear regression. We do use stochastic gradient
descent and minimize loss just like linear regression, but we need an additional tool
called backpropagation to untangle the weight W i and bias Bi values and calculate
their partial derivatives using the chain rule. We will get to that later in this chapter,
but for now let’s assume we have the weight and bias values optimized. We need to
talk about activation functions first.

Activation Functions
Let’s bring in the activation functions next. An activation function is a nonlinear
function that transforms or compresses the weighted and summed values in a node,
helping the neural network separate the data effectively so it can be classified. Let’s
take a look at Figure 7-5. If you do not have the activation functions, your hidden
layers will not be productive and will perform no better than a linear regression.
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Figure 7-5. Applying activation functions

The ReLU activation function will zero out any negative outputs from the hidden
nodes. If the weights, biases, and inputs multiply and sum to a negative number, it
will be converted to 0. Otherwise the output is left alone. Here is the graph for ReLU
(Figure 7-6) using SymPy (Example 7-1).

Example 7-1. Plotting the ReLU function

from sympy import *

# plot relu
x = symbols('x')
relu = Max(0, x)
plot(relu)
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Figure 7-6. Graph for ReLU function

ReLU is short for “rectified linear unit,” but that is just a fancy way of saying “turn
negative values into 0.” ReLU has gotten popular for hidden layers in neural networks
and deep learning because of its speed and mitigation of the vanishing gradient
problem. Vanishing gradients occur when the partial derivative slopes get so small
they prematurely approach 0 and bring training to a screeching halt.

The output layer has an important job: it takes the piles of math from the hidden
layers of the neural network and turns them into an interpretable result, such as pre‐
senting classification predictions. The output layer for this particular neural network
uses the logistic activation function, which is a simple sigmoid curve. If you read
Chapter 6, the logistic (or sigmoid) function should be familiar, and it demonstrates
that logistic regression is acting as a layer in our neural network. The output node
weights, biases, and sums each of the incoming values from the hidden layer. After
that, it passes the resulting value through the logistic function so it outputs a number
between 0 and 1. Much like logistic regression in Chapter 6, this represents a proba‐
bility that the given color input into the neural network recommends a light font. If
it is greater than or equal to 0.5, the neural network is suggesting a light font, but less
than that will advise a dark font.

Here is the graph for the logistic function (Figure 7-7) using SymPy (Example 7-2).
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Example 7-2. Logistic activation function in SymPy

from sympy import *

# plot logistic
x = symbols('x')
logistic = 1 / (1 + exp(-x))
plot(logistic)

Figure 7-7. Logistic activation function

Note that when we pass a node’s weighted, biased, and summed value through an
activation function, we now call that an activated output, meaning it has been filtered
through the activation function. When the activated output leaves the hidden layer,
the signal is ready to be fed into the next layer. The activation function could have
strengthened, weakened, or left the signal as is. This is where the brain and synapse
metaphor for neural networks comes from.

Given the potential for complexity, you might be wondering if there are other activa‐
tion functions. Some common ones are shown in Table 7-1.
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Table 7-1. Common activation functions

Name Typical
layer used

Description Notes

Linear Output Leaves values as is Not commonly used

Logistic Output S-shaped sigmoid curve Compresses values between 0 and 1, often assists binary
classification

Tangent
Hyperbolic

Hidden tanh, S-shaped sigmoid curve
between -1 and 1

Assists in “centering” data by bringing mean close to 0

ReLU Hidden Turns negative values to 0 Popular activation faster than sigmoid and
tanh, mitigates vanishing gradient problems and
computationally cheap

Leaky ReLU Hidden Multiplies negative values by 0.01 Controversial variant of ReLU that marginalizes rather
than eliminates negative values

Softmax Output Ensures all output nodes add up
to 1.0

Useful for multiple classifications and rescaling outputs so
they add up to 1.0

This is not a comprehensive list of activation functions, and in theory any function
could be an activation function in a neural network.

While this neural network seemingly supports two classes (light or dark font), it
actually is modeled to one class: whether or not a font should be light (1) or not
(0). If you wanted to support multiple classes, you could add more output nodes
for each class. For instance, if you are trying to recognize handwritten digits 0–9,
there would be 10 output nodes representing the probability a given image is each
of those numbers. You might consider using softmax as the output activation when
you have multiple classes as well. Figure 7-8 shows an example of taking a pixellated
image of a digit, where the pixels are broken up as individual neural network inputs
and then passed through two middle layers, and then an output layer with 10 nodes
representing probabilities for 10 classes (for the digits 0–9).
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Figure 7-8. A neural network that takes each pixel as an input and predicts what digit
the image contains

An example of using the MNIST dataset on a neural network can be found in
Appendix A.
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I Don’t Know What Activation Function to Use!

If you are unsure what activations to use, current best practices
gravitate toward ReLU for middle layers and logistic (sigmoid) for
output layer. If you have multiple classifications in the output, use
softmax for the output layer.

Forward Propagation
Let’s capture what we have learned so far using NumPy. Note I have not optimized
the parameters (our weight and bias values) yet. We are going to initialize those with
random values.

Example 7-3 is the Python code to create a simple feed-forward neural network that
is not optimized yet. Feed forward means we are simply inputting a color into the
neural network and seeing what it outputs. The weights and biases are randomly
initialized and will be optimized later in this chapter, so do not expect a useful output
yet.

Example 7-3. A simple forward propagation network with random weight and bias
values

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

all_data = pd.read_csv("https://tinyurl.com/y2qmhfsr")

# Extract the input columns, scale down by 255
all_inputs = (all_data.iloc[:, 0:3].values / 255.0)
all_outputs = all_data.iloc[:, -1].values

# Split train and test data sets
X_train, X_test, Y_train, Y_test = train_test_split(all_inputs, all_outputs,
    test_size=1/3)
n = X_train.shape[0] # number of training records

# Build neural network with weights and biases
# with random initialization
w_hidden = np.random.rand(3, 3)
w_output = np.random.rand(1, 3)

b_hidden = np.random.rand(3, 1)
b_output = np.random.rand(1, 1)

# Activation functions
relu = lambda x: np.maximum(x, 0)
logistic = lambda x: 1 / (1 + np.exp(-x))
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# Runs inputs through the neural network to get predicted outputs
def forward_prop(X):
    Z1 = w_hidden @ X + b_hidden
    A1 = relu(Z1)
    Z2 = w_output @ A1 + b_output
    A2 = logistic(Z2)
    return Z1, A1, Z2, A2

# Calculate accuracy
test_predictions = forward_prop(X_test.transpose())[3] # grab only output layer, A2
test_comparisons = np.equal((test_predictions >= .5).flatten().astype(int), Y_test)
accuracy = sum(test_comparisons.astype(int) / X_test.shape[0])
print("ACCURACY: ", accuracy)

A couple of things to note here. The dataset containing the RGB input values as well
as output value (1 for light and 0 for dark) are contained in this CSV file. I am scaling
down the input columns R, G, and B values by a factor of 1/255 so they are between 0
and 1. This will help the training later so the number space is compressed.

Note I also separated 2/3 of the data for training and 1/3 for testing using scikit-learn,
which we learned how to do in Chapter 5. n is simply the number of training data
records.

Now bring your attention to the lines of code shown in Example 7-4.

Example 7-4. The weight matrices and bias vectors in NumPy

# Build neural network with weights and biases
# with random initialization
w_hidden = np.random.rand(3, 3)
w_output = np.random.rand(1, 3)

b_hidden = np.random.rand(3, 1)
b_output = np.random.rand(1, 1)

These are declaring our weights and biases for both the hidden and output layers of
our neural network. This may not be obvious yet but matrix multiplication is going to
make our code powerfully simple using linear algebra and NumPy.

The weights and biases are going to be initialized as random values between 0 and 1.
Let’s look at the weight matrices first. When I ran the code I got these matrices:

Wℎidden =
0.034535 0.5185636 0.81485028

0.3329199 0.53873853 0.96359003
0.19808306 0.45422182 0.36618893

Woutput = 0.82652072 0.30781539 0.93095565
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Note that Wℎidden are the weights in the hidden layer. The first row represents the
first node weights W1, W2, and W3. The second row is the second node with weights
W4, W5, and W6. The third row is the third node with weights W7, W8, and W9.

The output layer has only one node, meaning its matrix has only one row with
weights W10, W11, and W12.

See a pattern here? Each node is represented as a row in a matrix. If there are three
nodes, there are three rows. If there is one node, there is one row. Each column holds
a weight value for that node.

Let’s look at the biases, too. Since there is one bias per node, there are going to be
three rows of biases for the hidden layer and one row of biases for the output layer.
There’s only one bias per node so there will be only one column:

Bℎidden =
0.41379442
0.81666079
0.07511252

Boutput = 0.58018555

Now let’s compare these matrix values to our visualized neural network as shown in
Figure 7-9.

Figure 7-9. Visualizing our neural network against the weight and bias matrix values

So besides being esoterically compact, what is the benefit of these weights and biases
in this matrix form? Let’s bring our attention to these lines of code in Example 7-5.
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Example 7-5. The activation functions and forward propagation function for our neural
network

# Activation functions
relu = lambda x: np.maximum(x, 0)
logistic = lambda x: 1 / (1 + np.exp(-x))

# Runs inputs through the neural network to get predicted outputs
def forward_prop(X):
    Z1 = w_hidden @ X + b_hidden
    A1 = relu(Z1)
    Z2 = w_output @ A1 + b_output
    A2 = logistic(Z2)
    return Z1, A1, Z2, A2

This code is important because it concisely executes our entire neural network using
matrix multiplication and matrix-vector multiplication. We learned about these oper‐
ations in Chapter 4. It runs a color of three RGB inputs through the weights, biases,
and activation functions in just a few lines of code.

I first declare the relu() and logistic() activation functions, which literally take a
given input value and return the output value from the curve. The forward_prop()
function executes our entire neural network for a given color input X containing the
R, G, and B values. It returns the matrix outputs from four stages: Z1, A1, Z2, and A2.
The “1” and “2” indicate the operations belong to layers 1 and 2 respectively. The “Z”
indicates an unactivated output from the layer, and “A” is activated output from the
layer.

The hidden layer is represented by Z1 and A1. Z1 is the weights and biases applied
to X. Then A1 takes that output from Z1 and pushes it through the activation ReLU
function. Z2 takes the output from A1 and applies the output layer weights and biases.
That output is in turn pushed through the activation function, the logistic curve, and
becomes A2. The final stage, A2, is the prediction probability from the output layer,
returning a value between 0 and 1. We call it A2 because it is the “activated” output
from layer 2.

Let’s break this down in more detail starting with Z1:

Z1 = WℎiddenX + Bℎidden

First we perform matrix-vector multiplication between Wℎidden and the input color
X. We multiply each row of Wℎidden (each row being a set of weights for a node) with
the vector X (the RGB color input values). We then add the biases to that result, as
shown in Figure 7-10.
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Figure 7-10. Applying the hidden layer weights and biases to an input X using matrix-
vector multiplication as well as vector addition

That Z1 vector is the raw output from the hidden layer, but we still need to pass it
through the activation function to turn Z1 into A1. Easy enough. Just pass each value
in that vector through the ReLU function and it will give us A1. Because all the values
are positive, it should not have an impact.

A1 = ReLU Z1

A1 =
ReLU 1.36054964190909
ReLU 2.15471757888247
ReLU 0.719554393391768

=
1.36054964190909
2.15471757888247

0.719554393391768

Now let’s take that hidden layer output A1 and pass it through the final layer to get Z2
and then A2. A1 becomes the input into the output layer.

Z2 = WoutputA1 + Boutput

Z2 = 0.82652072 0.3078159 0.93095565
1.36054964190909
2.15471757888247

0.719554393391768
+ 0.58018555

Z2 = 2.45765202842636 + 0.58018555

Z2 = 3.03783757842636
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Finally, pass this single value in Z2 through the activation function to get A2. This will
produce a prediction of approximately 0.95425:

A2 = logistic Z2

A2 = logistic 3.0378364795204

A2 = 0.954254478103241

That executes our entire neural network, although we have not trained it yet. But
take a moment to appreciate that we have taken all these input values, weights, biases,
and nonlinear functions and turned them all into a single value that will provide a
prediction.

Again, A2 is the final output that makes a prediction whether that background color
need a light (1) or dark (1) font. Even though our weights and biases have not been
optimized yet, let’s calculate our accuracy as shown in Example 7-6. Take the testing
dataset X_test, transpose it, and pass it through the forward_prop() function but
only grab the A2 vector with the predictions for each test color. Then compare the
predictions to the actuals and calculate the percentage of correct predictions.

Example 7-6. Calculating accuracy

# Calculate accuracy
test_predictions = forward_prop(X_test.transpose())[3]  # grab only A2
test_comparisons = np.equal((test_predictions >= .5).flatten().astype(int), Y_test)
accuracy = sum(test_comparisons.astype(int) / X_test.shape[0])
print("ACCURACY: ", accuracy)

When I run the whole code in Example 7-3, I roughly get anywhere from 55% to
67% accuracy. Remember, the weights and biases are randomly generated so answers
will vary. While this may seem high given the parameters were randomly generated,
remember that the output predictions are binary: light or dark. Therefore, a random
coin flip might as well produce this outcome for each prediction, so this number
should not be surprising.

Do Not Forget to Check for Imbalanced Data!

As discussed in Chapter 6, do not forget to analyze your data to
check for imbalanced classes. This whole background color dataset
is a little imbalanced: 512 colors have output of 0 and 833 have an
output of 1. This can skew accuracy and might be why our random
weights and biases gravitate higher than 50% accuracy. If the data
is extremely imbalanced (as in 99% of the data is one class), then
remember to use confusion matrices to track the false positives and
false negatives.
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Does everything structurally make sense so far? Feel free to review everything up to
this point before moving on. We just have one final piece to cover: optimizing the
weights and biases. Hit the espresso machine or nitro coffee bar, because this is the
most involved math we will be doing in this book!

Backpropagation
Before we start using stochastic gradient descent to optimize our neural network, a
challenge we have is figuring out how to change each of the weight and bias values
accordingly, even though they all are tangled together to create the output variable,
which then is used to calculate the residuals. How do we find the derivative of each
weight W i and bias Bi variable? We need to use the chain rule, which we covered in
Chapter 1.

Calculating the Weight and Bias Derivatives
We are not quite ready to apply stochastic gradient descent to train our neural
network. We have to get the partial derivatives with respect to the weights W i and
biases Bi, and we have the chain rule to help us.

While the process is largely the same, there is a complication using stochastic gradi‐
ent descent on neural networks. The nodes in one layer feed their weights and biases
into the next layer, which then applies another set of weights and biases. This creates
an onion-like nesting we need to untangle, starting with the output layer.

During gradient descent, we need to figure out which weights and biases should be
adjusted, and by how much, to reduce the overall cost function. The cost for a single
prediction is going to be the squared output of the neural network A2 minus the
actual value Y :

C = A2 −Y 2

But let’s peel back a layer. That activated output A2 is just Z2 with the activation
function:

A2 = sigmoid Z2

Z2 in turn is the output weights and biases applied to activation output A1, which
comes from the hidden layer:

Z2 = W2A1 + B2
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A1 is built off Z1 which is passed through the ReLU activation function:

A1 = ReLU Z1

Finally, Z1 is the input x-values weighted and biased by the hidden layer:

Z1 = W1X + B1

We need to find the weights and biases contained in the W1, B1, W2, and B2 matrices
and vectors that will minimize our loss. By nudging their slopes, we can change the
weights and biases that have the most impact in minimizing loss. However, each little
nudge on a weight or bias is going to propagate all the way to the loss function on the
outer layer. This is where the chain rule can help us figure out this impact.

Let’s focus on finding the relationship on a weight from the output layer W2 and the
cost function C . A change in the weight W2 results in a change to the unactivated
output Z2. That then changes the activated output A2, which changes the cost func‐
tion C . Using the chain rule, we can define the derivative of C  with respect to W2
as this:

dC
dW2

=
dZ2
dW2

dA2
dZ2

dC
dA2

When we multiply these three gradients together, we get a measure of how much a
change to W2 will change the cost function C .

Now we will calculate these three derivatives. Let’s use SymPy to calculate the deriva‐
tive of the cost function with respect to A2 in Example 7-7.

dC
dA2

= 2A2 − 2y

Example 7-7. Calculating the derivative of the cost function with respect to A2

from sympy import *

A2, y = symbols('A2 Y')
C = (A2 - Y)**2
dC_dA2 = diff(C, A2)
print(dC_dA2) # 2*A2 - 2*Y
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Next, let’s get the derivative of A2 with respect to Z2 (Example 7-8). Remember that
A2 is the output of an activation function, in this case the logistic function. So we
really are just taking the derivative of a sigmoid curve.

dA2
dZ2

= e
−Z2

1 + e−Z2 2

Example 7-8. Finding the derivative of A2 with respect to Z2

from sympy import *

Z2 = symbols('Z2')

logistic = lambda x: 1 / (1 + exp(-x))

A2 = logistic(Z2)
dA2_dZ2 = diff(A2, Z2)
print(dA2_dZ2) # exp(-Z2)/(1 + exp(-Z2))**2

The derivative of Z2 with respect to W2 is going to work out to be A1, as it is just a
linear function and going to return the slope (Example 7-9).

dZ2
dW1

= A1

Example 7-9. Derivative of Z2 with respect to W2

from sympy import *

A1, W2, B2 = symbols('A1, W2, B2')

Z2 = A1*W2 + B2
dZ2_dW2 = diff(Z2, W2)
print(dZ2_dW2) # A1

Putting it all together, here is the derivative to find how much a change in a weight in
W2 affects the cost function C :

dC
dw2

=
dZ2
dw2

dA2
dZ2

dC
dA2

= A1
e

−Z2

1 + e−Z2 2 2A2 − 2y

When we run an input X with the three input R, G, and B values, we will have values
for A1, A2, Z2, and y.
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Don’t Get Lost in the Math!

It is easy to get lost in the math at this point and forget what
you were trying to achieve in the first place, which is finding the
derivative of the cost function with respect to a weight (W2) in the
output layer. When you find yourself in the weeds and forgetting
what you were trying to do, then step back, go for a walk, get a
coffee, and remind yourself what you were trying to accomplish.
If you cannot, you should start over from the beginning and work
your way to the point you got lost.

However, this is just one component of the neural network, the derivative for W2.
Here are the SymPy calculations in Example 7-10 for the rest of the partial derivatives
we will need for chaining.

Example 7-10. Calculating all the partial derivatives we will need for our neural
network

from sympy import *

W1, W2, B1, B2, A1, A2, Z1, Z2, X, Y = \
    symbols('W1 W2 B1 B2 A1 A2 Z1 Z2 X Y')

# Calculate derivative of cost function with respect to A2
C = (A2 - Y)**2
dC_dA2 = diff(C, A2)
print("dC_dA2 = ", dC_dA2) # 2*A2 - 2*Y

# Calculate derivative of A2 with respect to Z2
logistic = lambda x: 1 / (1 + exp(-x))
_A2 = logistic(Z2)
dA2_dZ2 = diff(_A2, Z2)
print("dA2_dZ2 = ", dA2_dZ2) # exp(-Z2)/(1 + exp(-Z2))**2

# Calculate derivative of Z2 with respect to A1
_Z2 = A1*W2 + B2
dZ2_dA1 = diff(_Z2, A1)
print("dZ2_dA1 = ", dZ2_dA1) # W2

# Calculate derivative of Z2 with respect to W2
dZ2_dW2 = diff(_Z2, W2)
print("dZ2_dW2 = ", dZ2_dW2) # A1

# Calculate derivative of Z2 with respect to B2
dZ2_dB2 = diff(_Z2, B2)
print("dZ2_dB2 = ", dZ2_dB2) # 1

# Calculate derivative of A1 with respect to Z1
relu = lambda x: Max(x, 0)
_A1 = relu(Z1)
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d_relu = lambda x: x > 0 # Slope is 1 if positive, 0 if negative
dA1_dZ1 = d_relu(Z1)
print("dA1_dZ1 = ", dA1_dZ1) # Z1 > 0

# Calculate derivative of Z1 with respect to W1
_Z1 = X*W1 + B1
dZ1_dW1 = diff(_Z1, W1)
print("dZ1_dW1 = ", dZ1_dW1) # X

# Calculate derivative of Z1 with respect to B1
dZ1_dB1 = diff(_Z1, B1)
print("dZ1_dB1 = ", dZ1_dB1) # 1

Notice that ReLU was calculated manually rather than using SymPy’s diff() func‐
tion. This is because derivatives work with smooth curves, not jagged corners that
exist on ReLU. But it’s easy to hack around that simply by declaring the slope to be 1
for positive numbers and 0 for negative numbers. This makes sense because negative
numbers have a flat line with slope 0. But positive numbers are left as is with a 1-to-1
slope.

These partial derivatives can be chained together to create new partial derivatives
with respect to the weights and biases. Let’s get all four partial derivatives for the
weights in W1, W2, B1, and B2 with respect to the cost function. We already walked
through dC

dw2
. Let’s show it alongside the other three chained derivatives we need:

dC
dW2

=
dZ2
dW2

dA2
dZ2

dC
dA2

= A1
e

−Z2

1 + e−Z2 2 2A2 − 2y

dC
dB2

=
dZ2
dB2

dA2
dZ2

dC
dA2

= 1 e
−Z2

1 + e−Z2 2 2A2 − 2y

dC
dW1

= dC
DA2

DA2
dZ2

dZ2
dA1

dA1
dZ1

dZ1
dW1

= 2A2 − 2y e
−Z2

1 + e−Z2 2 W2 Z1 > 0 X

dC
dB1

= dC
DA2

DA2
dZ2

dZ2
dA1

dA1
dZ1

dZ1
dB1

= 2A2 − 2y e
−Z2

1 + e−Z2 2 W2 Z1 > 0 1
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We will use these chained gradients to calculate the slope for the cost function C with
respect to W1, B1, W2, and B2.

Automatic Differentiation
As you can see, untangling derivatives even with the chain rule and symbolic libraries
like SymPy is still tedious. This is why differentiable programming libraries are rising,
such as the JAX library made by Google. It is nearly identical to NumPy except it
allows calculating derivatives on parameters packaged as matrices.

If you want to learn more about automatic differentiation, this YouTube video does a
great job explaining it.

Stochastic Gradient Descent
We are now ready to integrate the chain rule to perform stochastic gradient descent.
To keep things simple, we are going to sample only one training record on every iter‐
ation. Batch and mini-batch gradient descent are commonly used in neural networks
and deep learning, but there’s enough linear algebra and calculus to juggle just one
sample per iteration.

Let’s take a look at our full implementation of our neural network, with backpropaga‐
ted stochastic gradient descent, in Example 7-11.

Example 7-11. Implementing a neural network using stochastic gradient descent

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

all_data = pd.read_csv("https://tinyurl.com/y2qmhfsr")

# Learning rate controls how slowly we approach a solution
# Make it too small, it will take too long to run.
# Make it too big, it will likely overshoot and miss the solution.
L = 0.05

# Extract the input columns, scale down by 255
all_inputs = (all_data.iloc[:, 0:3].values / 255.0)
all_outputs = all_data.iloc[:, -1].values

# Split train and test data sets
X_train, X_test, Y_train, Y_test = train_test_split(all_inputs, all_outputs,
    test_size=1 / 3)
n = X_train.shape[0]
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# Build neural network with weights and biases
# with random initialization
w_hidden = np.random.rand(3, 3)
w_output = np.random.rand(1, 3)

b_hidden = np.random.rand(3, 1)
b_output = np.random.rand(1, 1)

# Activation functions
relu = lambda x: np.maximum(x, 0)
logistic = lambda x: 1 / (1 + np.exp(-x))

# Runs inputs through the neural network to get predicted outputs
def forward_prop(X):
    Z1 = w_hidden @ X + b_hidden
    A1 = relu(Z1)
    Z2 = w_output @ A1 + b_output
    A2 = logistic(Z2)
    return Z1, A1, Z2, A2

# Derivatives of Activation functions
d_relu = lambda x: x > 0
d_logistic = lambda x: np.exp(-x) / (1 + np.exp(-x)) ** 2

# returns slopes for weights and biases
# using chain rule
def backward_prop(Z1, A1, Z2, A2, X, Y):
    dC_dA2 = 2 * A2 - 2 * Y
    dA2_dZ2 = d_logistic(Z2)
    dZ2_dA1 = w_output
    dZ2_dW2 = A1
    dZ2_dB2 = 1
    dA1_dZ1 = d_relu(Z1)
    dZ1_dW1 = X
    dZ1_dB1 = 1

    dC_dW2 = dC_dA2 @ dA2_dZ2 @ dZ2_dW2.T

    dC_dB2 = dC_dA2 @ dA2_dZ2 * dZ2_dB2

    dC_dA1 = dC_dA2 @ dA2_dZ2 @ dZ2_dA1

    dC_dW1 = dC_dA1 @ dA1_dZ1 @ dZ1_dW1.T

    dC_dB1 = dC_dA1 @ dA1_dZ1 * dZ1_dB1

    return dC_dW1, dC_dB1, dC_dW2, dC_dB2

# Execute gradient descent
for i in range(100_000):
    # randomly select one of the training data
    idx = np.random.choice(n, 1, replace=False)
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    X_sample = X_train[idx].transpose()
    Y_sample = Y_train[idx]

    # run randomly selected training data through neural network
    Z1, A1, Z2, A2 = forward_prop(X_sample)

    # distribute error through backpropagation
    # and return slopes for weights and biases
    dW1, dB1, dW2, dB2 = backward_prop(Z1, A1, Z2, A2, X_sample, Y_sample)

    # update weights and biases
    w_hidden -= L * dW1
    b_hidden -= L * dB1
    w_output -= L * dW2
    b_output -= L * dB2

# Calculate accuracy
test_predictions = forward_prop(X_test.transpose())[3]  # grab only A2
test_comparisons = np.equal((test_predictions >= .5).flatten().astype(int), Y_test)
accuracy = sum(test_comparisons.astype(int) / X_test.shape[0])
print("ACCURACY: ", accuracy)

There is a lot going on here, but it builds on everything else we learned in this
chapter. We perform 100,000 iterations of stochastic gradient descent. Splitting the
training and testing data by 2/3 and 1/3, respectively, I get approximately 97–99%
accuracy in my testing dataset depending on how the randomness works out. This
means after training, my neural network correctly identifies 97–99% of the testing
data with the right light/dark font predictions.

The backward_prop() function is key here, implementing the chain rule to take the
error in the output node (the squared residual), and then divide it up and distribute
it backward to the output and hidden weights/biases to get the slopes with respect to
each weight/bias. We then take those slopes and nudge the weights/biases in the for
loop, respectively, multiplying with the learning rate L just like we did in Chapters
5 and 6. We do some matrix-vector multiplication to distribute the error backward
based on the slopes, and we transpose matrices and vectors when needed so the
dimensions between rows and columns match up.

If you want to make the neural network a bit more interactive, here’s a snippet of code
in Example 7-12 where we can type in different background colors (through an R, G,
and B value) and see if it predicts a light or dark font. Append it to the bottom of the
previous code Example 7-11 and give it a try!
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Example 7-12. Adding an interactive shell to our neural network

# Interact and test with new colors
def predict_probability(r, g, b):
    X = np.array([[r, g, b]]).transpose() / 255
    Z1, A1, Z2, A2 = forward_prop(X)
    return A2

def predict_font_shade(r, g, b):
    output_values = predict_probability(r, g, b)
    if output_values > .5:
        return "DARK"
    else:
        return "LIGHT"

while True:
    col_input = input("Predict light or dark font. Input values R,G,B: ")
    (r, g, b) = col_input.split(",")
    print(predict_font_shade(int(r), int(g), int(b)))

Building your own neural network from scratch is a lot of work and math, but it gives
you insight into their true nature. By working through the layers, the calculus, and
the linear algebra, we get a stronger sense of what deep learning libraries like PyTorch
and TensorFlow do behind the scenes.

As you have gathered from reading this entire chapter, there are a lot of moving parts
to make a neural network tick. It can be helpful to put a breakpoint in different parts
of the code to see what each matrix operation is doing. You can also port the code
into a Jupyter Notebook to get more visual insight into each step.

3Blue1Brown on Backpropagation

3Blue1Brown has some classic videos talking about backpropaga‐
tion and the calculus behind neural networks.

Using scikit-learn
There is some limited neural network functionality in scikit-learn. If you are serious
about deep learning, you will probably want to study PyTorch or TensorFlow and get
a computer with a strong GPU (there’s a great excuse to get that gaming computer
you always wanted!). I have been told that all the cool kids are using PyTorch now.
However, scikit-learn does have some convenient models available, including the
MLPClassifier, which stands for “multi-layer perceptron classifier.” This is a neural
network designed for classification, and it uses a logistic output activation by default.
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Example 7-13 is a scikit-learn version of the background color classification applica‐
tion we developed. The activation argument specifies the hidden layer.

Example 7-13. Using scikit-learn neural network classifier

import pandas as pd
# load data
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

df = pd.read_csv('https://bit.ly/3GsNzGt', delimiter=",")

# Extract input variables (all rows, all columns but last column)
# Note we should do some linear scaling here
X = (df.values[:, :-1] / 255.0)

# Extract output column (all rows, last column)
Y = df.values[:, -1]

# Separate training and testing data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1/3)

nn = MLPClassifier(solver='sgd',
                   hidden_layer_sizes=(3, ),
                   activation='relu',
                   max_iter=100_000,
                   learning_rate_init=.05)

nn.fit(X_train, Y_train)

# Print weights and biases
print(nn.coefs_ )
print(nn.intercepts_)

print("Training set score: %f" % nn.score(X_train, Y_train))
print("Test set score: %f" % nn.score(X_test, Y_test))

Running this code I get about 99.3% accuracy on my testing data.

MNIST Example Using scikit-learn

To see a scikit-learn example predicting handwritten digits using
the MNIST dataset, turn to Appendix A.
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Limitations of Neural Networks and Deep Learning
For all of their strengths, neural networks struggle with certain types of tasks. This
flexibility with layers, nodes, and activation functions makes it flexible fitting to
data in a nonlinear manner…probably too flexible. Why? It can overfit to the data.
Andrew Ng, a pioneer in deep learning education and the former head of Google
Brain, mentioned this as a problem in a press conference in 2021. Asked why
machine learning has not replaced radiologists yet, this was his answer in an IEEE
Spectrum article:

It turns out that when we collect data from Stanford Hospital, then we train and test on
data from the same hospital, indeed, we can publish papers showing [the algorithms]
are comparable to human radiologists in spotting certain conditions.
It turns out [that when] you take that same model, that same AI system, to an older
hospital down the street, with an older machine, and the technician uses a slightly
different imaging protocol, that data drifts to cause the performance of AI system to
degrade significantly. In contrast, any human radiologist can walk down the street to
the older hospital and do just fine.
So even though at a moment in time, on a specific data set, we can show this works, the
clinical reality is that these models still need a lot of work to reach production.

In other words, the machine learning overfitted to the Stanford hospital training
and testing dataset. When taken to other hospitals with different machinery, the
performance degraded significantly due to the overfitting.

The same challenges occur with autonomous vehicles and self-driving cars. It is not
enough to just train a neural network on one stop sign! It has to be trained on
countless combinations of conditions around that stop sign: good weather, rainy
weather, night and day, with graffiti, blocked by a tree, in different locales, and so on.
In traffic scenarios, think of all the different types of vehicles, pedestrians, pedestrians
dressed in costumes, and infinite number of edge cases that will be encountered!
There is simply no effective way to capture every type of event that is encountered on
the road just by having more weights and biases in a neural network.

This is why autonomous vehicles themselves do not use neural networks in an
end-to-end manner. Instead, different software and sensor modules are broken up
where one module may use a neural network to draw a box around an object. Then
another module will use a different neural network to classify the object in that box,
such as a pedestrian. From there, traditional rule-based logic will attempt to predict
the path of the pedestrian and hardcoded logic will choose from different conditions
on how to react. The machine learning was limited to label-making activity, not the
tactics and maneuvers of the vehicle. On top of that, basic sensors like radar will
simply stop if an unknown object is detected in front of the vehicle, and this is just
another piece of the technology stack that does not use machine learning or deep
learning.
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This might be surprising given all the media headlines about neural networks and
deep learning beating humans in games like Chess and Go, or even besting pilots
in combat flight simulations. It is important to remember in reinforcement learning
environments like these that simulations are closed worlds, where infinite amounts
of labeled data can be generated and learned through a virtual finite world. However,
the real world is not a simulation where we can generate unlimited amounts of data.
Also, this is not a philosophy book so we will pass on discussions whether we live in
a simulation. Sorry, Elon! Collecting data in the real world is expensive and hard. On
top of that, the real world is filled with infinite unpredictability and rare events. All
these factors drive machine learning practitioners to resort to data entry labor to label
pictures of traffic objects and other data. Autonomous vehicle startups often have to
pair this kind of data entry work with simulated data, because the miles and edge case
scenarios needed to generate training data are too astronomical to gather simply by
driving a fleet of vehicles millions of miles.

These are all reasons why AI research likes to use board games and video games,
because unlimited labeled data can be generated easily and cleanly. Francis Chollet, a
renowned engineer at Google who developed Keras for TensorFlow (and also wrote a
great book, Deep Learning with Python), shared some insight on this in a Verge article:

The thing is, once you pick a measure, you’re going to take whatever shortcut is avail‐
able to game it. For instance, if you set chess-playing as your measure of intelligence
(which we started doing in the 1970s until the 1990s), you’re going to end up with
a system that plays chess, and that’s it. There’s no reason to assume it will be good
for anything else at all. You end up with tree search and minimax, and that doesn’t
teach you anything about human intelligence. Today, pursuing skill at video games
like Dota or StarCraft as a proxy for general intelligence falls into the exact same
intellectual trap…
If I set out to “solve” Warcraft III at a superhuman level using deep learning, you can
be quite sure that I will get there as long as I have access to sufficient engineering talent
and computing power (which is on the order of tens of millions of dollars for a task
like this). But once I’d have done it, what would I have learned about intelligence or
generalization? Well, nothing. At best, I’d have developed engineering knowledge about
scaling up deep learning. So I don’t really see it as scientific research because it doesn’t
teach us anything we didn’t already know. It doesn’t answer any open question. If the
question was, “Can we play X at a superhuman level?,” the answer is definitely, “Yes,
as long as you can generate a sufficiently dense sample of training situations and feed
them into a sufficiently expressive deep learning model.” We’ve known this for some
time.

That is, we have to be careful to not conflate an algorithm’s performance in a
game with broader capabilities that have yet to be solved. Machine learning, neural
networks, and deep learning all work narrowly on defined problems. They cannot
broadly reason or choose their own tasks, or ponder objects they have not seen
before. Like any coded application, they do only what they were programmed to do.
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With whatever tool it takes, solve the problem. There should be no partiality to
neural networks or any other tool at your disposal. With all of this in mind, using
a neural network might not be the best option for the task in front of you. It is
important to always consider what problem you are striving to solve without making
a specific tool your primary objective. The use of deep learning has to be strategic and
warranted. There are certainly use cases, but in most of your everyday work you will
likely have more success with simpler and more biased models like linear regression,
logistic regression, or traditional rule-based systems. But if you find yourself having
to classify objects in images, and you have the budget and labor to build that dataset,
then deep learning is going to be your best bet.

Is an AI Winter Coming?
Are neural networks and deep learning useful? Absolutely! And they are definitely
worth learning. That said, there is a good chance you have seen media, politicians,
and tech celebrities hail deep learning as some general artificial intelligence that can
match, if not outperform, human intelligence and is even destined to control the
world. I have attended talks from authoritative figures in the software development
community telling programmers they will be out of a job in a few years because of
machine learning, and AI will take over writing code.

Nearly a decade later, these predictions are still running late in 2022 because they
are simply not true. We have seen far more AI challenges than breakthroughs, and I
still have to drive my own car and write my own code. Neural networks are loosely
inspired by the human brain but are by no means a replication of them. Their
capabilities are nowhere near on par with what you see in movies like The Terminator,
Westworld, or WarGames. Instead, neural networks and deep learning work narrowly
on specific problems, like recognizing dog and cat photos after being optimized on
thousands of images. As stated earlier, they cannot reason or choose their own tasks,
or contemplate uncertainty or objects they have not seen before. Neural networks and
deep learning do only what they were programmed to do.

This disconnect may have inflated investment and expectations, resulting in a bubble
that could burst. This would bring about another “AI winter,” where disillusionment
and disappointment dry up funding in AI research. In North America, Europe,
and Japan, AI winters have happened multiple times since the 1960s. There’s a
good chance another AI winter is around the corner, but it does not mean neural
networks and deep learning will lose usefulness. They will continue to be applied in
the problems they are good at: computer vision, audio, natural language, and a few
other domains. Maybe you can discover new ways to use them! Use what works best
whether it’s linear regression, logistic regression, a traditional rule-based system, or a
neural network. There is much more power in the simplicity of pairing the right tool
to the right problem.
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Conclusion
Neural networks and deep learning offer some exciting applications, and we just
scratched the surface in this one chapter. From recognizing images to processing
natural language, there continue to be use cases for applying neural networks and
their different flavors of deep learning.

From scratch, we learned how to structure a simple neural network with one hidden
layer to predict whether or not a light or dark font should be used against a back‐
ground color. We also applied some advanced calculus concepts to calculate partial
derivatives of nested functions and applied it to stochastic gradient descent to train
our neural network. We also touched on libraries like scikit-learn. While we do
not have the bandwidth in this book to talk about TensorFlow, PyTorch, and more
advanced applications, there are great resources out there to expand your knowledge.

3Blue1Brown has a fantastic playlist on neural networks and backpropagation, and
it is worth watching multiple times. Josh Starmer’s StatQuest playlist on neural
networks is helpful as well, particularly in visualizing neural networks as manifold
manipulation. Another great video about manifold theory and neural networks can
be found here on the Art of the Problem. Finally, when you are ready to deep-dive,
check out Aurélien Géron’s Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow (O’Reilly) and Francois Chollet’s Deep Learning with Python (Manning).

If you made it to the end of this chapter and feel you absorbed everything within
reason, congrats! You have not just effectively learned probability, statistics, calculus,
and linear algebra but also applied it to practical applications like linear regression,
logistic regression, and neural networks. We will talk about how you can proceed in
the next chapter and start a new phase of your professional growth.

Exercise
Apply a neural network to the employee retention data we worked with in Chapter 6.
You can import the data here. Try to build this neural network so it predicts on this
dataset and use accuracy and confusion matrices to evaluate performance. Is it a good
model for this problem? Why or why not?

While you are welcome to build the neural network from scratch, consider using
scikit-learn, PyTorch, or another deep learning library to save time.

Answers are in Appendix B.
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CHAPTER 8

Career Advice and the Path Forward

As we come to a close with this book, it is a good idea to evaluate where to go
from here. You learned and integrated a wide survey of applied mathematical topics:
calculus, probability, statistics, and linear algebra. Then you applied these techniques
to practical applications, including linear regression, logistic regression, and neural
networks. In this chapter, we will cover how to use this knowledge going forward
while navigating the strange, exciting, and oddly diverse landscape of a data science
career. I will emphasize the importance of having direction and a tangible objective
to work toward, rather than memorizing tools and techniques without an actual
problem in mind.

Since we’re moving away from foundational concepts and applied methods, this
chapter will have a different tone than the rest of the book. You might be expecting to
learn how you can apply these mathematical modeling skills to your career in focused
and tangible ways. However, if you want to be successful in a data science career, you
will have to learn a few more hard skills like SQL and programming, as well as soft
skills to develop professional awareness. The latter are especially important so you
do not become lost in the shape-shifting profession that is data science and unseen
market forces blindside you.

I am not going to presume to know your career goals or what you hope to achieve
with this information. I will make a few safe bets, though, since you are reading
this book. I imagine you might be interested in a data science career, or you have
worked in data analysis and desire to formalize your analytics knowledge. Perhaps
you come from a software engineering background, seeking to get a grasp of AI
and machine learning. Maybe you are a project manager of some kind and find you
need to understand the capabilities of a data science or AI team so you can scope
accordingly. Maybe you are just a curious professional wondering how math can be
useful on a practical level, not just an academic one.
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I will do my best to meet the concerns of all these groups and hopefully generalize
some career advice that will be useful to most readers. Let’s start with redefining data
science. We have objectively studied it and will now look at it in the context of career
development and the future of the field.

Is the Author Being Anecdotal?

It is hard to not sound anecdotal in tasks like this, where I dispense
career advice sharing my own experiences (and experiences of oth‐
ers) rather than large, controlled surveys and studies like I advocate
in Chapter 3. But here’s my pitch: I have worked in the Fortune
500 world for more than a decade and saw the transformation
that the data science movement had on organizations. I have spo‐
ken at many tech conferences around the world and listened to
countless peers react with “this has happened to us too!” I read
many blogs and respected publications, from the Wall Street Jour‐
nal to Forbes, and I have learned to recognize disconnects between
popular expectations and reality. I pay especially close attention to
the kingmakers, leaders, and followers across different industries
and how they make or follow markets with data science and arti‐
ficial intelligence. Currently, I teach and advise stakeholders in
safety-critical applications of artificial intelligence at University of
Southern California, in the Aviation Safety and Security Program.
I only put a CV here to show that while I have not done formal
surveys and studies, and perhaps I am compiling anecdotal infor‐
mation, there are persistent narratives I have found with all these
sources of information. Vicki Boykis, an astute machine learning
engineer at Tumblr, wrote a blog article sharing similar findings
to mine, and I highly recommend you read it. You are welcome
to take my findings with a grain of salt, but pay close attention
to what is happening in your own work environment and identify
assumptions that your management and colleagues subscribe to.

Redefining Data Science
Data science is the analysis of data to gain actionable insights. In practice, it is
an amalgamation of different data-related disciplines rolled into one: statistics, data
analysis, data visualization, machine learning, operations research, software engineer‐
ing… just to name a few. Pretty much any discipline that touches data can be branded
as “data science.” This lack of clear definition has been problematic for the field.
After all, anything that lacks definition is wide open to interpretability, like a piece of
abstract art. This is why HR departments struggle with “data scientist” job postings,
as they tend to be all over the map. Figure 8-1 shows an umbrella encompassing
different disciplines and tools that can fall under data science.
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Figure 8-1. The data science umbrella

How did we get here? And how can something lacking definition like data science
become such a compelling force in the corporate world? Most important, how does
its definition (or lack thereof) affect your career? These are all important questions
we talk about in this chapter.
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This is why I tell my clients a better definition for data science is software engineering
with proficiency in statistics, machine learning, and optimization. If you take any of
those four disciplines away (software engineering, statistics, machine learning, and
optimization), the data scientist is at risk of not performing. Most organizations have
struggled to make clear distinctions about skillsets that make a data scientist effective,
but the definition provided should give clarity. While some may think that software
engineering is a controversial requirement, I think it is highly necessary given the
direction industries are going. We will address this point later.

But first, the best way to understand data science is to trace the history of the term.

A Brief History of Data Science
We could trace data science all the way back to the origin of statistics, as early as the
17th century or even the 8th century. For the sake of brevity, let’s start in the 1990s.
Analysts, statisticians, researchers, “quants,” and data engineers often maintained
distinct roles. Tooling stacks often consisted of spreadsheets, R, MATLAB, SAS, and
SQL.

Of course, things started to change rapidly after 2000. The internet and connected
devices started to generate enormous amounts of data. Alongside the inception of
Hadoop, Google pushed analytics and data collection to unimaginable heights. As
2010 approached, executives at Google insisted statisticians will have the “sexy” job in
the next decade. What came next was prescient.

In 2012, the Harvard Business Review mainstreamed this concept called data science
and declared it the “sexiest job of the 21st century”. After the Harvard Business
Review article, many companies and corporate workers raced to fill the data science
void. Management consultants were primed and positioned to educate Fortune 500
leaders on how to bring data science to their organizations. SQL developers, analysts,
researchers, quants, statisticians, engineers, physicists, and a myriad of other profes‐
sionals rebranded themselves as “data scientists.” Tech companies, feeling that tradi‐
tional role titles like “analyst,” “statistician,” or “researcher” sounded dated, renamed
the roles to “data scientist.”

Naturally, management at Fortune 500 companies came under pressure from the
C-suite to get on the data science bandwagon. The initial reasoning was a lot of data
was being collected, therefore big data was becoming a trend and data scientists were
needed to get insight from it. Around this time, the word “data-driven” became a
maxim across industries. The corporate world believed that unlike people, data is
objective and unbiased.
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Reminder: Data Is Not Objective and Unbiased!

To this day, many professionals and managers fall into the fallacy
of thinking data is objective and unbiased. Hopefully, after reading
this book you know this is simply not true, and refer to Chapter 3 if
you need a refresher about why.

Management and HR at companies, unable to compete for specialized deep learning
PhDs that were gobbled up by FAANG (Facebook, Amazon, Apple, Netflix, and
Google) and still under pressure to check the data science box, made an interesting
move. They rebranded existing teams of analysts, SQL developers, and Excel jockeys
as “data scientists.” Cassie Kozyrkov, the Chief Decision Scientist at Google, described
this open secret in a 2018 blog article on Hackernoon:

With every data scientist title I’ve held, I had already been doing the job under a
different name before rebranding czars in HR applied a little nip-tuck to the employee
database. My duties didn’t change in the slightest. I’m no exception; my social circle
is full of former statisticians, decision support engineers, quantitative analysts, math
professors, big data specialists, business intelligence experts, analytics leads, research
scientists, software engineers, Excel jockeys, niche PhD survivors…all proud Data
Scientists of today.

Data science technically does not exclude any of these professionals, because they
all are using data to gather insight. Of course, there was some pushback from the
science community, which was reluctant to coronate data science as a real science.
After all, can you think of a science that does not use data? In 2011 Pete Warden
(who now works as a TensorFlow lead at Google) wrote an interesting defense of the
data science movement in an O’Reilly article. He also cleanly articulated objectors’
arguments about the lack of definition:

[Regarding the lack of definition for data science, this] is probably the deepest objec‐
tion, and the one with the most teeth. There is no widely accepted boundary for what’s
inside and outside of data science’s scope. Is it just a faddish rebranding of statistics? I
don’t think so, but I also don’t have a full definition. I believe that the recent abundance
of data has sparked something new in the world, and when I look around I see people
with shared characteristics who don’t fit into traditional categories. These people tend
to work beyond the narrow specialties that dominate the corporate and institutional
world, handling everything from finding the data, processing it at scale, visualizing it
and writing it up as a story. They also seem to start by looking at what the data can
tell them, and then picking interesting threads to follow, rather than the traditional
scientist’s approach of choosing the problem first and then finding data to shed light
on it.

Pete ironically could not come up with a definition for data science either, but he
clearly made a case for why data science is flawed but useful. He also highlighted
the shift of research abandoning the scientific method in favor of once-eschewed
practices like data mining, which we talked about in Chapter 3.
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Data science made an interesting pivot just a few years after the Harvard Business
Review article. Perhaps it was more of a merger with AI and machine learning than
a pivot. Regardless, when machine learning and deep learning dominated headlines
around 2014, data was sold as the “fuel” for creating artificial intelligence. This
naturally expanded the scope of data science and created a confluence with the AI/
machine learning movement. In particular, the ImageNet challenge sparked a revived
interest in AI and brought on a machine learning and deep learning renaissance.
Companies like Waymo and Tesla promised self-driving cars in a matter of years
thanks to advances in deep learning, further fueling media headlines and bootcamp
enrollments.

This sudden interest in neural networks and deep learning had a interesting side
effect. Regression techniques like decision trees, support vector machines, and logis‐
tic regression, which has spent decades hiding in academia and specialized statistics
professions, rode the coattails of deep learning into the public limelight. At the same
time, libraries like scikit-learn created a low barrier for entry into the field. This had a
hidden cost of creating data science professionals who did not understand how these
libraries or models worked but used them anyway.

Because the discipline of data science has evolved faster than a perceived need to
define it, it is not uncommon for a data scientist role to be a complete wildcard. I
have met several individuals who held a data scientist title in Fortune 500 companies.
Some are highly proficient in coding and might even have software engineering
backgrounds but have no idea what statistical significance is. Others stay confined
in Excel and barely know SQL, much less Python or R. I met data science folks
who taught themselves a few functions in scikit-learn and quickly found themselves
floundering because that was all they knew.

So what does this mean for you? How do you flourish in such a buzzwordy and
chaotic landscape? It all comes down to what types of problems or industries interest
you, and not being quick to rely on employers to define roles. You do not have to be a
data scientist to do data science. There are a wide array of fields you can work to your
advantage given this knowledge you now have. You can be an analyst, researcher,
machine learning engineer, advisor, consultant, and a myriad of other roles that are
not necessarily called data scientist.

But first, let’s address some ways you can continue learning and find your edge in the
data science job market.
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Finding Your Edge
The practical data science professional needs more than an understanding of statistics
and machine learning to thrive. In most cases, it is unreasonable to expect data to
be readily available for machine learning and other projects. Instead, you will find
yourself chasing data sources, engineering scripts and software, scraping documents,
scraping Excel workbooks, and even creating your own databases. At least 95% of
your coding efforts will not be related to machine learning or statistical modeling at
all, but rather creating, moving, and transforming data so it is usable.

On top of that, you have to be aware of the big picture and the dynamics of your
organization. Your managers can make assumptions in defining your role, and it is
important to identify these assumptions so you recognize how they affect you. While
you are relying on your customers and leadership for their industry expertise, you
should be in a role to provide technical knowledge and articulate what is feasible. Let’s
look at some hard and soft skills you will likely need.

SQL Proficiency
SQL, also called structured query language, is a querying language to retrieve, trans‐
form, and write table data. A relational database is the most common way to organize
data, storing data into tables that are connected to each other much like a VLOOKUP
in Excel. Relational database platforms like MySQL, Microsoft SQL Server, Oracle,
SQLite, and PostgreSQL support SQL. As you might notice, SQL and relational
databases are so tightly coupled that “SQL” is often used in the branding of the
relational database, like “MySQL” and “Microsoft SQL Server.”

Example 8-1 is a simple SQL query that retrieves the CUSTOMER_ID and NAME fields
from a CUSTOMER table, for records that are in the STATE of 'TX'.

Example 8-1. A simple SQL query

SELECT CUSTOMER_ID, NAME
FROM CUSTOMER
WHERE STATE = 'TX'

Simply put, it is hard to get anywhere as a data science professional without profi‐
ciency in SQL. Businesses use data warehouses and SQL is almost always the means
to retrieve the data. SELECT, WHERE, GROUP BY, ORDER BY, CASE, INNER JOIN, and
LEFT JOIN should all be familiar SQL keywords. It is even better to know subqueries,
derived tables, common table expressions, and windowing functions to get the most
utility out of your data.
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Shameless Plug: The Author Has an SQL Book!

I have written a beginner’s SQL book for O’Reilly called Getting
Started with SQL. It is barely over one hundred pages so it can
be finished in a day. It covers the essentials, including joins and
aggregations as well as creating your own database. The book uses
SQLite, which can be set up in less than a minute.
There are other great SQL books by O’Reilly, including Learning
SQL, 3rd Ed. by Alan Beaulieu and the SQL Pocket Guide, 4th Ed.
by Alice Zhao. After speed-reading my one-hundred-page primer,
check out both of these books too.

SQL is also critical in making Python or other programming languages easily talk to
databases. If you want to send SQL queries to a database from Python, you can bring
the data back as Pandas DataFrames, Python collections, and other structures.

Example 8-2 shows a simple SQL query run in Python using the SQLAlchemy library.
It returns the records as named tuples. Just be sure to download this SQLite database
file and place it in your Python project, as well as run pip install sqlalchemy.

Example 8-2. Running an SQL query within Python using SQLAlchemy

from sqlalchemy import create_engine, text

engine = create_engine('sqlite:///thunderbird_manufacturing.db')
conn = engine.connect()

stmt = text("SELECT * FROM CUSTOMER")
results = conn.execute(stmt)

for customer in results:
    print(customer)

What About Pandas and NoSQL?
I frequently get questions regarding “alternatives” to SQL such as NoSQL or Pandas.
These really are not alternatives and instead are different tools residing elsewhere in
the data science toolchain. Take Pandas, for example. In Example 8-3, I can create
an SQL query pulling all records from the table CUSTOMER and put them in a Pandas
DataFrame.
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Example 8-3. Importing an SQL query into a Pandas DataFrame

from sqlalchemy import create_engine, text
import pandas as pd

engine = create_engine('sqlite:///thunderbird_manufacturing.db')
conn = engine.connect()

df = pd.read_sql("SELECT * FROM CUSTOMER", conn)
print(df) # prints SQL results as DataFrame

SQL was used here to bridge the gap between the relational database and my Python
environment, and load the data into a Pandas DataFrame. If I have demanding
computations that SQL is equipped to handle, it is more efficient that I do that on the
database server using SQL rather than locally on my computer using Pandas. Simply
put, Pandas and SQL can work together and are not competing technologies.

It is the same thing with NoSQL, which includes platforms like Couchbase and
MongoDB. While some readers might disagree and make valid arguments, I believe
comparing NoSQL with SQL is comparing apples and oranges. Yes, they both store
data and provide querying capabilities, but I do not think that puts them in competi‐
tion. They have different qualities for different use cases. NoSQL stands for “not only
SQL” and is better equipped to store unstructured data, like pictures or free-form text
articles. SQL is better equipped to store structured data. SQL maintains data integrity
more aggressively than NoSQL, although at the cost of computing overhead and less
scalability.

SQL, the Lingua Franca of Data
In 2015, many speculated NoSQL and distributed data processing technologies like
Apache Spark would replace SQL and relational databases. Ironically, SQL has proven
to be so important to data users that SQL layers were added to these platforms due
to demand. These layering technologies include Presto, BigQuery, and Apache Spark
SQL, to name a few. Most data problems are not big data problems, and nothing
works quite like SQL in querying data. Therefore, SQL has continued to thrive and
maintained its place as the lingua franca of the data world.

On another note, the promotion of NoSQL and big data platforms might be a lesson
on the Silver Bullet Syndrome. Hadi Hariri from JetBrains gave a talk on this topic in
2015, and it is well worth the watch.
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Programming Proficiency
Typically, many data scientists are not skilled at coding, at least not at the level of
a software engineer. However, it is becoming increasingly important that they code.
This provides an opportunity to gain an edge. Learn object-oriented programming,
functional programming, unit tests, version control (e.g., Git and GitHub), Big-O
algorithm analysis, cryptography, and other relevant computer science concepts and
language features you come across.

Here is why. Let’s say you created a promising regression model, like a logistic
regression or neural network, based on some sample data you were given. You ask the
in-house programmers in your IT department to “plug it in” to an existing piece of
software.

They look at your pitch warily. “We need to rewrite this in Java, not Python,” they say
grudgingly. “Where are your unit tests?” another asks. “Do you not have any classes
or types defined? We have to reengineer this code to be object-oriented.” On top of
that, they do not understand the math of your model and rightfully worry it will
misbehave on data it has not seen before. Since you have not defined unit tests, which
is not straightforward to do with machine learning, they are unsure how to verify the
quality of your model. They also ask how are two versions of code (Python and Java),
going to be managed?

You start to feel out of your element, and say, “I don’t understand why the Python
script cannot just be plugged in.” One of them pauses contemplatively and replies,
“We could create a web service with Flask and avoid having to rewrite in Java. How‐
ever, the other concerns do not go away. We then have to worry about scalability and
high traffic hitting the web service. Wait…perhaps we can deploy to the Microsoft
Azure cloud as a virtual machine scale set, but we still have to architect the backends.
Look, this has to be reengineered no matter how you approach it.”

This is precisely why many data scientists have work that never leaves their laptop.
As a matter of fact, putting machine learning into production has become so elusive
it has become a unicorn and hot topic in recent years. There is an enormous gap
between data scientists and software engineers, so naturally there is pressure for data
science professionals to now be software engineers.

This may sound overwhelming as data science is already overloaded in scope, with
many disciplines and requirements. However, this is not to demonstrate that you
need to learn Java. You can be an effective software engineer in Python (or whatever
employable language you prefer), but you have to be good at it. Learn object-oriented
programming, data structures, functional programming, concurrency, and other
design patterns. Two good books to tackle these topics for Python include Fluent
Python, 2nd Ed. by Luciano Ramalho (O’Reilly) and Beyond the Basic Stuff with
Python by Al Sweigart (No Starch).
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Data Science Gophers
Daniel Whitenack wrote an article “Data Science Gophers” for O’Reilly in 2016,
promoting the merits of the Go programming language for data science. What is
notable is it highlighted the problem with putting data science models in production
well before it became a mainstream discussion.

After that, learn to solve practical tasks including database APIs, web services, JSON
parsing, regular expressions, web scraping, security and cryptography, cloud comput‐
ing (Amazon Web Services, Microsoft Azure), and whatever else helps you become
productive in standing up a system.

As stated earlier, the programming language you master does not have to be Python.
It can be another language but it is encouraged that the language is universally used
and employable. Languages that have higher employability at the time of writing
include Python, R, Java, C#, and C++. Swift and Kotlin have a dominant presence
on Apple and Android devices, and both are fantastic, well-supported languages.
Although many of these languages are not mainstream for data science purposes, it
can be helpful to learn at least one other besides Python to get more exposure.

What About Jupyter Notebooks?
Data scientists often get a bad rap for writing poor code. There are a number of rea‐
sons why this is the case, but one possible culprit could be the workflows encouraged
by Jupyter Notebooks.

You might wonder why I did not use (or encourage) Jupyter Notebooks throughout
this book. Jupyter Notebooks are a popular platform to write data science code but in
a way you can place notes, runnable code snippets, and console/chart outputs in one
place. They can be a helpful tool and provide a convenient way to tell a story with
data.

That being said, notebooks are simply not a requirement to do data science work
unless your employer requires it. Everything we covered in this book was done in
plain Python without notebooks. I did this on purpose, as I did not want to burden
readers with setting up additional tooling. This might go against convention, but you
can have a healthy career without touching notebooks.

Here is why: notebooks encourage bad programming habits. Notebooks encourage
workflows that emphasize linearity rather than modularity, meaning they are not
conducive to writing reusable code. Reusability is arguably the most basic goal of
software programming. On top of that, notebook cells containing the code snippets
can be run in any arbitrary order, or rerun multiple times. If you are not careful,
you can create confusing states and bugs that will at best create blatant errors, and at

Finding Your Edge | 267

https://oreil.ly/j4z4F
https://oreil.ly/gN9e7
https://oreil.ly/N8uef
https://oreil.ly/N8uef
https://oreil.ly/IyD2P
https://oreil.ly/9oWWb
https://oreil.ly/oxliO


worst create subtle miscalculations that go unnoticed. Especially if you are a beginner,
this is a maddening way to learn Python as these technical traps are not obvious to
newcomers. It is also a way to come across and present a finding, only to discover it
was the result of a bug and therefore too good to be true.

I am not advocating that you avoid notebooks. By all means, use them if they make
you and your workplace happy! However I am advocating to not rely on them. Joel
Grus, author of Data Science from Scratch (O’Reilly), gave a talk at JupyterCon on this
very subject that you can watch here.

Anchoring Bias and First Programming Languages

It is common for technical professionals to get partial to and
emotionally invested in technologies and platforms, especially pro‐
gramming languages. Please don’t do this! This kind of tribalism
is not productive and ignores the reality that every programming
language caters to different qualities and use cases. Another reality
is that some programming languages catch on while others do not,
often for reasons that have nothing to do with merits in language
design. If a big company is not paying for its support, its chances of
survival are slim.
We talked about different types of cognitive biases in Chapter 3.
Another one is anchoring bias, which states that we can become
partial to the first thing we learn, such as a programming lan‐
guage. If you are feeling obligated to learn a new language, be
open-minded and give it a chance! No language is perfect, and all
that matters is it gets the job done.
However, be wary if the language’s support is questionable because
it is on life support, is not receiving updates, or lacks a corporate
maintainer. Examples of this include Microsoft’s VBA, Red Hat’s
Ceylon, and Haskell.

Java Data Science Libraries
While not nearly as popular as Python data science libraries, Java does have several
equivalent libraries that are strongly supported. ND4J is the NumPy for the Java
virtual machine, and SMILE is the scikit-learn. TableSaw is the Java equivalent to
Pandas.

Apache Spark is actually written on the Java platform, specifically using Scala. Inter‐
estingly, Apache Spark was a driver for some time trying to make Scala a mainstream
language for data science, although it did not catch on to the degree the Scala
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community probably hoped. This is why a lot of effort was made to add Python, SQL,
and R compatibility and not just Java and Scala.

Data Visualization
Another technical skill in which you should have some degree of proficiency is
data visualization. Be comfortable making charts, graphs, and plots that not only
tell stories to management but also help your own data exploration efforts. You can
summarize data with an SQL command, but sometimes a bar chart or scatterplot will
give you a better sense of your data in less time.

When it comes to what tools to use for data visualization, this is much harder
to answer because there is so much fragmentation and choice. If you work in a
traditional office environment, Excel and PowerPoint are often the preferred visuali‐
zation tools, and you know what? They are quite all right! I do not use them for
everything but they do accomplish a great majority of tasks. Need a scatterplot on
a small/medium dataset? Or a histogram? No problem! You can have one built in a
few minutes after copying/pasting your data into an Excel workbook. This is great for
one-time graph visualizations, and there is no shame in using Excel when it works.

However, there are situations where you might want to script the creation of graphs
so it is repeatable and reusable or it integrates with your Python code. matplotlib has
been the go-to for some time, and it is hard to avoid when Python is your platform.
Seaborn provides a wrapper on top of matplotlib to make it easier to use for common
chart types. SymPy, which we used a lot throughout this book, uses matplotlib as
its backend. However, some consider matplotlib to be so mature it is approaching
legacy status. Libraries like Plotly have been on the rise and are nice to use, and it
is based on the JavaScript D3.js library. Personally, I am having success with Manim.
The 3Blue1Brown-style visualizations it produces are extraordinary and have that
“Wow!” factor with customers, and the API is surprisingly easy to use considering the
animation power it has. However, it is a young library and has yet to reach maturity,
meaning you might have breaking code changes as it evolves with each release.

You cannot go wrong with exploring all of these solutions, and if your employer/
customer does not have a preference, you can find one that works best for you.

There are commercial licensed platforms like Tableau, which are fine to a degree.
They set out to create proprietary software that specializes in visualization and create
a drag-and-drop interface so it is accessible to nontechnical users. Tableau even has a
whitepaper titled “Make Everyone in Your Organization a Data Scientist”, which does
not help the data scientist definition problem mentioned earlier. The challenges I
have found with Tableau is it only does visualization well and requires a hefty license.
While you can somewhat integrate Python with TabPy, you might just choose to use

Finding Your Edge | 269

https://matplotlib.org
https://seaborn.pydata.org
https://plotly.com/python
https://d3js.org
https://www.manim.community
https://www.tableau.com/products/desktop
https://oreil.ly/kncmP
https://tableau.github.io/TabPy/docs/about.html


the capable open source libraries mentioned earlier unless your employer wants to
use Tableau.

Software Licenses Can Be Political

Imagine that you created a Python or Java application that solicits a
few user inputs, retrieves and wrangles different data sources, runs
some highly custom algorithms, and then presents a visualization
and a table showing the result. You present it at a meeting after
months of hard work, but then one of the managers raises his hand
and asks, “Why not just do this in Tableau?”
It’s a hard pill to swallow for some managers, knowing that they
have spent thousands of dollars for corporate software licenses, and
you come in and use a more capable (albeit more complex to use)
open source solution that has no licensing costs. You can empha‐
size that Tableau does not support these algorithms or integrated
workflows you had to create. After all, Tableau is just visualization
software. It is not a from-scratch coding platform to create a cus‐
tomized, highly tailored solution.
Leadership is often sold the impression that Tableau, Alteryx, or
another commercial tool can do everything. After all, they spent
a lot of money for it and were probably given a good sales pitch
by the vendor. Naturally, they want to justify the costs and have
as many people as possible using the license. They probably spent
further budget training employees to use the software and want
others to be able to maintain your work.
Be sensitive to this. If management asks you to use the tool they
paid for, then explore if you can make it work. But if it has limi‐
tations or steep usability compromises in your specific tasks, be
politely up-front about it.

Knowing Your Industry
Let’s compare two industries: movie streaming (e.g., Netflix) and aerospace defense
(e.g., Lockheed Martin). Do they have anything in common? Hardly! Both are
technology-driven companies, but one is streaming movies for consumers and the
other is building airplanes with ordnance.
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When I advise on artificial intelligence and system safety, one of the first things
I point out is these two industries have very different tolerances for risk. A movie-
streaming company may tout they have an AI system that learns what movies to
recommend to consumers, but how catastrophic is it when it gives a bad recommen‐
dation? Well, at worst you have a mildly irritated consumer who wasted two hours
watching a movie they did not enjoy.

But what about the aerospace defense company? If a fighter jet has AI on board that
automatically shoots targets, how catastrophic would it be if it were wrong? We are
talking about human lives now, not movie recommendations!

The risk tolerance gap between both of these industries is wide. Naturally, the
aerospace defense company is going to be far more conservative implementing any
experimental system. This means red tape and safety working groups evaluating and
stopping any project they deem unacceptably high risk, and justifiably so. What’s
interesting, though, is the success of AI in Silicon Valley startups, most in low-risk
applications like movie recommendations, have created FOMO (“fear of missing
out”) with the defense industry executives and leadership. This is likely because the
disparity in risk tolerance between these two domains is not highlighted enough.

Of course, there is a wide spectrum of risk severity between these two industries,
between “irritated user” and “loss of human life.” Banks may use AI to determine
who will qualify for loans, but that carries risks in discriminating against certain
demographics. Criminal justice systems have experimented with AI in parole and
surveillance systems, only to run into the same discrimination issues. Social media
may use AI to determine what user posts are acceptable but anger its users when it
suppresses “harmless” content (false positives) as well as lawmakers when “harmful”
content is not suppressed (false negatives).

This demonstrates the need to know your industry. If you want to do lots of machine
learning, you will probably want to work in low-risk industries where false positives
and false negatives do not endanger or upset anyone. But if none of that appeals to
you, and you want to work on bolder applications like self-driving cars, aviation, and
medicine, then expect your machine learning models to get rejected a lot.

In these higher-risk industries, do not be surprised if specific PhDs and other for‐
mal credentials are required. Even with a specialized PhD, false positives and false
negatives do not magically disappear. If you do not want to pursue such committed
specialization, you will likely be better off learning other tools besides machine
learning, including software engineering, optimization, statistics, and business rule
systems/heuristics.
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Productive Learning
In a 2008 stand-up special, comedian Brian Regan contrasted his lack of curiosity to
those who read newspapers. Pointing out that a front-page story is never concluded,
he stated he has no desire to turn to the specified page to find out how it ends. “And
after a nine-year trial, the jury finally came in with a verdict of continued on page
22 on column C…I guess I’ll never know,” he quips dismissively. He then contrasts
with those who flip the pages, exclaiming, “I want to learn! I want to be a learner of
things!”

While Brian Regan might have intended to be self-deprecating, maybe he was right
about something. Learning a topic for the sake of it of is hardly motivation, and being
disinterested is not always a bad thing. If you pick up a calculus textbook and have
no purpose for learning it, you will probably end up discouraged and frustrated. You
need to have a project or objective in mind, and if you find a topic uninteresting, why
bother learning it? Personally, when I allowed myself to lose interest in topics I could
not find relevant, it was incredibly liberating. Even more surprising, my productivity
skyrocketed.

It does not mean you should be uncurious. However, there is so much information
out there, and prioritizing what you learn is an invaluable skill. You can ask questions
about why something is useful and, if you cannot get a straight answer, allow yourself
to move on! Is everybody talking about natural language processing? It does not
mean you have to! Most businesses do not need natural language processing anyway,
so it is OK to say it is not worth your effort or time.

Whether you have projects on your job or you create your own for self-study, have
something tangible to work toward. Only you get to decide what is worth learning,
and you can wave off the FOMO in pursuit of things you find interesting and
relevant.

Practitioner Versus Advisor
This might be a generalization, but there are two types of knowledge experts: practi‐
tioners and advisors. To find your edge, discern which you want to be and tune your
professional development accordingly.

In the data science and analytics world, practitioners are the ones writing code,
creating models, scouring data, and trying to directly create value. Advisors are like
consultants, telling management whether their objectives are sound, helping with
strategy, and providing direction. Sometimes a practitioner can work their way up to
being an advisor. Sometimes advisors were never practitioners. There are pros and
cons to each role.
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A practitioner may enjoy coding, doing data analysis, and performing tangible work
that directly can create value. A benefit for the practitioner is they actually develop
and possess hard skills. However, burying oneself in code, math, and data makes it
easy to lose sight of the big picture and lose touch with the rest of the organization
and industry. A common complaint I have heard from managers is their data scientist
wants to work on problems they find interesting but that do not add value to the
organization. I have also heard complaints from practitioners who want exposure and
upward mobility but feel tucked away and hidden in their organization.

An advisor admittedly has a cushier job in some ways. They dispense advice and
information to managers, and help provide strategic direction to a business. They are
typically not the ones who write code or scour data, but they help management hire
the people who do. The career risk is different, as they do not worry about meeting
sprint deadlines, dealing with code bugs, or misbehaving models like practitioners do.
But they do have to worry about staying knowledgeable, credible, and relevant.

To be an effective advisor, you have be really knowledgeable and know things other
people do not. It has to be critical and relevant information that is fine-tuned to
your customer’s needs. To stay relevant, you have to read, read, and read more
every day…seeking and synthesizing information others are overlooking. It is not
enough to be familiar with machine learning, statistics, and deep learning. You have
to be paying attention to your client’s industry as well as other industries, tracking
who is succeeding and who is not. You also have to learn to pair the right solution
to the right problem, in a business landscape where many are looking for a silver
bullet. And to do all of this, you have to be an effective communicator and share
information in a way that helps your client, not just demonstrate what you know.

The greatest risk for an advisor is providing information that ends up being wrong.
Some consultants are quite effective at redirecting blame to outside factors, like
“nobody in the industry saw this coming” or “this is a six-sigma event!” meaning an
undesirable event had a one in a half-billion chance of occurring but did anyway.
Another risk is not having the hard skills of a practitioner and becoming disconnec‐
ted from the technical side of the business. This is why it is a good idea to regularly
practice coding and modeling at home, or at least make technical books part of your
reading.

In the end, a good advisor tries to be a bridge between the customer and their end
goal, often filling a massive knowledge gap that exists. It is not billing the maximum
number of hours and inventing busywork, but truly identifying what troubles your
customer and helping them sleep at night.
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Success Is Not Always About Profitability
Discern how your customer is defining “success.” Businesses are pursuing AI,
machine learning, and data science to be successful, right? But what is success?

Is it profitability? Not always. In our highly speculative economy, success might be
another series of venture capital funding, having customer growth or revenue growth,
or high valuation even if the company is losing millions or billions of dollars. None of
these metrics has anything to do with profitability.

Why is this happening? Tolerance for long-term plays in venture capital have margi‐
nalized profitability, believing it will be achieved much farther down the road. How‐
ever, it is possible this is creating bubbles much like what happened in the dot-com
boom of 2000.

In the end, profitability has to be achieved for a company to be long-term successful,
but not everyone has that goal. Many founders and investors simply want to ride the
growth and cash out before the bubble bursts, often when the company is sold to the
public through an IPO.

What does this mean for you? Whether you are a practitioner or advisor, working
at a startup or a Fortune 500, recognize what is motivating your client or employer.
Are they seeking higher valuations? Actual profitability? Intrinsic value or perceived
value? This will directly affect what you work on and what your clients want to hear,
and you can judge accordingly if you are in a place to assist them or not.

If you want to learn more about venture capital, speculative valuation, and the effects
of startup culture, The Cult of We by Wall Street Journal writers Eliot Brown and
Maureen Farrell is fantastic.

When projects are planned on tools rather than problems, there is a high likelihood
of the project not succeeding. This means as an advisor you have to hone your
listening skills and identify the questions that clients are struggling to ask, much
less have the answers to. If a major fast food chain has hired you to help with “AI
strategy,” and you see their HR rushing to hire deep learning talent, it is your job to
ask, “What problems with deep learning are you trying to solve?” If you cannot get
a clear answer, you want to encourage management to step back and evaluate what
real problems they actually are facing as an industry. Are they having staff-scheduling
inefficiency? Well, they do not need deep learning. They need linear programming!
This may seem basic to some readers, but a lot of management nowadays struggles
to make these distinctions. More than once, I have met vendors and consultants
who brand their linear programming solutions as AI, which can then semantically be
conflated with deep learning.

274 | Chapter 8: Career Advice and the Path Forward

https://www.cultofwe.com


What to Watch Out For in Data Science Jobs
To understand the data science job market, it might be good to draw a comparison to
a profound piece of American television.

In 2010, there was a US TV series Better Off Ted. One episode, titled “Jabberwocky”
(season 1, episode 12), captured something profound about corporate buzzwords.
In the show Ted, the lead character, makes up a fictitious “Jabberwocky” project
at his company to hide funding. With humorous results, his manager, the CEO,
and ultimately the entire company began to “work” on the “Jabberwocky” project
without even knowing what it is. It continues to escalate and thousands of employees
are pretending to work on “Jabberwocky” while no one stops to ask what they are
actually working on. The reason: no one wants to admit they are out of the loop and
ignorant of something important.

The Jabberwocky effect is an anecdotal theory that an industry or organization can
perpetuate a buzzword/project even if no one has satisfactorily defined what it is.
Organizations can cyclically fall victim to this behavior, allowing terms to circulate
without definition, and group behavior permits the ambiguity. Common examples
may include blockchain, artificial intelligence, data science, big data, Bitcoin, internet
of things, quantum computing, NFTs, being “data-driven,” cloud computing, and
“digital disruption.” Even tangible, high-profile, and specific projects can become
mysterious buzzwords understood by a few but talked about by many.

To stop the Jabberwocky effect, you have to be a catalyst for productive dialogue.
Be curious about the methods and means (not just the qualities or outcomes) of a
project or initiative. When it comes to a role, is the company hiring you to work
on “Jabberwocky” or practical and specific projects? Have they fallen victim to buzz‐
words and hiring you because of FOMO (fear of missing out)? Or do they actually
have specific and functional needs they are hiring you for? Making this discernment
can spell the difference between a good fit that cruises smoothly or a frustrating speed
bump in your career.

With that backdrop, let’s now consider a few things to watch out for in data science
jobs, starting with role definition.

Role Definition
Let’s say you are hired as a data scientist. The interview went great. You asked
questions about the role and got straight answers. You are offered a job, and most
important, you should know what projects you will be working on.

You always want to go into a role that is clearly defined and has tangible objectives.
There is no guessing what you are supposed to be working on. Even better, you
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should have leadership with a clear vision that understands what the business needs.
You become the executor of clearly defined objectives and know your customer.

Conversely, if you were hired into a role because the department wants to be “data-
driven” or have a competitive edge in “data science,” this is a red flag. Chances are
you will be burdened with finding problems to solve and selling any low-hanging
fruit you find. When you ask for strategic guidance, you are told to apply “machine
learning” to the business. But of course, when all you have is a hammer, everything
starts to look like a nail. Data science teams feel pressured to have a solution (e.g.,
machine learning) before they even have an objective or problem to solve. Once a
problem is found, getting stakeholder buy-in and aligning resources are found to be
difficult, and focus starts to bounce from one low-hanging fruit to another.

The problem here is you were hired for a role based on a buzzword, not a function.
Poor role definition tends to propagate to other problems discussed next. Let’s move
on to organizational focus.

Organizational Focus and Buy-In
Another factor to watch out for is how aligned the organization is on specific objec‐
tives and whether all parties are bought in.

Since the data science boom, many organizations restructured to have a central data
science team. The executives’ vision is to have the data science team rove, advise, and
help other departments become data-driven and employ innovative techniques like
machine learning. They may also be tasked with breaking down data silos between
the departments. While this sounds like a good idea on paper, many organizations
discover this is full of challenges.

Here’s why: management creates a data science team but there’s no clear objective.
Therefore, this team is tasked with looking for problems to solve rather than empow‐
ered to solve known problems. As stated, this is why data science teams are notorious
for having a solution (e.g., machine learning) before they have an objective. They are
especially ill-equipped to be a driving force for breaking down data silos, as this is
completely outside their lane of expertise.

276 | Chapter 8: Career Advice and the Path Forward



Breaking Down Data Silos Is an IT Job!

It is misguided to use a data science team to “break down data
silos” in an organization. Data silos are often due to a lack of data-
warehousing infrastructure, and departments are housing their
data in spreadsheets and secret databases rather than a centralized
and supported database.
If data silos are deemed a problem, you need servers, cloud instan‐
ces, certified database administrators, security protocols, and an IT
task force to put all this together. This is not something a data
science team is equipped to do, as they likely do not have the
needed expertise, budget, and organizational authority to pull this
off except in very small companies.

Once a problem is found, getting stakeholder buy-in and aligning resources are
difficult. If an opportunity is found, strong leadership is needed to do the following:

• Have a clearly defined objective and road map•
• Obtain budget to collect data and support the infrastructure•
• Attain data access and negotiate data ownership•
• Include stakeholder buy-in and domain knowledge•
• Budget time and meetings from stakeholders•

These requirements are much harder to do after a data science team has been hired,
rather than before, because the data science team’s roles are being scoped and budg‐
eted reactively. If higher leadership has not aligned resources and buy-in from all
necessary parties, the data science project will not succeed. This is why there is no
shortage of articles blaming organizations for not being ready for data science, from
Harvard Business Review to MIT Sloan Review.

It is better to work on a data science team that organizationally is in the same
department as its customer. Information, budgets, and communication are shared
more freely and cohesively. That way, there is less tension, as interdepartmental
politics are mitigated by putting everyone on the same team rather than in political
competition.

What to Watch Out For in Data Science Jobs | 277

https://oreil.ly/IlicW
https://oreil.ly/U9C9F


Data Access Is Political

It is no secret organizations are protective of their data, but this
is not just due to security or distrust concerns. Data itself is a
highly political asset, and many people are reluctant to provide
access even to their own colleagues. Even departments inside the
same organization will not share data with one another for this
reason: they do not want others doing their job, much less doing it
incorrectly. It may require their full-time expertise to interpret the
data, and it requires their domain knowledge. After all, their data
is their business! And if you are asking for access to their data, you
are asking to get into their business.
On top of that, data scientists can overestimate their ability to
interpret foreign datasets and the domain expertise needed to use
them. To overcome this hurdle, you have to develop trust and
buy-in with each partner with expertise, negotiate a knowledge
transfer, and if needed, give them a significant role in the project.

Adequate Resources
Another risk to watch out for is not getting adequate resources to do your job.
It is difficult being thrown into a role and not having what you need. Of course,
being scrappy and resourceful is an invaluable trait. But even the scrappiest software
engineer/data scientist rock star can quickly find themselves in over their head.
Sometimes you need things that cost money and your employer cannot budget for it.

Let’s say you need a database to perform forecasting work. You have a poor connec‐
tion to a third-party database, with frequent downtime and disconnects. The last
thing you want to hear is to “make it work” but that is your situation. You contem‐
plate replicating the database locally but to do that, you need to store 40 GB a day,
and therefore you need a server or cloud instance. Now you are clearly in over your
head, a data scientist becoming an IT department without an IT budget!

In these situations, you have to contemplate how you can cut corners without hurting
your project. Can you hold only the rolling latest data and delete the rest? Can
you create some error-handling Python script that reconnects when a disconnect
happens, while breaking up the data in batches so it picks up from the last successful
batch?

If this problem/solution sounds specific, yes, I did have to do this, and yes, it did
work! It is satisfying to come up with workaround solutions and streamline a process
without incurring more costs. But inevitably, for many data projects you may need
data pipelines, servers, clusters, GPU-based workstations, and other computational
resources that a desktop computer cannot offer. In other words, these things can cost
money and your organization may be unable to budget for them.
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Where’s the Mathematical Modeling?

If you are wondering how you were hired to do regression, statis‐
tics, machine learning, and other applied mathematics only to find
yourself doing rogue IT work, this is not uncommon in the current
corporate climate.
You are working with data, however, and that implicitly can lead
to IT-like work. The important thing is to make sure your skills
still match the job and the needed outcome. We will address this
throughout the rest of this chapter.

Reasonable Objectives
This is a big one to watch out for. In a landscape full of hype and moonshot promises,
it is easy to encounter unreasonable objectives.

There are situations where a manager hires a data scientist and expects them to
waltz in effortlessly and add exponential value to the organization. This can certainly
happen if the organization is still doing manual work and opportunities to automate
are everywhere. For example, if the organization is doing all its work in spreadsheets
and forecasts are done by pure guesses, this is a great opportunity for a data science
professional to streamline processes into a database and make strides with even
simple regression models.

On the other hand, if the organization hires a data scientist to implement machine
learning into their software specifically recognizing objects in images, this is much
harder. A well-informed data scientist has to explain to management this is an
endeavor that will cost hundreds of thousands of dollars at least! Not only do pictures
have to be gathered, but manual labor has to be hired to label the objects in the
images. And that is just collecting the data!

It is common for a data scientist to spend their first 18 months explaining to
management why they have not delivered, because they are still trying to gather
and clean data, which is 95% of machine learning efforts. Management can become
disillusioned with this because they fell victim to a popular narrative that machine
learning and AI would do away with manual processes, only to discover they traded
one set of manual processes for another: the procurement of labeled data.

So be wary of environments that set unreasonable objectives, and find diplomatic
ways to manage expectations with management especially when others promised
them an “EASY button.” There are a lot of claims from otherwise reputable busi‐
ness journals and high-dollar management consultancies that super-intelligent AI
is around the corner. Managers who lack technical expertise can fall victim to this
hyped narrative.
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Cui Bono?

The Latin expression cui bono means “who benefits?” It is a good
question to ask when you find yourself trying to make sense of
behaviors when the Jabberwocky effect is in full swing. When the
media promotes stories about artificial intelligence, who benefits
from that? Regardless of your answer, the media also benefits from
the clicks and ad revenue. High-dollar management consultancies
create more billable hours around “AI strategy.” A chip manufac‐
turer can promote deep learning to sell more graphics cards, and
cloud platforms can sell more data storage and CPU time for
machine learning projects.
What do all of these parties have in common? It is not just that
they are using AI as a means to sell their products, but they have
no long-term stake in their customers’ success. They are selling
units, not a project outcome, much like selling shovels during a
gold rush.
However, I’m not saying these media and vendor motivations are
unethical. It is their employees’ job to make money for their com‐
pany and provide for their families. The claims that promote their
product may even be legitimate and achievable. However, it cannot
be dismissed that once a claim is promoted, it is difficult to walk it
back, even when it is realized to be unattainable. Many businesses
might pivot and redirect their efforts rather than admit their claims
did not pan out. So just be aware of this dynamic and always ask
“cui bono?”

Competing with Existing Systems
This caution might fall under “reasonable objectives,” but I think this situation is
common enough that it warrants its own category. A subtle but problematic type of
role is one that competes with an existing system that is not actually broken. These
situations may arise in work environments that lack things to do and need to look
busy.

Your employer contracted a vendor to install a sales-forecasting system several years
ago. Your manager now asks you to improve the forecasting system by increasing
accuracy by 1%.

Do you see the statistical problem here? If you read Chapter 3, 1% should not feel
statistically significant, and randomness can easily give you that 1% without any
effort on your part. Conversely, randomness can swing the opposite direction and
market forces out of your control can negate any effort you implement. A bad sales
quarter and factors outside your control (such as competitors moving into your com‐
pany’s market) decrease revenue by -3% rather than the 1% you inevitably p-hacked.
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The overarching problem here, besides the redundancy of work, is the outcome is not
in your sphere of influence. This may become a less than optimal situation. It’s one
thing if the existing system you are competing with is broken and rudimentary, or
done completely manually without automation. But competing with a system that is
not broken is setting yourself up for a bad time. If possible, run for the hills when you
see this kind of project.

“What Would You Say…You Do Here?”
Can a data scientist be hired into a role that produces no value, despite good work
and diligent efforts? Yes. Factors outside one’s control can nullify even the best work,
and it is important to keep a sharp eye out for this.

The 1999 Mike Judge comedy film Office Space became a cult classic for many
corporate workers in the United States. In the movie, IT worker and protagonist Peter
Gibbons mentally checks out of a coding job reporting to eight different managers.
When downsizing consultants ask what he does during his day, he answers honestly
that he does “about 15 minutes of real, actual work.” I won’t spoil the rest of the movie
for uninitiated readers, but like any great comedy, the outcome is probably not what
you expect.

To elaborate on the previous example, replacing a system that is not broken is
what late anthropologist David Graeber would describe as a bullshit job (pardon
my French). According to Graeber, a bullshit job is paid employment that is so com‐
pletely pointless, unnecessary, or pernicious that even the employee cannot justify
its existence but has to pretend otherwise. In his book Bullshit Jobs and viral 2013
article, Graeber theorizes these jobs are becoming so commonplace that it is taking a
psychological toll on the workforce and economy.

While Graeber’s work is riddled with self-selection bias and anecdotal findings, and
the lack of empirical evidence is an arguable target for criticism, it is hard-pressed to
claim these bullshit jobs do not exist. In Graeber’s defense, this is empirically hard
to measure and few workers will answer a poll honestly for fear of jeopardizing their
own careers.

Are data science careers safe from these problems? Cassie Kozykrov, the Chief Deci‐
sion Scientist at Google, shares a strange anecdote that helps answer this question:

Several years ago, an engineering director friend who works in tech was bemoaning
his useless data scientists. “I think you might be hiring data scientists the way a drug
lord buys a tiger for his backyard,” I told him. “You don’t know what you want with
the tiger, but all the other drug lords have one.”

Yikes. Is it possible management hires data scientists to increase an organization’s per‐
ceived credibility and corporate standing? If you find yourself in a job not designed
to create value, think strategically how you can influence positive change. Can you
create opportunity rather than waiting on others to provide it? Can you meaningfully
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take ownership of initiatives you identify and therefore grow your career? If this is
not possible, empower yourself to pursue better opportunities.

A Role Is Not What You Expected
When you start a role and find out it is not what you expected, what do you do? For
example, you were told your role would be statistics and machine learning but you
find yourself doing IT-like work instead, as the data foundation of the organization is
simply not developed enough to do machine learning.

You might be able to make lemonade. You can certainly accept your data scientist role
turning into an IT role, and maybe get some database and programming skills in the
process. You might even become indispensable as the resident SQL expert or techni‐
cal guru, and it can be professionally comfortable. As you streamline your business’s
data operations and workflows, you are setting your business up to be better prepared
for more sophisticated applications down the road. As your operations run smoothly,
you can allocate time to learn and grow professionally in what interests you.

On the other hand, if you were expecting to do statistical analysis and machine
learning, and instead find yourself debugging broken spreadsheets, Microsoft Access,
and VBA macros, you will probably feel disappointment. In this situation, at least
become an advocate for change. Push to modernize the tooling, advocating using
Python and a modern database platform, like MySQL or even SQLite. If you can
achieve that, then at least you will be on a platform that allows more innovation,
and be that much closer to applying concepts in this book. This will also benefit the
organization, as support and flexibility of tools will increase, and Python talent is
more readily available than dated technologies like Microsoft Access and VBA.

What Is Shadow IT?
Shadow information technology (shadow IT) is a term describing office workers who
create systems outside their IT department. These systems can include databases,
scripts, and processes as well as vendor and employee-made software without the IT
department’s involvement.

Shadow IT used to be frowned on in organizations, as it is unregulated and operating
outside the IT department’s scope of control. When finance, marketing, and other
non-IT departments decide to hand-spin their own rogue IT operations, it certainly
can create hidden costs to the organization in inefficiency and security concerns.
Nasty politics can ensue when IT departments and non-IT departments clash, accus‐
ing each other of not staying in their lane or simply co-opting roles for job security.

However, one benefit of the data science movement is it has made shadow IT more
accepted as a necessity for innovation. Non-IT folks can prototype and experiment
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with creating datasets, Python scripts, and regression tools. The IT department can
then pick up these innovations and support them formally as they mature. This also
allows the business to become more nimble. A business rule change can be a quick
edit to a Python script or in-house database, rather than filing a ticket with the IT
help desk. Whether that change should be subject to rigorous testing and red tape is
certainly a cost trade-off for responsiveness.

Overall, if you find yourself in a shadow IT role (which is likely), make sure you
understand the risks and play nice with the IT department. If you are successful, it
can be empowering and rewarding to support your business this way. If you sense
possible conflict with your IT department, be up front with your leadership and let
them know. If you can truthfully say your work is “prototyping” and “exploration,”
then your leadership can argue it is outside the IT purview. Never go rogue without
your leadership’s support, though, and let them deal with the interdepartmental
politics.

Does Your Dream Job Not Exist?
While you can always walk away from a role, always be sure to assess how realistic
your expectations are, too. Are the cutting-edge technologies you are pursuing per‐
haps too cutting-edge?

Take natural language processing for example. You want to build chatbots using deep
learning. However, the number of actual jobs that do this are scarce, as most compa‐
nies do not have practical need for chatbots. Why? Chatbots are simply not there yet.
While companies like OpenAI have interesting research like GPT-3, that is mostly
what it amounts to: interesting research. GPT-3 in the end is a probability-based
pattern recognizer chaining words together, and therefore it has no common sense.
There is research demonstrating this, including some by Gary Marcus at New York
University.

This means creating chatbots with broader applications is an open problem and has
yet to be a value proposition for a great majority of businesses. If natural language
processing is something you really want to pursue, and you are finding a disconnect
with career opportunities, your best bet might be to go into the academic world and
do research. While there are companies like Alphabet that do academic-like research,
many of those employees came from academia.

So again, keep your expectations realistic as you navigate the job market. If your
expectations exceed what the job market can provide, strongly consider the academic
route. You also should consider this route when the type of job you want frequently
requires a PhD or specific academic credentials, and this becomes a barrier to doing
your dream job.
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Where Do I Go Now?
Now that we covered the data science landscape, where do we go from here? And
what is the future of data science?

First, consider the burdens of having a data scientist job title. It carries an implicit
requirement to have knowledge without boundaries, mostly due to the lack of stan‐
dardized definition with a restricted scope. If we learned anything from the last 10
years watching the data science movement, definition matters. A data scientist is
evolving to be a software engineer with proficiency in statistics, optimization, and
machine learning. A data scientist may not even have that data scientist title anymore.
While this is a much broader umbrella of requirements than when the data scientist
was declared the “sexiest job of the 21st century,” it is becoming necessary to have
these skills.

Another option is to specialize in favor of more focused titles, and this has been hap‐
pening increasingly for the past few years. Roles like computer vision engineer, data
engineer, data analyst, researcher, operations research analyst, and advisor/consultant
are making a comeback. We are seeing less of the data scientist role, and this trend
is likely to continue in the next 10 years, primarily due to role specialization. It is
certainly an option to follow this trend.

It is critical to note that the labor market has changed drastically, and this is why
you need the competitive edges listed in this chapter. While data scientists were seen
as unicorns in 2014 commanding six-figure salaries, nowadays a given data scientist
job at any company can easily receive hundreds or thousands of applications while
only offering a five-figure salary. Data science degrees and bootcamps have created an
enormous boom of supply in data science professionals. Therefore, it is competitive
landing jobs marketed as a data scientist or data science in general. This is why going
after roles like analyst, operations research, and software developer is not necessarily
a bad idea! Vicki Boykis, a machine learning engineer at Tumblr, probably says it best
on her blog article “Data Science is Different Now”:

Remember that the ultimate goal…is to beat the hordes doing data science degrees,
bootcamps, and working through tutorials.
You want to get your foot in the door, get a data-adjacent position, and move towards
whatever your dream job is, while finding out as much as you can about the tech
industry in general.
Don’t get paralysis by analysis. Pick a small piece of something and start there. Do
something small. Learn something small, build something small. Tell other people.
Remember that your first job in data science will probably not be as a data scientist.
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Conclusion
This was a different chapter from the rest in this book, but it is important if you want
to navigate the data science job landscape and effectively apply the knowledge in this
book. It might be disconcerting to learn statistical tools and machine learning only to
find much of the job landscape will pivot you into other work. When this happens,
take the opportunity to continue learning and gaining skills. When you integrate your
essential math knowledge with a programming and software engineering proficiency,
your value will increase tenfold just from having an understanding of the IT and data
science gap.

Remember to eschew the hype in favor of practical solutions, and do not get so
caught up in the technical purview that you become blindsided by market forces.
Understand management and leadership motivations, as well as the motivations of
people in general. Understand why things work, not just how they work. Be curious
why a technique or tool solves a problem, not just how the technical aspects of it
operate.

Learn not for the sake of it, but to develop capabilities and pair the right tool to the
right problem. One of the most effective ways to learn is to pick a problem (not a
tool!) you find interesting. Pulling that thread leads to another thing to be curious
about, and then another, and then another. You have a goal in mind, so continue
going down the right rabbit holes and know when to pull yourself out of others. It is
absolutely rewarding to take this approach, and it is amazing how much expertise you
can gain in a short amount of time.
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APPENDIX A

Supplemental Topics

Using LaTeX Rendering with SymPy
As you get more comfortable with mathematical notation, it can be helpful to take
your SymPy expressions and display them in mathematical notation.

The quickest way to do this is to use the latex() function in SymPy on your
expression and then copy the result to a LaTeX math viewer.

Example A-1 is an example that takes a simple expression and turns it into a LaTeX
string. Of course we can take the results of derivatives, integrals, and other SymPy
operations and render those as LaTeX too. But let’s keep the example straightforward.

Example A-1. Using SymPy to convert an expression into LaTeX

from sympy import *

x,y = symbols('x y')

z = x**2 / sqrt(2*y**3 - 1)

print(latex(z))

# prints
# \frac{x^{2}}{\sqrt{2 y^{3} - 1}}

This \frac{x^{2}}{\sqrt{2 y^{3} - 1}} string is formatted mathlatex, and there
are a variety of tools and document formats that can be adapted to support it. But to
simply render the mathlatex, go to a LaTeX equation editor. Here are two different
ones I use online:

287



• Lagrida LaTeX Equation Editor•
• CodeCogs Equation Editor•

In Figure A-1 I use Lagrida’s LaTeX editor to render the mathematical expression.

Figure A-1. Using a math editor to view the SymPy LaTeX output

If you want to save the copy/paste step, you can append the LaTeX directly as an
argument to the CodeCogs LaTeX editor URL as shown in Example A-2, and it will
show the rendered math equation in your browser.

Example A-2. Open a mathlatex rendering using CodeCogs

import webbrowser
from sympy import *

x,y = symbols('x y')

z = x**2 / sqrt(2*y**3 - 1)

webbrowser.open("https://latex.codecogs.com/png.image?\dpi{200}" + latex(z))

If you use Jupyter, you can also use plugins to render mathlatex.
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Binomial Distribution from Scratch
If you want to implement a binomial distribution from scratch, here are all the parts
you need in Example A-3.

Example A-3. Building a binomial distribution from scratch

# Factorials multiply consecutive descending integers down to 1
# EXAMPLE: 5! = 5 * 4 * 3 * 2 * 1
def factorial(n: int):
    f = 1
    for i in range(n):
        f *= (i + 1)
    return f

# Generates the coefficient needed for the binomial distribution
def binomial_coefficient(n: int, k: int):
    return factorial(n) / (factorial(k) * factorial(n - k))

# Binomial distribution calculates the probability of k events out of n trials
# given the p probability of k occurring
def binomial_distribution(k: int, n: int, p: float):
    return binomial_coefficient(n, k) * (p ** k) * (1.0 - p) ** (n - k)

# 10 trials where each has 90% success probability
n = 10
p = 0.9

for k in range(n + 1):
    probability = binomial_distribution(k, n, p)
    print("{0} - {1}".format(k, probability))

Using the factorial() and the binomial_coefficient(), we can build a bino‐
mial distribution function from scratch. The factorial function multiplies a con‐
secutive range of integers from 1 to n. For example, a factorial of 5! would be
1 * 2 * 3 * 4 * 5 = 120.

The binomial coefficient function allows us to select k outcomes from n possibilities
with no regard for ordering. If you have k = 2 and n = 3, that would yield sets (1,2)
and (1,2,3), respectively. Between those two sets, the possible distinct combinations
would be (1,3), (1,2), and (2,3). That is three combinations so that would be a
binomial coefficient of 3. Of course, using the binomial_coefficient() function we
can avoid all that permutation work by using factorials and multiplication instead.

When implementing binomial_distribution(), notice how we take the binomial
coefficient and multiply it by the probability of success p occurring k times (hence
the exponent). We then multiply it by the opposite case: the probability of failure
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1.0 – p occurring n – k times. This allows us to account for the probability p of an
event occurring versus not occurring across several trials.

Beta Distribution from Scratch
If you are curious how to build a beta distribution from scratch, you will need to
reuse the factorial() function we used for the binomial distribution as well as the
approximate_integral() function we built in Chapter 2.

Just like we did in Chapter 1, we pack rectangles under the curve for the range we are
interested in as shown in Figure A-2.

Figure A-2. Packing rectangles under the curve to find the area/probability

This is using just six rectangles; we will get better accuracy if we were to use more
rectangles. Let’s implement the beta_distribution() from scratch and integrate
1,000 rectangles between 0.9 and 1.0 as shown in Example A-4.

Example A-4. Beta distribution from scratch

# Factorials multiply consecutive descending integers down to 1
# EXAMPLE: 5! = 5 * 4 * 3 * 2 * 1
def factorial(n: int):
    f = 1
    for i in range(n):
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        f *= (i + 1)
    return f

def approximate_integral(a, b, n, f):
    delta_x = (b - a) / n
    total_sum = 0

    for i in range(1, n + 1):
        midpoint = 0.5 * (2 * a + delta_x * (2 * i - 1))
        total_sum += f(midpoint)

    return total_sum * delta_x

def beta_distribution(x: float, alpha: float, beta: float) -> float:
    if x < 0.0 or x > 1.0:
        raise ValueError("x must be between 0.0 and 1.0")

    numerator = x ** (alpha - 1.0) * (1.0 - x) ** (beta - 1.0)
    denominator = (1.0 * factorial(alpha - 1) * factorial(beta - 1)) / \

    (1.0 * factorial(alpha + beta - 1))

    return numerator / denominator

greater_than_90 = approximate_integral(a=.90, b=1.0, n=1000,
    f=lambda x: beta_distribution(x, 8, 2))
less_than_90 = 1.0 - greater_than_90

print("GREATER THAN 90%: {}, LESS THAN 90%: {}".format(greater_than_90,
    less_than_90))

You will notice with the beta_distribution() function, we provide a given probabil‐
ity x, an alpha value quantifying successes, and a beta value quantifying failures. The
function will return how likely we are to observe a given likelihood x. But again, to
get a probability of observing probability x we need to find an area within a range of x
values.

Thankfully, we have our approximate_integral() function defined and ready to go
from Chapter 2. We can calculate the probability that the success rate is greater than
90% as well as less than 90%, as shown in the last few lines.

Deriving Bayes’ Theorem
If you want to understand why Bayes’ Theorem works rather than take my word
for it, let’s do a thought experiment. Let’s say I have a population of 100,000 people.
Multiply it with our given probabilities to get the count of people who drink coffee
and the count of people who have cancer:
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N = 100,000
P Coffee Drinker = .65
P Cancer = .005
Coffee Drinkers = 65,000
Cancer Patients = 500

We have 65,000 coffee drinkers and 500 cancer patients. Now of those 500 cancer
patients, how many are coffee drinkers? We were provided with a conditional proba‐
bility P Coffee|Cancer  we can multiply against those 500 people, which should give
us 425 cancer patients who drink coffee:

P Coffee Drinker|Cancer = .85
Coffee Drinkers with Cancer = 500 × .85 = 425

Now what is the percentage of coffee drinkers who have cancer? What two numbers
do we divide? We already have the number of people who drink coffee and have
cancer. Therefore, we proportion that against the total number of coffee drinkers:

P Cancer|Coffee Drinker = Coffee Drinkers with Cancer
Coffee Drinkers

P Cancer|Coffee Drinker = 425
65,000

P Cancer|Coffee Drinker = 0.006538

Hold on a minute, did we just flip our conditional probability? Yes we did! We started
with P Coffee Drinker|Cancer  and ended up with P Cancer|Coffee Drinker . By
taking two subsets of the population (65,000 coffee drinkers and 500 cancer patients),
and then applying a joint probability using the conditional probability we had, we
ended up with 425 people in our population who both drink coffee and have cancer.
We then divide that by the number of coffee drinkers to get the probability of cancer
given one’s a coffee drinker.

But where is Bayes’ Theorem in this? Let’s focus on the P Cancer|Coffee Drinker
expression and expand it with all the expressions we previously calculated:

P Cancer|Coffee Drinker = 100,000 × P Cancer × P Coffee Drinker|Cancer
100,000 × P Coffee Drinker
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Notice the population N  of 100,000 exists in both the numerator and denominator so
it cancels out. Does this look familiar now?

P Cancer|Coffee Drinker = P Cancer × P Coffee Drinker|Cancer
P Coffee Drinker

Sure enough, this should match Bayes’ Theorem!

P A|B = P B|A *P B
P A

P Cancer|Coffee Drinker = P Cancer × P Coffee Drinker|Cancer
P Coffee Drinker

So if you get confused by Bayes’ Theorem or struggle with the intuition behind it, try
taking subsets of a fixed population based on the provided probabilities. You can then
trace your way to flip a conditional probability.

CDF and Inverse CDF from Scratch
To calculate areas for the normal distribution, we can of course use the rectangle-
packing method we learned in Chapter 1 and applied to the beta distribution earlier
in the appendix. It doesn’t require the cumulative density function (CDF) but simply
packed rectangles under the probability density function (PDF). Using this method,
we can find the probability a golden retriever weighs between 61 and 62 pounds as
shown in Example A-5, using 1,000 packed rectangles against the normal PDF.

Example A-5. The normal distribution function in Python

import math

def normal_pdf(x: float, mean: float, std_dev: float) -> float:
    return (1.0 / (2.0 * math.pi * std_dev ** 2) ** 0.5) *
      math.exp(-1.0 * ((x - mean) ** 2 / (2.0 * std_dev ** 2)))

def approximate_integral(a, b, n, f):
    delta_x = (b - a) / n
    total_sum = 0

    for i in range(1, n + 1):
        midpoint = 0.5 * (2 * a + delta_x * (2 * i - 1))
        total_sum += f(midpoint)

    return total_sum * delta_x
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p_between_61_and_62 = approximate_integral(a=61, b=62, n=7,
  f= lambda x: normal_pdf(x,64.43,2.99))

print(p_between_61_and_62) # 0.0825344984983386

That will give us about 8.25% probability a golden retriever weighs between 61 and
62 pounds. If we wanted to leverage a CDF that is already integrated for us and
does not require any rectangle packing, we can declare it from scratch as shown in
Example A-6.

Example A-6. Using the inverse CDF (called ppf()) in Python

import math

def normal_cdf(x: float, mean: float, std_dev: float) -> float:
    return (1 + math.erf((x - mean) / math.sqrt(2) / std_dev)) / 2

mean = 64.43
std_dev = 2.99

x = normal_cdf(66, mean, std_dev) - normal_cdf(62, mean, std_dev)

print(x)  # prints 0.49204501470628936

The math.erf() is known as the error function and is often used to compute cumu‐
lative distributions. Finally, to do the inverse CDF from scratch you will need to
use the inverse of the erf() function called erfinv(). Example A-7 calculates one
thousand randomly generated golden retriever weights using an inverse CDF coded
from scratch.

Example A-7. Generating random golden retriever weights

import random
from scipy.special import erfinv

def inv_normal_cdf(p: float, mean: float, std_dev: float):
    return mean + (std_dev * (2.0 ** 0.5) * erfinv((2.0 * p) - 1.0))

mean = 64.43
std_dev = 2.99

for i in range(0,1000):
    random_p = random.uniform(0.0, 1.0)
    print(inv_normal_cdf(random_p, mean, std_dev))
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Use e to Predict Event Probability Over Time
Let’s look at one more use case for e that you might find useful. Let’s say you are a
manufacturer of propane tanks. Obviously, you do not want the tank to leak or else
that could create hazards, particularly around open flames and sparks. Testing a new
tank design, your engineer reports that there is a 5% chance in a given year that it will
leak.

You know this is already an unacceptably high number, but you want to know how
this probability compounds over time. You now ask yourself, “What is the probability
of a leak happening within 2 years? 5 years? 10 years?” The more time that is exposed,
would not the probability of seeing the tank leak only get higher? Euler’s number can
come to the rescue again!

Pleak = 1.0 − e−λT

This function models the probability of an event over time, or in this case the tank
leaking after T time. e again is Euler’s number, lambda λ is the failure rate across each
unit of time (each year), and T is the amount of time gone by (number of years).

If we graph this function where T is our x-axis, the probability of a leak is our y-axis,
and λ = .05, Figure A-3 shows what we get.

Figure A-3. Predicting the probability of a leak over time
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Here is how we model this function in Python for λ = . 05 and T = 5 years in
Example A-8.

Example A-8. Code for predicting the probability of a leak over time

from math import exp

# Probability of leak in one year
p_leak = .05

# number of years
t = 5

# Probability of leak within five years
# 0.22119921692859512
p_leak_5_years = 1.0 - exp(-p_leak * t)

print("PROBABILITY OF LEAK WITHIN 5 YEARS: {}".format(p_leak_5_years))

The probability of a tank failure after 2 years is about 9.5%, 5 years is about 22.1%,
and 10 years 39.3%. The more time that passes, the more likely the tank will leak. We
can generalize this formula to predict any event with a probability in a given period
and see how that probability shifts over different periods of time.

Hill Climbing and Linear Regression
If you find the calculus overwhelming in building machine learning from scratch,
you can try a more brute-force method. Let’s try a hill climbing algorithm, where we
randomly adjust m and b by adding random values for a number of iterations. These
random values will be positive or negative (which will make the addition operation
effectively subtraction), and we will only keep adjustments that improve our sum of
squares.

But do we just generate any random number as the adjustment? We will want to
prefer smaller moves but occasionally we might allow larger moves. This way, we
have mostly fine adjustments, but occasionally we will make big jumps if they are
needed. The best tool to do this is a standard normal distribution, with a mean
of 0 and a standard deviation of 1. Recall from Chapter 3 that a standard normal
distribution will have a high density of values near 0, and the farther the value is away
from 0 (in both the negative and positive direction), the less likely the value becomes
as shown in Figure A-4.
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Figure A-4. Most values in a standard normal distribution are small and near 0, while
larger values are less frequent on the tails

Circling back to the linear regression, we will start m and b at 0 or some other starting
values. Then for 150,000 iterations in a for loop, we will randomly adjust m and
b by adding values sampled from the standard normal distribution. If a random
adjustment improves/lessens the sum of squares, we keep it. But if the sum of
squares increases, we undo that random adjustment. In other words, we only keep
adjustments that improve the sum of squares. Let’s take a look in Example A-9.

Example A-9. Using hill climbing for linear regression

from numpy.random import normal
import pandas as pd

# Import points from CSV
points = [p for p in pd.read_csv("https://bit.ly/2KF29Bd").itertuples()]

# Building the model
m = 0.0
b = 0.0

# The number of iterations to perform
iterations = 150000

# Number of points
n = float(len(points))

# Initialize with a really large loss
# that we know will get replaced
best_loss = 10000000000000.0
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for i in range(iterations):

    # Randomly adjust "m" and "b"
    m_adjust = normal(0,1)
    b_adjust = normal(0,1)

    m += m_adjust
    b += b_adjust

    # Calculate loss, which is total sum squared error
    new_loss = 0.0
    for p in points:
        new_loss += (p.y - (m * p.x + b)) ** 2

    # If loss has improved, keep new values. Otherwise revert.
    if new_loss < best_loss:
        print("y = {0}x + {1}".format(m, b))
        best_loss = new_loss
    else:
        m -= m_adjust
        b -= b_adjust

print("y = {0}x + {1}".format(m, b))

You will see the progress of the algorithm, but ultimately you should get a fitted
function of approximately y = 1.9395722046562853x + 4.731834051245578, give
or take. Let’s validate this answer. When I used Excel or Desmos to perform a linear
regression, Desmos gave me y = 1.93939x + 4.73333. Not bad! I got pretty close!

Why did we need one million iterations? Through experimentation, I found this with
enough iterations where the solution was not really improving much anymore and
converged closely to the optimal values for m and b to minimize the sum of squares.
You will find many machine learning libraries and algorithms have a parameter for
the number of iterations to perform, and it does exactly this. You need to have
enough so it converges on the right answer approximately, but not so much that it
wastes computation time when it has already found an acceptable solution.

One other question you may have is why I started the best_loss at an extremely
large number. I did this to initialize the best loss with a value I know will be overwrit‐
ten once the search starts, and it will then be compared to the new loss of each
iteration to see if it results in an improvement. I also could have used positive infinity
float('inf') instead of a very large number.
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Hill Climbing and Logistic Regression
Just like in the previous example with linear regression, we can also apply hill climb‐
ing to logistic regression. Again, use this technique if you find the calculus and partial
derivatives to be too much at once.

The hill climbing methodology is identical: adjust m and b with random values
from a normal distribution. However we do have a different objective function,
the maximum likelihood estimation, as discussed in Chapter 6. Therefore, we only
take random adjustments that increase the likelihood estimation, and after enough
iterations we should converge on a fitted logistic regression.

This is all demonstrated in Example A-10.

Example A-10. Using hill climbing for a simple logistic regression

import math
import random

import numpy as np
import pandas as pd

# Desmos graph: https://www.desmos.com/calculator/6cb10atg3l

points = [p for p in pd.read_csv("https://tinyurl.com/y2cocoo7").itertuples()]

best_likelihood = -10_000_000
b0 = .01
b1 = .01

# calculate maximum likelihood

def predict_probability(x):
    p = 1.0 / (1.0001 + math.exp(-(b0 + b1 * x)))
    return p

for i in range(1_000_000):

    # Select b0 or b1 randomly, and adjust it randomly
    random_b = random.choice(range(2))

    random_adjust = np.random.normal()

    if random_b == 0:
        b0 += random_adjust
    elif random_b == 1:
        b1 += random_adjust
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    # Calculate total likelihood
    true_estimates = sum(math.log(predict_probability(p.x)) \
       for p in points if p.y == 1.0)
    false_estimates = sum(math.log(1.0 - predict_probability(p.x)) \
        for p in points if p.y == 0.0)

    total_likelihood = true_estimates + false_estimates

    # If likelihood improves, keep the random adjustment. Otherwise revert.
    if best_likelihood < total_likelihood:
        best_likelihood = total_likelihood
    elif random_b == 0:
        b0 -= random_adjust
    elif random_b == 1:
        b1 -= random_adjust

print("1.0 / (1 + exp(-({0} + {1}*x))".format(b0, b1))
print("BEST LIKELIHOOD: {0}".format(math.exp(best_likelihood)))

Refer to Chapter 6 for more details on the maximum likelihood estimation, the
logistic function, and the reason we use the log() function.

A Brief Intro to Linear Programming
A technique that every data science professional should be familiar with is linear
programming, which solves a system of inequalities by adapting systems of equations
with “slack variables.” When you have variables that are discrete integers or binar‐
ies (0 or 1) in a linear programming system, it is known as integer programming.
When linear continuous and integer variables are used, it is known as mixed integer
programming.

While it is much more algorithm-driven than data-driven, linear programming and
its variants can be used to solve a wide array of classic AI problems. If it sounds
dubious to brand linear programming systems as AI, it is common practice by many
vendors and companies as it increases the perceived value.

In practice, it is best to use the many available solver libraries to do linear program‐
ming for you, but resources at the end of this section will be provided on how to do
it from scratch. For these examples we will use PuLP, although Pyomo is an option
as well. We will also use graphical intuition, although problems with more than three
dimensions cannot be visualized easily.

Here’s our example. You have two lines of products: the iPac and iPac Ultra. The iPac
makes $200 profit while the iPac Ultra makes $300 profit.

However, the assembly line can work for only 20 hours, and it takes 1 hour to
produce the iPac and 3 hours to produce an iPac Ultra.
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Only 45 kits can be provided in a day, and an iPac requires 6 kits while iPac Ultra
requires 2 kits.

Assuming all supply will be sold, how many of the iPac and iPac Ultra should we sell
to maximize profit?

Let’s first note that first constraint and break it down:

…the assembly line can work for only 20 hours, and it takes 1 hour to produce the iPac
and 3 hours to produce an iPac Ultra.

We can express that as an inequality where x is the number of iPac units and y is
the number of iPac Ultra units. Both must be positive and Figure A-5 shows we can
graph accordingly.

x + 3y ≤ 20 x ≥ 0, y ≥ 0

Figure A-5. Graphing the first constraint
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Now let us look at the second constraint:

Only 45 kits can be provided in a day, and an iPac requires 6 kits while iPac Ultra
requires 2 kits.

We can also model and graph in Figure A-6 accordingly.

6x + 2y ≤ 45 x ≥ 0, y ≥ 0

Figure A-6. Graphing the second constraint

Notice in Figure A-6 that we now have an overlap between these two constraints. Our
solution is somewhere in that overlap and we will call it the feasible region. Finally, we
are maximizing our profit Z, which is expressed next, given the profit amounts for
the iPac and iPac Ultra, respectively.

Z = 200x + 300y

If we express this function as a line, we can increase Z as much as possible until
the line is just no longer in the feasible region. We then note the x- and y-values as
visualized in Figure A-7.
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Desmos Graph of the Objective Function

If you need to see this visualized in a more interactive and anima‐
ted fashion, check out this graph on Desmos.

Figure A-7. Increasing our objective line until it no longer is in the feasible region

When that line “just touches” the feasible region as you increase profit Z as much
as possible, you will land on a vertex, or a corner, of the feasible region. That vertex
provides the x- and y-values that will maximize profit, as shown in Figure A-8.

While we could use NumPy and a bunch of matrix operations to solve this numeri‐
cally, it will be easier to use PuLP as shown in Example A-11. Note that LpVariable
defines the variables to solve for. LpProblem is the linear programming system that
adds constraints and objective functions using Python operators. Then the variables
are solved by calling solve() on the LpProblem.
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Figure A-8. Maximized objective for our linear programming system

Example A-11. Using Python PuLP to solve a linear programming system

# GRAPH" https://www.desmos.com/calculator/iildqi2vt7

from pulp import *

# declare your variables
x = LpVariable("x", 0)   # 0<=x
y = LpVariable("y", 0) # 0<=y

# defines the problem
prob = LpProblem("factory_problem", LpMaximize)

# defines the constraints
prob += x + 3*y <= 20
prob += 6*x +2*y <= 45

# defines the objective function to maximize
prob += 200*x + 300*y

# solve the problem
status = prob.solve()
print(LpStatus[status])

# print the results x = 5.9375, y = 4.6875
print(value(x))
print(value(y))
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You might be wondering if it makes sense to build 5.9375 and 4.6875 units. Linear
programming systems are much more efficient if you can tolerate continuous values
in your variables, and perhaps you can just round them afterward. But certain types
of problems absolutely require integers and binary variables to be handled discretely.

To force the x and y variables to be treated as integers, provide a category argument
cat=LpInteger as shown in Example A-12.

Example A-12. Forcing variables to be solved as integers

# declare your variables
x = LpVariable("x", 0, cat=LpInteger) # 0<=x
y = LpVariable("y", 0, cat=LpInteger) # 0<=y

Graphically, this means we fill our feasible region with discrete points rather than a
continuous region. Our solution will not land on a vertex necessarily but rather the
point that is closest to the vertex as shown in Figure A-9.

There are a couple of special cases in linear programming, as shown in Figure A-10.
Sometimes there can be many solutions. At times, there may be no solution at all.

This is just a quick introductory example to linear programming, and unfortunately
there is not enough room in this book to do the topic justice. It can be used for
surprising problems, including scheduling constrained resources (like workers, server
jobs, or rooms), solving Sudokus, and optimizing financial portfolios.

Figure A-9. A discrete linear programming system
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Figure A-10. Special cases of linear programming

If you want to learn more, there are some good YouTube videos out there including
PatrickJMT and Josh Emmanuel. If you want to deep dive into discrete optimization,
Professor Pascal Van Hentenryck has done a tremendous service putting a course
together on Coursera.

MNIST Classifier Using scikit-learn
Example A-13 shows how to use scikit-learn’s neural network for handwritten digit
classification.

Example A-13. A handwritten digit classifier neural network in scikit-learn

import numpy as np
import pandas as pd
# load data
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

df = pd.read_csv('https://bit.ly/3ilJc2C', compression='zip', delimiter=",")

# Extract input variables (all rows, all columns but last column)
# Note we should do some linear scaling here
X = (df.values[:, :-1] / 255.0)

# Extract output column (all rows, last column)
Y = df.values[:, -1]

# Get a count of each group to ensure samples are equitably balanced
print(df.groupby(["class"]).agg({"class" : [np.size]}))

# Separate training and testing data
# Note that I use the 'stratify' parameter to ensure
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# each class is proportionally represented in both sets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
    test_size=.33, random_state=10, stratify=Y)

nn = MLPClassifier(solver='sgd',
                   hidden_layer_sizes=(100, ),
                   activation='logistic',
                   max_iter=480,
                   learning_rate_init=.1)

nn.fit(X_train, Y_train)

print("Training set score: %f" % nn.score(X_train, Y_train))
print("Test set score: %f" % nn.score(X_test, Y_test))

# Display heat map
import matplotlib.pyplot as plt
fig, axes = plt.subplots(4, 4)

# use global min / max to ensure all weights are shown on the same scale
vmin, vmax = nn.coefs_[0].min(), nn.coefs_[0].max()
for coef, ax in zip(nn.coefs_[0].T, axes.ravel()):
    ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=.5 * vmin, vmax=.5 * vmax)
    ax.set_xticks(())
    ax.set_yticks(())

plt.show()
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APPENDIX B

Exercise Answers

Chapter 1
1. 62.6738 is rational because it has a finite number of decimal places, and therefore1.

can be expressed as a fraction 626738 / 10000.

2. 10710−5 = 107 + − 5 = 102 = 1002.

3. 81
1
2  = 81 = 93.

4. 25
3
2 = 251/2 3 = 53 = 1254.

5. The resulting amount would be $1,161.47. The Python script is as follows:5.
from math import exp

p = 1000
r = .05
t = 3
n = 12

a = p * (1 + (r/n))**(n * t)

print(a) # prints 1161.4722313334678

6. The resulting amount would be $1161.83. The Python script is as follows:6.
from math import exp

p = 1000 # principal, starting amount
r = .05 # interest rate, by year
t = 3.0 # time, number of years

a = p * exp(r*t)
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print(a) # prints 1161.834242728283

7. The derivative calculates to 6x, which would make the slope at x = 3 to be 18. The7.
SymPy code is as follows:

from sympy import *

# Declare 'x' to SymPy
x = symbols('x')

# Now just use Python syntax to declare function
f = 3*x**2 + 1

# Calculate the derivative of the function
dx_f = diff(f)
print(dx_f) # prints 6*x
print(dx_f.subs(x,3)) # 18

8. The area under the curve between 0 and 2 is 10. The SymPy code is as follows:8.
from sympy import *

# Declare 'x' to SymPy
x = symbols('x')

# Now just use Python syntax to declare function
f = 3*x**2 + 1

# Calculate the integral of the function with respect to x
# for the area between x = 0 and 2
area = integrate(f, (x, 0, 2))

print(area) # prints 10

Chapter 2
1. 0.3 × 0.4 = 0.12; refer to “Joint Probabilities” on page 44.1.
2. (1 – 0.3) + 0.4 – (.03 × 0.4) = 0.98; refer to “Union Probabilities” on page 45 and2.

remember we are looking for NO RAIN so subtract that probability from 1.0.
3. 0.3 × 0.2 = 0.06; refer to “Conditional Probability and Bayes’ Theorem” on page3.

47.
4. The following Python code calculates an answer of 0.822, adding up the probabil‐4.

ities of 50 or more passengers who do not show up:
from scipy.stats import binom

n = 137
p = .40
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p_50_or_more_noshows = 0.0

for x in range(50,138):
    p_50_or_more_noshows += binom.pmf(x, n, p)

print(p_50_or_more_noshows) # 0.822095588147425

5. Using the beta distribution shown in the following SciPy code, get the area up to5.
0.5 and subtract it from 1.0. Result is about 0.98, so this coin is highly unlikely to
be fair.

from scipy.stats import beta

heads = 8
tails = 2

p = 1.0 - beta.cdf(.5, heads, tails)

print(p) # 0.98046875

Chapter 3
1. The mean is 1.752 and the standard deviation is approximately 0.02135. The1.

Python code is as follows:
from math import sqrt

sample = [1.78, 1.75, 1.72, 1.74, 1.77]

def mean(values):
    return sum(values) /len(values)

def variance_sample(values):
    mean = sum(values) / len(values)
    var = sum((v - mean) ** 2 for v in values) / len(values)
    return var

def std_dev_sample(values):
    return sqrt(variance_sample(values))

mean = mean(sample)
std_dev = std_dev_sample(sample)

print("MEAN: ", mean) # 1.752
print("STD DEV: ", std_dev) # 0.02135415650406264

2. Use the CDF to get the value between 30 and 20 months, which is an area of2.
about 0.06. The Python code is as follows:
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from scipy.stats import norm

mean = 42
std_dev = 8

x = norm.cdf(30, mean, std_dev) - norm.cdf(20, mean, std_dev)

print(x) # 0.06382743803380352

3. There’s a 99% probability the average filament diameter for a roll is between3.
1.7026 and 1.7285. The Python code is as follows:

from math import sqrt
from scipy.stats import norm

def critical_z_value(p, mean=0.0, std=1.0):
    norm_dist = norm(loc=mean, scale=std)
    left_area = (1.0 - p) / 2.0
    right_area = 1.0 - ((1.0 - p) / 2.0)
    return norm_dist.ppf(left_area), norm_dist.ppf(right_area)

def ci_large_sample(p, sample_mean, sample_std, n):
    # Sample size must be greater than 30

    lower, upper = critical_z_value(p)
    lower_ci = lower * (sample_std / sqrt(n))
    upper_ci = upper * (sample_std / sqrt(n))

    return sample_mean + lower_ci, sample_mean + upper_ci

print(ci_large_sample(p=.99, sample_mean=1.715588,
    sample_std=0.029252, n=34))
# (1.7026658973748656, 1.7285101026251342)

4. The marketing campaign worked with a p-value of 0.01888. The Python code is4.
as follows:

from scipy.stats import norm

mean = 10345
std_dev = 552

p1 = 1.0 - norm.cdf(11641, mean, std_dev)

# Take advantage of symmetry
p2 = p1

# P-value of both tails
# I could have also just multiplied by 2
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p_value = p1 + p2

print("Two-tailed P-value", p_value)
if p_value <= .05:
    print("Passes two-tailed test")
else:
    print("Fails two-tailed test")

# Two-tailed P-value 0.01888333596496139
# Passes two-tailed test

Chapter 4
1. Vector lands on [2, 3]. The Python code is as follows:1.

from numpy import array

v = array([1,2])

i_hat = array([2, 0])
j_hat = array([0, 1.5])

# fix this line
basis = array([i_hat, j_hat])

# transform vector v into w
w = basis.dot(v)

print(w) # [2. 3.]

2. Vector lands on [0, -3]. The Python code is as follows:2.
from numpy import array

v = array([1,2])

i_hat = array([-2, 1])
j_hat = array([1, -2])

# fix this line
basis = array([i_hat, j_hat])

# transform vector v into w
w = basis.dot(v)

print(w) # [ 0, -3]

3. Determinant is 2.0. The Python code is as follows:3.
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import numpy as np
from numpy.linalg import det

i_hat = np.array([1, 0])
j_hat = np.array([2, 2])

basis = np.array([i_hat,j_hat]).transpose()

determinant = det(basis)

print(determinant) # 2.0

4. Yes, because matrix multiplication allows us to combine several matrices into a4.
single matrix representing one consolidated transformation.

5. x = 19.8, y = –5.4, z = –6. The code is as follows:5.
from numpy import array
from numpy.linalg import inv

A = array([
    [3, 1, 0],
    [2, 4, 1],
    [3, 1, 8]
])

B = array([
    54,
    12,
    6
])

X = inv(A).dot(B)

print(X) # [19.8 -5.4 -6. ]

6. Yes, it is linearly dependent. Although we have some floating point imprecision6.
with NumPy, the determinant is effectively 0:

from numpy.linalg import det
from numpy import array

i_hat = array([2, 6])
j_hat = array([1, 3])

basis = array([i_hat, j_hat]).transpose()
print(basis)

determinant = det(basis)

print(determinant) # -3.330669073875464e-16
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To get around the floating point issues, use SymPy and you will get 0:
from sympy import *

basis = Matrix([
    [2,1],
    [6,3]
])

determinant = det(basis)

print(determinant) # 0

Chapter 5
1. There are many tools and approaches to perform a linear regression as we1.

learned in Chapter 5, but here is the solution using scikit-learn. The slope is
1.75919315 and the intercept is 4.69359655.

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# Import points
df = pd.read_csv('https://bit.ly/3C8JzrM', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)
Y = df.values[:, -1]

# Fit a line to the points
fit = LinearRegression().fit(X, Y)

# m = 1.75919315, b = 4.69359655
m = fit.coef_.flatten()
b = fit.intercept_.flatten()
print("m = {0}".format(m))
print("b = {0}".format(b))

# show in chart
plt.plot(X, Y, 'o') # scatterplot
plt.plot(X, m*X+b) # line
plt.show()

2. We get a high correlation of 0.92421 and a test value of 23.8355 with a statistically2.
significant range of ±1.9844. This correlation is definitely useful and statistically
significant. The code is as follows:
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import pandas as pd

# Read data into Pandas dataframe
df = pd.read_csv('https://bit.ly/3C8JzrM', delimiter=",")

# Print correlations between variables
correlations = df.corr(method='pearson')
print(correlations)

# OUTPUT:
#          x        y
# x  1.00000  0.92421
# y  0.92421  1.00000

# Test for statistical significance
from scipy.stats import t
from math import sqrt

# sample size
n = df.shape[0]
print(n)
lower_cv = t(n - 1).ppf(.025)
upper_cv = t(n - 1).ppf(.975)

# retrieve correlation coefficient
r = correlations["y"]["x"]

# Perform the test
test_value = r / sqrt((1 - r ** 2) / (n - 2))

print("TEST VALUE: {}".format(test_value))
print("CRITICAL RANGE: {}, {}".format(lower_cv, upper_cv))

if test_value < lower_cv or test_value > upper_cv:
    print("CORRELATION PROVEN, REJECT H0")
else:
    print("CORRELATION NOT PROVEN, FAILED TO REJECT H0 ")

# Calculate p-value
if test_value > 0:
    p_value = 1.0 - t(n - 1).cdf(test_value)
else:
    p_value = t(n - 1).cdf(test_value)

# Two-tailed, so multiply by 2
p_value = p_value * 2
print("P-VALUE: {}".format(p_value))

"""
TEST VALUE: 23.835515323677328
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CRITICAL RANGE: -1.9844674544266925, 1.984467454426692
CORRELATION PROVEN, REJECT H0
P-VALUE: 0.0 (extremely small)
"""

3. At x = 50, the prediction interval is between 50.79 and 134.51. The code is as3.
follows:

import pandas as pd
from scipy.stats import t
from math import sqrt

# Load the data
points = list(pd.read_csv('https://bit.ly/3C8JzrM', delimiter=",") \
    .itertuples())

n = len(points)

# Linear Regression Line
m = 1.75919315
b = 4.69359655

# Calculate Prediction Interval for x = 50
x_0 = 50
x_mean = sum(p.x for p in points) / len(points)

t_value = t(n - 2).ppf(.975)

standard_error = sqrt(sum((p.y - (m * p.x + b)) ** 2 for p in points) / \
    (n - 2))

margin_of_error = t_value * standard_error * \
                  sqrt(1 + (1 / n) + (n * (x_0 - x_mean) ** 2) / \
                       (n * sum(p.x ** 2 for p in points) - \

sum(p.x for p in points) ** 2))

predicted_y = m*x_0 + b

# Calculate prediction interval
print(predicted_y - margin_of_error, predicted_y + margin_of_error)
# 50.792086501055955 134.51442159894404

4. The testing datasets do moderately well when split into thirds and evaluated with4.
k-fold, where k = 3. You will get a mean of roughly 0.83 in MSE and a standard
deviation of 0.03 across the three datasets.

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import KFold, cross_val_score

df = pd.read_csv('https://bit.ly/3C8JzrM', delimiter=",")
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# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)\
Y = df.values[:, -1]

# Perform a simple linear regression
kfold = KFold(n_splits=3, random_state=7, shuffle=True)
model = LinearRegression()
results = cross_val_score(model, X, Y, cv=kfold)
print(results)
print("MSE: mean=%.3f (stdev-%.3f)" % (results.mean(), results.std()))
"""
[0.86119665 0.78237719 0.85733887]
MSE: mean=0.834 (stdev-0.036)
"""

Chapter 6
1. The accuracy is extremely high when you run this through scikit-learn. When I1.

run it, I get at least 99.9% accuracy on average with the test folds.
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import KFold, cross_val_score

# Load the data
df = pd.read_csv("https://bit.ly/3imidqa", delimiter=",")

X = df.values[:, :-1]
Y = df.values[:, -1]

kfold = KFold(n_splits=3, shuffle=True)
model = LogisticRegression(penalty='none')
results = cross_val_score(model, X, Y, cv=kfold)

print("Accuracy Mean: %.3f (stdev=%.3f)" % (results.mean(),
results.std()))

2. The confusion matrix will yield an extremely high number of true positives and2.
true negatives, and very few false positives and false negatives. Run this code and
you will see:

import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
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# Load the data
df = pd.read_csv("https://bit.ly/3imidqa", delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)\
Y = df.values[:, -1]

model = LogisticRegression(solver='liblinear')

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.33)
model.fit(X_train, Y_train)
prediction = model.predict(X_test)

"""
The confusion matrix evaluates accuracy within each category.
[[truepositives falsenegatives]
 [falsepositives truenegatives]]

The diagonal represents correct predictions,
so we want those to be higher
"""
matrix = confusion_matrix(y_true=Y_test, y_pred=prediction)
print(matrix)

3. An interactive shell for testing user-input colors is shown next. Consider testing3.
black (0,0,0) and white (255,255,255) to see if dark and light fonts respectively are
predicted correctly.

import pandas as pd
from sklearn.linear_model import LogisticRegression
import numpy as np
from sklearn.model_selection import train_test_split

# Load the data
df = pd.read_csv("https://bit.ly/3imidqa", delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)
Y = df.values[:, -1]

model = LogisticRegression(solver='liblinear')

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.33)
model.fit(X_train, Y_train)
prediction = model.predict(X_test)
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# Test a prediction
while True:
    n = input("Input a color {red},{green},{blue}: ")
    (r, g, b) = n.split(",")
    x = model.predict(np.array([[int(r), int(g), int(b)]]))
    if model.predict(np.array([[int(r), int(g), int(b)]]))[0] == 0.0:
        print("LIGHT")
    else:
        print("DARK")

4. Yes, the logistic regression is very effective at predicting light or dark fonts for4.
a given background color. Not only is the accuracy extremely high, but the
confusion matrix has high numbers in the top-right to bottom-left diagonal with
lower numbers in the other cells.

Chapter 7
There’s obviously a lot of experimenting and alchemy you can try with different
hidden layers, activation functions, different testing dataset sizes, and so on. I tried to
use one hidden layer with three nodes with a ReLU activation, and I struggled to get
good predictions on my testing dataset. The confusion matrices and accuracy were
consistently poor and any configuration changes I ran did just as poorly.

The reasons the neural network is probably failing are 1) the testing dataset is far
too small for a neural network (which are extremely data-hungry) and 2) there are
simpler and more effective models like logistic regression for this type of problem.
That’s not to say you can’t find a configuration that will work, but you have to be
careful not to p-hack your way to a good result that overfits to the little training and
testing data you have.

Here is the scikit-learn code I used:

import pandas as pd
# load data
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

df = pd.read_csv('https://tinyurl.com/y6r7qjrp', delimiter=",")

# Extract input variables (all rows, all columns but last column)
X = df.values[:, :-1]

# Extract output column (all rows, last column)
Y = df.values[:, -1]

# Separate training and testing data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1/3)
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nn = MLPClassifier(solver='sgd',
                   hidden_layer_sizes=(3, ),
                   activation='relu',
                   max_iter=100_000,
                   learning_rate_init=.05)

nn.fit(X_train, Y_train)

print("Training set score: %f" % nn.score(X_train, Y_train))
print("Test set score: %f" % nn.score(X_test, Y_test))

print("Confusion matrix:")
matrix = confusion_matrix(y_true=Y_test, y_pred=nn.predict(X_test))
print(matrix)
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Symbols
* (asterisk, SymPy multiplication), 140
@ operator, 129, 130

A
absolute values versus squaring residuals for

linear regression, 155
activation functions, 231-237
advisor versus practitioner roles, deciding on,

272-274
AI (see artificial intelligence)
algebra (see linear algebra)
alternate solutions case, linear programming,
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alternative hypothesis (H1), 96, 97-103
anchoring bias, 268
Apache Spark, 269
approximate_integral() function, 36, 290-291
area under curve (AUC), 223-225
array() function, 111, 125
artificial intelligence (AI)

data science’s evolving role in, 262
limitations of, ix, 255
managing unreasonable expectations about,

279
AUC (area under curve), 223-225
automatic differentiation, 248
autonomous vehicles, overfitting problem for,

253

B
backpropagation, 231, 243-251
backward_prop() function, 250
base variable or value, exponents, 13

basis movement, linear transformation, 123
basis vectors, linear transformations, 121-124
batch gradient descent, 169
Bayes’ Theorem, 48-49, 222-223, 291-293
Beaulieu, Alan, 264
beta distribution, 53-60, 290-291
Beyond the Basic Stuff with Python (Sweigart),

266
bias, 67-69

anchoring, 268
confirmation, 68
derivative calculations for weight and,

243-248
as embedded in data, 67, 261
forward propagation network with bias val‐

ues, 237-242
in a model, 168
sampling, 67, 69, 77, 151
self-selection, 67, 68
survival, 68

big data considerations
historical development of, 260
machine learning’s statistical limitations due

to, 185
statistics, descriptive and inferential,

105-106
bimodel dataset, 73
binomial distribution, 51-53, 289-290
binomial_coefficient() function, 289
binomial_distribution() function, 290
Boykis, Vicki, 258, 284
Brown, Eliot, 274
brute force approach to least sum of squares,
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323



C
calculus (see math and calculus review)
career advice for data scientists (see data sci‐

ence career)
Cartesian plane, 8
CAS (computer algebra system), 24
causation versus correlation, 180
CDF (see cumulative density function)
central limit theorem, 89-92, 94, 95
chain rule, 31-33, 243-251
chi-square (chi2) distribution, 216
chi2 module (SciPy), 217
Chollet, Francis, 254
class imbalance, 225, 242
classification, 193

class imbalance, 225, 242
in logistic regression, 195, 219-223
MNIST classifier, 306
and neural networks, 228, 231, 251-252
pitfalls of, 207

closed form equation, 157-158
coefficient of determination (r²), linear regres‐

sion, 179, 187
coefficient of determination (R²), logistic

regression, 211-216
coefficient of variation, 89
commutative property of addition, 115
complex numbers, 3
computational complexity, 158
computer algebra system (CAS), 24
conditional probability, 47-49
confidence intervals, 92-95, 184, 185
confirmation bias, 68
confounding variables, 67
confusion matrices, 219-223
continuous versus discrete variables, 193
controlled variable, 96
convolutional neural networks, 228
coordinate plane, 8
corr() function, 172
correlation coefficient (r), 171-179
correlation matrix, 179
correlation versus causation, 180
critical t-value, 105, 176
critical z-value, 92
cross-validation of dataset, 188
The Cult of We (Brown and Farrell), 274
cumulative density function (CDF), 33

in beta distribution, 55-58

creating from scratch, 293-294
inverse, 85-89, 92, 294
in normal distribution integration, 82-85,

293-294
curvilinear functions, 9

D
data, 64-65

biases (see bias)
big data considerations, 105-106, 185, 260
operations in vector terms, 118
politics of access to, 278
questioning sources and assumptions, 65,

207
data mining, 64, 105, 106
data privacy issue, 207
data science

historical sketch, 260-262
linear algebra as foundation of, 145
linear transformations’ role in, 131
machine learning (see machine learning)
redefining, 258-262
state of the field, ix-x
statistics (see statistics)

data science career
development of field, 260-262
disciplines included in, 258
hard and soft skills needed, 263-274
importance of boundary setting in, 284
job market considerations, 275-283
labor market, managing in current, 284
tools included in, 258

Data Science from Scratch (Grus), 268
data silo breakdown, as IT job, not data science

job, 277
deep learning, 227

in development of 21st-century data sci‐
ence, 262

limitations of, 253-255
when to use, 228

Deep Learning with Python (Chollet), 254
degrees of freedom (df) parameter, 105, 176,

181, 216
dependent variables, 6
derivatives, 24-33

chain rule, 31-33
in gradient descent for linear regression,

163-166
partial, 28-29
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Python calculators, 26-27
weight and bias calculations, 243-248

descriptive statistics, 69-89
versus inferential, 65
inverse CDF, 85-89, 92, 294
mean and weighted mean, 70-71, 92
median, 71-72
mode, 73
normal distribution (see normal distribu‐

tion)
standard deviation, 75-78, 81, 181
variance, 73-78, 167-169

Desmos graph, 303
determinants, linear algebra, 120, 131-135
df (degrees of freedom) parameter, 105, 176,

181, 216
diagonal matrix, 137
diff() function, 27
discrete linear programming system, 305-305
discrete versus continuous variables, 193
doit() function, 13
domain variables, 6
dot product, linear transformation, 125
dot() operator, 125, 130

E
e (Euler’s number), 3, 18-21, 23, 295-296
eigendecomposition, 143
eigenvectors and eigenvalues, 142-145
Elwes, Richard, 1
Emmanuel, Josh, 306
errors (see residuals)
essential math, 1
Euler’s number (e), 3, 18-21, 23, 295-296
Excel, 269
exp() function, 196, 202
exponents, 13-16

F
factorial() function, 290-291
Farrell, Maureen, 274
feasible region, calculating with linear pro‐

gramming, 302-303
fit() function, 152, 187
fitting logistic curve, 198-204
flatten() function, 199
floating point underflow, 202
Fluent Python, 2nd Edition (Ramalho), 266
fractional exponents, 15-16

functions, mathematical, 6-11

G
Gaussian distribution (see normal distribution)
Géron, Aurélien, 200
Getting Started with SQL (Nield), 264
Go programming language, 267
GPT-3, from OpenAI, 283
gradient descent

batch gradient descent, 169
linear regression, 161-166
and MLE in fitting logistic curve, 200-204
in neural networks, 243-251
stochastic gradient descent, 169-170, 204,

243-251
vanishing gradient problem, 233

gradients, 28
Graeber, David, 281
graphics, vectors in, 112
ground truth, 65
Grus, Joel, 268

H
Hands-On Machine Learning with Scikit-

Learn, Keras, and TensorFlow (Géron), 200
Hariri, Hadi, 265
hill climbing algorithm, 296-300
histogram, to display normal distribution,

79-80
hypothesis testing for statistical significance

inferential statistics, 96-103
linear regression, 174-179
logistic regression, 216-218

I
identity matrix, 136, 139-142
imaginary numbers, 3
independent variables, 6
infeasible case, linear programming, 305
inferential statistics, 66, 89-103

central limit theorem, 89-92
confidence intervals, 92-95
hypothesis testing, 96-103
p-values, 95

input variables, 6
integer programming, 300
integers, 2
integrals, 33-39
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inverse cumulative density function (CDF),
85-89, 92, 294

inverse matrices, 136, 138-142, 158-161
inversion, linear transformation, 124
irrational numbers, 3, 16
IT department

data scientists being siphoned off to, 279,
282

shadow IT issue, 282

J
Jabberwocky Effect, 275, 280
Java data science libraries, 268
JavaScript D3.js, 269
JAX library, 248
job market for data scientists, 275-283

adequate resources, 278
competing with existing systems, 280-282
organizational focus and buy-in, 276-278
realistic expectations, 283
reasonable objectives, 279-280
role definition, 275
shadow IT, 282
unexpected role challenge, 282

joint conditional probability, 49
joint probability, 44-45, 200
Jupyter Notebooks, 267

K
k-fold validation, train/test splits, 189
Kozyrkov, Cassie, 261, 281

L
lambdify() function, 166
lasso regression, 169
LaTeX rendering with SymPy, 287-288
leaky ReLU function, 234
learning rate, machine learning and gradient

descent, 161
Learning SQL, 3rd Edition (Beaulieu), 264
least sum of squares, calculating, 157
leave-one-out cross-validation (LOOCV), 189
level of confidence (LOC), 92
likelihood, compared to probability, 42
limits, mathematical/calculus, 22-24, 29-31, 38
linear algebra, 109-146

determinants, 120, 131-135
eigenvectors and eigenvalues, 142-145

as foundation of data science, 145
inverse matrices, 138-142, 158-161
linear transformations, 121-129
matrix multiplication, 129-131
special matrix types, 136-138
systems of equations, 138-142
vectors, 110-120

linear correlation, 149
linear dependence, vectors, 119-120, 134
linear independence, 120
linear programming, 142, 145
linear regression, 147-192, 300-305

basic, 149-153
benefits and costs, 150
closed form equation, 157-158
coefficient of determination, 179
correlation coefficient, 171-179
fitting regression line to data, 153-166
gradient descent, 161-166
hill climbing algorithm, 296-298
image classification neural network, 231
inverse matrix techniques, 158-161
multiple linear regression, 191
overfitting and variance, 167-169
prediction intervals, 181-184
residuals and squared errors, 153-157
standard error of the estimate, 180
statistical significance, 174-179
stochastic gradient descent, 169-170
train/test splits, 185-190

linear transformations, 121-129
basis vectors, 121-124
matrix vector multiplication, 124-129

LinearRegression() function, 198
ln(), natural logarithm, 21
LOC (level of confidence), 92
log likelihood of fit, calculating, 212-214
log() function, 16, 202
log-odds (logit) function, 196, 208-211
logarithmic addition, 202
logarithms, 16-17 (see logistic regression)
logistic activation function, 233, 234, 237
logistic function, 195-197
logistic regression, 193-226

class imbalance, 225, 242
confusion matrices, 219-223
fitting logistic curve, 198-204
hill climbing algorithm, 299-300
log-odds, 208-211
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logistic function, 196-197
multivariable, 204-207
in neural network, 24, 233-234
p-values, 216-218
R-squared (R²), 211-216
ROC/AUC curves, 223-225
train/test splits, 218

LogisticRegression() function, 198
long short-term memory (LSTM), 228
LOOCV (leave-one-out cross-validation), 189

M
machine learning, 24

(see also scikit-learn)
and causation versus correlation, 180
compared to statistical regression, 185
and data science evolution, ix-x, 262
derivatives in, 24
discrimination due to classification, 207
eigendecomposition, 143
fitting regression as heart of, 157, 168, 186
industry application fit, evaluating, 271
and integrating data science and software

engineering, 266
and linear regression, 147, 185-190
linear transformations’ role in, 131
and logistic regression, 193, 218, 223-225
need for humans to manage data for, 279
neural networks (see neural networks)
probability and likelihood in, 42
samples and bias in, 69
as statistical tool, 63
stochastic gradient descent for, 169-170
sum of squares and gradient descent, 161
train/test splits, 185-190, 218
vectors in, 112

Manim visualization library, 112, 269
Marcus, Gary, 283
margin of error (E), 94, 95
marginal probability, 44
math and calculus review, 1-39

derivatives, 24-33
Euler's number, 18-21
exponents, 13-16
functions, 6-11
integrals, 33-39
limits, 22, 29-31, 38
logarithms, 16-17
natural logarithms, 21

number theory, 2-3
order of operations, 3-5
summations, 11-13
variables, 5

Mathematics 1001 (Elwes), 1
matmul() operator, 129, 130
matplotlib, for data visualization, 269
matrices, 122

confusion, 219-223
correlation, 179
inverse, 138-142, 158-161
linear algebra, 136-138
weights for matrices in forward propaga‐

tion, 238-242
matrix decomposition, 142-145, 160
matrix multiplication, 129-131, 139, 159, 238,

240
matrix vector multiplication, 124-129, 240
maximum likelihood estimation (MLE),

198-204
McFadden’s Pseudo R², 212
McKinney, Wes, 146
mean, 70-71, 92
median, 71-72
mini-batch gradient descent, 169
mixed integer programming, 300
MLE (maximum likelihood estimation),

198-204
MLPClassifier (multi-layer perceptron classi‐

fier), 251
MNIST classifier, scikit-learn, 236, 306
mode, 73
multiple transformation (see matrix multiplica‐

tion)
multivariable linear regression, 191
multivariable logistic regression, 204-207
mutually exclusive events, probabilities, 45, 47

N
natural logarithms, 21
natural numbers, 2
negative correlation, 172
negative exponents, 14
negative numbers, scaling with, 118
neural networks, 227-256

activation function, 231-237
chain rule, 31, 33
class imbalance, 242
and classification, 228, 231, 251-252
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convolutional, 228
forward propagation, 237-242
limitations of, 253-255
MNIST classifier, 236, 306
recurrent, 228
regression's role in, 231, 262
scikit-learn, 251-252, 306
when to use, 228

Ng, Andrew, 190, 253
Nield, Thomas, 264
No Bullshit Guide to Math and Physics (Savov),

1
nonmutually exclusive events, probabilities,

45-47
norm.ppf() function, 85
normal distribution, 78-85

and central limit theorem, 89-92, 94, 95
and chi-square (chi2) distribution, 216
integrating with CDF, 82-85, 293-294
linear regression and prediction intervals,

181-182
probability density function, 81
properties, 81
random number generation from, 86
versus T-distribution, 104
Z-scores, 87

NoSQL, 264
null hypothesis (H0), 96, 97-103
number theory, 2-3
numerical stability, 160
NumPy

decomposition for linear regression, 160
determinant calculation, 132
eigenvector and eigenvalue calculation, 143
inverse and transposed matrices, 159
matrix decomposition and recomposition,

144
matrix multiplication, 129
matrix vector multiplication, 125-127
scaling a number, 117
stochastic gradient descent, 169
vector addition, 114
vector declaration, 111, 113
vector transformation, 125

O
odds

probability expressed as, 42
relationship to logarithm, 209

one-tailed test, 97-99
order of operations, 3-5
outlier values, and use of median, 72
output variables, 6
overfitting of data

linear regression, 167-169
machine learning technique to mitigate,

185-190
neural networks’ challenge of, 253-254
train/test split to mitigate, 185-190
versus underfitting, 169

P
p-hacking, 103
p-values, 95

linear regression significance test, 178
logistic regression, 216-218
for one-tailed test, 99
scikit-learn’s lack of, 185
for two-tailed test, 101, 103

Pandas, 152
closed form equation, 157-158
correlation coefficient calculation, 172
creating correlation matrix, 179
gradient descent for linear regression, 163
importing SQL query into, 264
log likelihood of fit, 212-214
loss function for linear regression, 166
residuals calculation, 154
standard error of estimate calculation, 181
stochastic gradient descent, 169
sum of squares calculation, 155

parabola, 9
partial derivatives, 28-29
PatrickJMT, 142, 306
PCA (principal component analysis), 143
PDF (probability density function), 81, 83
Pearson correlation (see correlation coefficient)
Plotly, 152, 269
populations, 66-67

and central limit theorem, 89-92
mean calculation, 70, 92
and standard deviation, 75
and variance, 73-76

positive correlation, 172
power rule, exponents, 15
ppf() function, 85
practitioner versus advisor roles, deciding on,

272-274
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predict() function, 199
prediction

statistical significance, 1
prediction intervals, 181-184
predict_prob() function, 199
predict_proba() function, 206
principal component analysis (PCA), 143
privacy, data, 207
probability, 41-60

beta distribution, 53-60
binomial distribution, 51-53
conditional, 47-49
joint, 44-45, 200
joint conditional, 49
versus likelihood, 42
logistic regression (see logistic regression)
marginal, 44
and p-value, 95
permutations and combinations, 44
and statistics, 43, 63
sum rule of, 46
union, 45-47
union conditional, 50

probability density function (PDF), 81, 83
problem versus tool, starting with, 255, 257,

274
product rule

exponents, 13
probabilities, 45

profitability and defining success, 274
PuLP, 112, 300, 303
Pyomo, 300
Python, 1

(see also specific tools)
central limit theorem, 90
continuous interest calculation, 20-21
converting x-values into Z-scores, 88
correlation coefficient from scratch, 173
derivative calculator, 26
forward propagation network, 237
hill-climbing algorithms, 297, 299-300
integral approximation, 36-37
interactive shell, adding to neural network,

250
joint likelihood calculation, 201
libraries used, x
log() function, 17
logarithmic addition, 202
logistic function, 196

mean calculation, 70
median calculation, 71
mode calculation, 73
natural logarithm, 21
normal distribution function, 81, 293
plotting function graphs, 8
solving numerical expression, 4
speed compared to numerical libraries, 111
SQL query from, 264
standard deviation calculation, 75, 77
stochastic gradient descent, 248-250
summation of elements, 12
variables in, 5
variance calculation, 75
weighted mean calculation, 71

Python for Data (McKinney), 146

Q
QR decomposition method, 160
quantile, 72
quartiles, 72

R
R-squared (R²), 211-216
Ramalho, Luciano, 266
random numbers, generating from normal dis‐

tribution, 86
random selection of data sample, 67
random-fold validation, 189
randomness, 171

accounting for, 105-106, 178
null hypothesis (H0), 96, 97-103

range() function, 12
rational numbers, 2
real numbers, 3, 7
real-world versus simulation data, neural net‐

work challenges, 254
receiver operator characteristic (ROC) curve,

223-225
recurrent neural networks, 228
redundancy case, linear programming, 305
regression, 147

(see also linear regression; logistic regres‐
sion)

Reimann Sums, 33, 38
relational database, 263
ReLU activation function, 232, 234, 237
residuals, 153-157
RGB color values, 229-231
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ridge regression, 169
ROC (receiver operator characteristic) curve,

223-225
role specialization in data science career, 284
rotation, linear transformation, 124

S
samples, statistical, 66-67

bias, 67, 69, 77, 151
and central limit theorem, 89-92, 95
mean calculation, 70, 92
random selection of, 67
size of, 92
standard deviation, 76-78
T-distribution for small samples, 95,

104-105, 176-179
variance calculation, 76-78

Savov, Ivan, 1
Scala, 269
scalar value, 116-117
scaling

determinants in, 132-135
linear transformation, 124
of vectors, 116-119

scikit-learn
AUC as parameter in, 225
cross validation for linear regression, 188
lack of confidence intervals and p-values in,

185
linear regressions with, 152
MNIST classifier, 306
multivariable linear regression, 191
multivariable logistic regression, 205
neural network classifier, 251-252
random-fold validation for linear regres‐

sion, 189
three-fold cross-validation logistic regres‐

sion, 218
train/test split on linear regression, 186

SciPy
basic linear regression, 151-153
beta distribution, 56-60
binomial distribution calculation, 52-53
confidence interval calculation, 94
confusion matrix for test dataset, 221
critical value from T-distribution, 176
critical z-value retrieval, 93
fitting regression line to data, 152
inverse CDF, 85

logistic regression documentation, 200
maximum likelihood estimation, 198-200
normal distribution CDF, 84
p-value calculations, 99, 102, 217
prediction interval calculation, 183
T-distribution calculation, 105
testing significance for linear-looking data,

177
for x-value with 5% behind it, 98

Seaborn, for data visualization, 269
self-selection bias, 67, 68
shadow IT, 282
sigmoid curve, 196
skill sets for data science career, 263-274

data visualization, 269
knowing your industry, 270
practitioner versus advisor, 272-274
productive learning, 272
programming proficiency, 266-269
SQL proficiency, 263-265

small datasets
T-distribution, 95, 104-105, 176-179
and train/test splits, 186, 189

Smith, Gary, 105
SMOTE algorithms, 225
Softmax function, 234
software engineering, role in data science, 262,

266
software licenses, 270
span and linear dependence, vectors, 119-120
sparse matrix, 138
SQL (structured query language), 263-265
SQL Pocket Guide, 4th Edition (Zhao), 264
sqrt() function, 75
square matrix, 136, 143
squared errors, 153-157
standard deviation

normal distribution role of, 82
for population, 75
sample calculation of, 76-78
and standard error of the estimate, 181

Standard Deviations (Smith), 105
standard error of the estimate (Sₑ), 181
standard normal distribution, 87
Starmer, Josh, 77, 209, 226
statistical learning, 148
statistical significance

inferential statistics, 96-103
linear regression, 174-179
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logistic regression, 216-218
and p-values, 96
testing for, 97-103

statistics, 64-107
bias (see bias)
big data considerations, 105-106
data definition, 64-65
descriptive (see descriptive statistics)
inferential (see inferential statistics)
versus machine learning, 148
normal distribution (see normal distribu‐

tion)
populations (see populations)
and probability, 43, 63
regressions (see linear regression; logistic

regression)
role in data science, 262
samples (see samples)
T-distribution, 95, 104-105, 176-179
vectors in, 112

StatQuest (Starmer), 77
statsmodel library, 174, 185
std_dev() function, 75
stochastic gradient descent, 169-170, 204,

243-251
structured query language (SQL), 263-265
subs() function, 12, 27
success, finding a definition match in business,

274
sum of squared error, 180
sum of squares, 155-157
sum rule of probability, 46
Sum() operator, 12
summations, 11-13
supervised versus unsupervised machine learn‐

ing, 148
survival bias, 68
Sweigart, Al, 266
symbols() function, 27
SymPy, 12

chain rule derivative, 31
derivative calculator, 27
gradient descent calculations, 162, 164-166,

203-204
integral approximation, 37
inverse and identity matrix, 140-142
joint likelihood calculation, 203
LaTeX rendering with, 287-288
limit calculation, 23, 29-31, 38

logistic activation function, 233
and matplotlib, 269
partial derivatives, 28-29
plotting function graphs, 8-11, 197
ReLU activation function plot, 232
simplifying algebraic expressions, 15
weight and bias derivative calculations,

244-246
system of equations, 138-142

T
T-distribution, 95, 104-105, 176-179
Tableau, 270
tangent hyperbolic function, 234
tangent line, 24
Texas Sharpshooter Fallacy, 106-106
three-dimensional vectors, 112, 128
three-fold cross-validation, 218
train/test splits

linear regression, 185-190
logistic regression, 218
neural network stochastic gradient descent,

250
train_test_split() function, 187
transposed matrix, 125, 159
triangular matrix, 137
two-tailed test, 99-103

U
unbounded case, linear programming, 305
underfitting versus overfitting data, 169
uniform distribution, 91
union conditional probability, 50
union probability, 45-47

V
validation of machine learning algorithms,

185-190, 218
validation set, 190
Van Hentenryck, Pascal, 306
vanishing gradient problem, 233
variables, 5

base variable or value, exponents, 13
confounding, 67
controlled, 96
discrete versus continuous, 193
and mode calculation, 73
multivariable linear regression, 191

Index | 331



multivariable logistic regression, 204-207
variance

calculating for a population, 73-76
and correlation coefficient, 171-173
linear regression, 167-169
random-fold validation to mitigate, 189
sample calculation of, 76-78
train/test split to mitigate, 185-190

variance() function, 75
Varoquaux, Gael, 185
vector addition, 114, 119
vectors, 110-120

adding and combining, 114-115
scaling, 116-119
span and linear dependence, 119-120

W
Warden, Pete, 261

weighted mean, 70-71
weights for matrices and bias vectors in for‐

ward propagation, 238-242
Whitenack, Daniel, 267
whole numbers, 2

X
x-value, expressing as Z-score, 87
x/y plane, 8

Z
Z-scores, 87-89
Zhao, Alice, 264
z_score() function, 88
z_to_z() function, 88
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mice (Rhabdomys pumilio). These rodents are found in the southern half of the
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and even cities. As its common name suggests, this animal has a distinct set of
four dark stripes running down its back. Even at birth, these stripes are visible as
pigmented lines in the pup’s hairless skin.

The coloring of the grass mouse’s fur varies from dark brown to grayish white, with
lighter sides and bellies. In general, the species grows to about 18–21 centimeters
long (not counting the tail, which is roughly equal to body length) and weighs 30–55
grams. The mouse is most active during the day, and has an omnivorous diet of
seeds, plants, and insects. In the summer months, it tends to eat more plant and seed
material, and it maintains fat stores to see itself through times of limited food supply.
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the world.
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