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preface
Working at a bank, I quickly realized how time is an important factor. Interest rates
vary over time, people’s spending varies over time, asset prices vary over time. Yet I
found most people, including me, were uncomfortable with time series. So I decided
to learn time series forecasting.

 It turned out to be harder than expected because every resource I found was in R.
I am comfortable with Python, and Python is undoubtedly the most popular language
for data science in the industry. While R constrains you to statistical computing,
Python allows you to code websites, perform machine learning, deploy models, build
servers, and more. Therefore, I had to translate a lot of R code into Python to learn
time series forecasting. That’s when I recognized the gap, and I was lucky enough to
be given the opportunity to write a book about it.

 With this book, I hope to create a one-stop reference for time series forecasting
with Python. It covers both statistical and machine learning models, and it also discusses
automated forecasting libraries, as they are widely used in the industry and often act as
baseline models. This book greatly emphasizes a hands-on, practical approach, with
various real-life scenarios. In real life, data is messy, dirty, and sometimes missing, and
I wanted to give readers a safe space to experiment with those difficulties, learn from
them, and easily transpose those skills into their own projects.

 This book focuses on time series forecasting. Of course, with time series data, we
can also perform classification or anomaly detection, but this book addresses only
forecasting to keep the scope manageable.
xvii



PREFACExviii
 In each chapter, you will find exercises you can use to practice and hone your
skills. Each exercise comes with a full solution on GitHub. I strongly suggest that you
take the time to complete them, as you will gain important practical skills. They offer a
great way to test your knowledge, see what you need to revisit in a given chapter, and
apply modeling techniques in new scenarios.

 After reading the chapters and completing the exercises, you will have all the nec-
essary tools to tackle any forecasting project with confidence and great results. Hope-
fully, you will also gain the curiosity and motivation to go beyond this book and
become a time series expert.
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about this book
This book was written to help data scientists master time series forecasting and help
professionals transition from R to Python for time series analysis. It starts off by defin-
ing time series data and highlighting the uniqueness of working with that type of data
(for example, you cannot shuffle the data). It then walks through developing baseline
models and explores when forecasting does not make sense.

 Subsequent chapters dive deep into forecasting techniques and gradually increase
the complexity of the models, from statistical models to deep learning models. Finally,
the book covers automated forecasting libraries, which can greatly speed up the fore-
casting process. This will give you a sense of what is being done in the industry.

Who should read this book?
This book is for data scientists who know how to perform traditional regression and
classification tasks but find themselves stuck when it comes to time series. If you have
been dropping the date column up until now, this book is definitely for you!

 The book is also for professionals proficient in R looking to transition to Python. R
is a great language for time series forecasting, and many methods have been imple-
mented in R. However, Python is the most popular language for data science, and it
has the advantage of being applied to deep learning models, which is something R
can’t do.
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How this book is organized: A roadmap
The book has 4 parts and 21 chapters.

 Part 1 is an introduction to time series forecasting. We’ll formalize the concept of
time series data, develop baseline models, and see when forecasting is not a reason-
able avenue:

 Chapter 1 defines time series data and explores the lifecycle of a forecasting
project.

 In chapter 2 we’ll develop baseline models, as a model can only be evaluated in
relation to another model. It is therefore important to first have a simple fore-
casting model before moving on to more complex techniques.

 In chapter 3 we’ll study the random walk model, which is a special scenario
where forecasting cannot reasonably be performed with advanced models, and
we must resort to simple baseline models.

Part 2 focuses on forecasting with statistical models:

 In chapter 4 we’ll develop the moving average model, MA(q), one of the build-
ing blocks of more complex forecasting techniques.

 In chapter 5 we’ll develop the autoregressive model, AR(p), the other founda-
tional model for more complicated scenarios.

 In chapter 6 we’ll combine the AR(p) and MA(q) models to form the ARMA(p,q)
model and design a new forecasting procedure.

 In chapter 7 we’ll build on the previous chapter to model non-stationary time
series with the ARIMA(p,d,q) model.

 In chapter 8 we’ll add yet another layer of complexity and model seasonal time
series with the SARIMA(p,d,q)(P,D,Q)m model.

 In chapter 9 we’ll add the last layer of complexity and reach the SARIMAX
model, allowing us to use external variables to forecast our data.

 In chapter 10 we’ll explore vector autoregression, VAR(p), models, which allow
us to forecast many time series simultaneously.

 Chapter 11 concludes part 2 with a capstone project, giving us the chance to
apply what we learned since chapter 4.

Part 3 covers forecasting with deep learning. When your dataset becomes very large,
with nonlinear relationships and high dimensionality, deep learning is the most appro-
priate tool for forecasting:

 Chapter 12 introduces deep learning and the types of models we can build.
 Chapter 13 explores the data windowing step, which is crucial to ensuring the

success of forecasting using deep learning models.
 In chapter 14 we’ll develop our first simple deep learning models.
 In chapter 15 we’ll use the LSTM architecture for forecasting. This architecture

is specifically built to process sequential data, just like time series.
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 In chapter 16 we’ll explore the CNN architecture, which can effectively filter
the noise in a time series with the convolution operation. We’ll also combine
the CNN with the LSTM architecture.

 In chapter 17 we’ll develop an autoregressive deep learning model, which is an
architecture that is proven to generate state-of-the-art results, as the model’s
output is fed back in as an input to produce the next forecast.

 In chapter 18 we’ll conclude part 3 with a capstone project.

Part 4 explores the use of automated forecasting libraries, especially Prophet, as it is
one of the most widely used libraries in the industry:

 Chapter 19 explores the ecosystem of automated forecasting libraries, and we’ll
work through a project using Prophet. We’ll also use a SARIMAX model to
compare the performance of both methods.

 Chapter 20 is a capstone project where you are invited to use Prophet and a
SARIMAX model and see which performs best in that situation.

 Chapter 21 concludes the book and aims to inspire you to go above and beyond
and explore what else can be done with time series data.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. 

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/time-series-forecasting-in-python-book/.
The entire source code for this book is available on GitHub at https://github.com/
marcopeix/TimeSeriesForecastingInPython. You can also find the solutions to all the
exercises there, and the code for the figures is also included. Creating visualizations is
sometimes an overlooked skill, but I believe it is an important one.

 All the code was run on Windows using Jupyter Notebooks in Anaconda. I used
Python 3.7, but any later release should work as well. 

liveBook discussion forum
Purchase of Time Series Forecasting in Python includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can
attach comments to the book globally or to specific sections or paragraphs. It’s a snap
to make notes for yourself, ask and answer technical questions, and receive help from

https://livebook.manning.com/book/time-series-forecasting-in-python-book/
https://github.com/marcopeix/TimeSeriesForecastingInPython
https://github.com/marcopeix/TimeSeriesForecastingInPython
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the author and other users. To access the forum, go to https://livebook.manning.com/
book/time-series-forecasting-in-python-book/discussion. You can also learn more about
Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Author online
You can follow me on Medium for more articles on data science (https://medium
.com/@marcopeixeiro). My approach to blogging is similar to how I approached this
book: theory first and a hands-on project second. You can also reach out to me on
LinkedIn (https://www.linkedin.com/in/marco-peixeiro/).

https://livebook.manning.com/book/time-series-forecasting-in-python-book/discussion
https://livebook.manning.com/book/time-series-forecasting-in-python-book/discussion
https://livebook.manning.com/discussion
https://medium.com/@marcopeixeiro
https://medium.com/@marcopeixeiro
https://medium.com/@marcopeixeiro
https://www.linkedin.com/in/marco-peixeiro/
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Part 1

Time waits for no one

Very few phenomena are unaffected by time, which in itself is enough to jus-
tify the importance of understanding what time series are. In this first part of the
book, we’ll define time series and explore the particularities of working with
them. We’ll also develop our very first forecasting models using naive methods.
These will serve as baseline models, and we’ll reuse these techniques throughout
the book. Finally, we’ll study a situation where forecasting is not possible, so that
we identify and avoid falling into that trap.



 



Understanding
time series forecasting
Time series exist in a variety of fields from meteorology to finance, econometrics,
and marketing. By recording data and analyzing it, we can study time series to ana-
lyze industrial processes or track business metrics, such as sales or engagement.
Also, with large amounts of data available, data scientists can apply their expertise
to techniques for time series forecasting.

 You might have come across other courses, books, or articles on time series that
implement their solutions in R, a programming language specifically made for sta-
tistical computing. Many forecasting techniques make use of statistical models, as
you will learn in chapter 3 and onwards. Thus, a lot of work was done to develop
packages to make time series analysis and forecasting seamless using R. However,

This chapter covers
 Introducing time series

 Understanding the three main components of 
a time series

 The steps necessary for a successful forecasting 
project

 How forecasting time series is different from 
other regression tasks
3



4 CHAPTER 1 Understanding time series forecasting
most data scientists are required to be proficient with Python, as it is the most wide-
spread language in the field of machine learning. In recent years, the community and
large companies have developed powerful libraries that leverage Python to perform
statistical computing and machine learning tasks, develop websites, and much more.
While Python is far from being a perfect programming language, its versatility is a
strong benefit to its users, as we can develop models, perform statistical tests, and pos-
sibly serve our models through an API or develop a web interface, all while using the
same programming language. This book will show you how to implement both statisti-
cal learning techniques and machine learning techniques for time series forecasting
using only Python.

 This book will focus entirely on time series forecasting. You will first learn how
to make simple forecasts that will serve as benchmarks for more complex models.
Then we will use two statistical learning techniques, the moving average model and
the autoregressive model, to make forecasts. These will serve as the foundation for
the more complex modeling techniques we will cover that will allow us to account
for non-stationarity, seasonality effects, and the impact of exogenous variables.
Afterwards, we’ll switch from statistical learning techniques to deep learning meth-
ods, in order to forecast very large time series with a high dimensionality, a sce-
nario in which statistical learning often does not perform as well as its deep learning
counterpart.

 For now, this chapter will examine the basic concepts of time series forecasting. I’ll
start by defining time series so that you can recognize one. Then, we will move on and
discuss the purpose of time series forecasting. Finally, you will learn why forecasting a
time series is different from other regression problems, and thus why the subject
deserves its own book.

1.1 Introducing time series
The first step in understanding and performing time series forecasting is learning
what a time series is. In short, a time series is simply a set of data points ordered in time.
Furthermore, the data is often equally spaced in time, meaning that equal intervals
separate each data point. In simpler terms, the data can be recorded at every hour or
every minute, or it could be averaged over every month or year. Some typical exam-
ples of time series include the closing value of a particular stock, a household’s elec-
tricity consumption, or the temperature outside.

Time series
A time series is a set of data points ordered in time. 

The data is equally spaced in time, meaning that it was recorded at every hour, min-
ute, month, or quarter. Typical examples of time series include the closing value of a
stock, a household’s electricity consumption, or the temperature outside.
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Let’s consider a dataset representing the quarterly earnings per share in US dollars of
Johnson & Johnson stock from 1960 to 1980, shown in figure 1.1. We will use this data-
set often throughout this book, as it has many interesting properties that will help you
learn advanced techniques for more complex forecasting problems.

 As you can see, figure 1.1 clearly represents a time series. The data is indexed by
time, as marked on the horizontal axis. Also, the data is equally spaced in time, since it
was recorded at the end of every quarter of each year. We can see that the data has a
trend, since the values are increasing over time. We also see the earnings going up and
down over the course of each year, and the pattern repeats every year.

1.1.1 Components of a time series

We can further our understanding of time series by looking at their three compo-
nents: a trend, a seasonal component, and residuals. In fact, all time series can be
decomposed into these three elements.

 Visualizing the components of a time series is known as decomposition. Decomposi-
tion is defined as a statistical task that separates a time series into its different compo-
nents. We can visualize each individual component, which will help us identify the
trend and seasonal pattern in the data, which is not always straightforward just by
looking at a dataset.

 Let’s take a closer look at the decomposition of Johnson & Johnson quarterly earn-
ings per share, shown in figure 1.2. You can see how the Observed data was split into
Trend, Seasonal, and Residuals. Let’s study each piece of the graph in more detail.

Figure 1.1 Quarterly earnings of Johnson & Johnson in USD from 1960 to 1980 
showing a positive trend and a cyclical behavior
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First, the top graph, labeled as Observed, simply shows the time series as it was recorded
(figure 1.3). The y-axis displays the value of the quarterly earnings per share for John-
son & Johnson in US dollars, while the x-axis represents time. It is basically a recre-
ation of figure 1.1, and it shows the result of combining the Trend, Seasonal, and
Residuals graphs from figure 1.2.

Then we have the trend component, as shown in figure 1.4. Again, keep in mind that
the y-axis represents the value, while the x-axis still refers to time. The trend is defined
as the slow-moving changes in a time series. We can see that it starts out flat and then
steeply goes up, meaning that we have an increasing, or positive, trend in our data.
The trend component is sometimes referred to as the level. We can think of the trend

Figure 1.2 Decomposition of quarterly earnings of Johnson & Johnson from 1960 to 
1980

Figure 1.3 Focusing on the Observed plot
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component as trying to draw a line through most of the data points to show the gen-
eral direction of a time series.

 Next we see the seasonal component in figure 1.5. The seasonal component cap-
tures the seasonal variation, which is a cycle that occurs over a fixed period of time.
We can see that over the course of a year, or four quarters, the earnings per share start
low, increase, and decrease again at the end of the year.

Notice how the y-axis shows negative values. Does this mean that the earnings per
share are negative? Clearly, that cannot be, since our dataset strictly has positive val-
ues. Therefore, we can say that the seasonal component shows how we deviate from
the trend. Sometimes we have a positive deviation, and we get a peak in the Observed
graph. Other times, we have a negative deviation, and we see a trough in Observed. 

 Finally, the last graph in figure 1.2 shows the residuals, which is what cannot be
explained by either the trend or the seasonal components. We can think of the residu-
als as adding the Trend and Seasonal graphs together and comparing the value at
each point in time to the Observed graph. For certain points, we might get the exact
same value as in Observed, in which case the residual will be zero. In other cases, the
value is different from the one in Observed, so the Residuals graph shows what value
must be added to Trend and Seasonal in order to adjust the result and get the same
value as in Observed. Residuals usually correspond to random errors, also termed
white noise, as we will discuss in chapter 3. They represent information that we cannot
model or predict, since it is completely random, as shown in figure 1.6.

Figure 1.4 Focusing on the trend component. We have a trend in our series, since the 
component is not flat. It indicates that we have increasing values over time.

Figure 1.5 Focusing on the seasonal component. Here we have periodic fluctuations in 
our time series, which indicates that earnings go up and down every year.
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Already we can intuitively see how each component affects our work when forecasting.
If a time series exposes a certain trend, then we’ll expect it to continue in the future.
Similarly, if we observe a strong seasonality effect, this is likely going to continue, and
our forecasts must reflect that. Later in the book, you’ll see how to account for these
components and include them in your models to forecast more complex time series.

1.2 Bird’s-eye view of time series forecasting
Forecasting is predicting the future using historical data and knowledge of future
events that might affect our forecasts. This definition is full of promises and, as data
scientists, we are often very eager to start forecasting by using our scientific knowledge
to showcase an incredible model with a near-perfect forecast accuracy. However, there
are important steps that must be covered before reaching the point of forecasting.

 Figure 1.7 is a simplified diagram of what a complete forecasting project might
look like in a professional setting. Note that these steps are not universal, and they
may or may not be followed, depending on the organization and its maturity. These
steps are nonetheless essential to ensure good cohesion between the data team and
the business team, hence providing business value and avoiding friction and frustra-
tion between the teams.

 Let’s dive into a scenario that covers each step of a forecasting project roadmap in
detail. Imagine you are planning a one-week camping trip one month from now, and

Time series decomposition
Time series decomposition is a process by which we separate a time series into its
components: trend, seasonality, and residuals. 

The trend represents the slow-moving changes in a time series. It is responsible for
making the series gradually increase or decrease over time.

The seasonality component represents the seasonal pattern in the series. The cycles
occur repeatedly over a fixed period of time.

The residuals represent the behavior that cannot be explained by the trend and sea-
sonality components. They correspond to random errors, also termed white noise.

Figure 1.6 Focusing on the residuals. The residuals are what cannot be explained by 
the trend and seasonal components. 
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you want to know which sleeping bag to bring with you so you can sleep comfortably
at night.

1.2.1 Setting a goal

The very first step in any project roadmap is to set a goal. Here it is explicit in the sce-
nario: you want to know which sleeping bag to bring to sleep comfortably at night. If
the nights will be cold, a warm sleeping bag is the best choice. Of course, if nights are
expected to be warm, then a light sleeping bag would be the better option.

1.2.2 Determining what must be forecast to achieve your goal

Then you move to determining what must be forecast in order for you to decide
which sleeping bag to bring. In this case, you need to predict the temperature at
night. To simplify things, let’s consider that predicting the minimum temperature is
sufficient to make a decision, and that the minimum temperature occurs at night. 

Develop a forecasting

model
Collect new data

Deploy to production Monitor

Gather the data

Set the horizon of the

forecast

Determine what must be

forecast to achieve our

goal

Set a goal

Figure 1.7 Forecasting project roadmap. The 
first step is naturally to set a goal that justifies the 
need for forecasting. Then you must determine 
what needs to be forecast in order to achieve that 
goal. Then you set the horizon of the forecast. 
Once that’s done, you can gather the data and 
develop a forecasting model. Then the model 
is deployed to production, its performance is 
monitored, and new data is collected in order 
to retrain the forecasting model and make sure 
it is still relevant.
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1.2.3 Setting the horizon of the forecast

Now you can set the horizon of your forecast. In this case, your camping trip is one
month from now, and it will last for one week. Therefore, you have a horizon of one
week, since you are only interested in predicting the minimum temperature during
the camping trip.

1.2.4 Gathering the data

You can now start gathering your data. For example, you could collect historical daily
minimum temperature data. You could also gather data on possible factors that can
influence temperature, such as humidity and wind speed. 

 This is when the question of how much data is enough data arises. Ideally, you
would collect more than 1 year of data. That way, you could determine if there is a
yearly seasonal pattern or a trend. In the case of temperature, you can of course expect
some seasonal pattern over the year, since different seasons bring different minimum
temperatures.

 However, 1 year of data is not the ultimate answer to how much data is sufficient. It
highly depends on the frequency of the forecasts. In this case, you will be creating
daily forecasts, so 1 year of data should be enough. 

 If you wanted to create hourly forecasts, a few months of training data would be
enough, as it would contain a lot of data points. If you were creating monthly or yearly
forecasts, you would need a much larger historical period to have enough data points
to train with. 

 In the end, there is no clear answer regarding the quantity of data required to
train a model. Determining this is part of the experimentation process of building a
model, assessing its performance, and testing whether more data improves the model’s
performance.

1.2.5 Developing a forecasting model

With your historical data in hand, you are ready to develop a forecasting model. This
part of the project roadmap is the focus of this entire book. This is when you get to
study the data and determine whether there is a trend or a seasonal pattern. 

 If you observe seasonality, then a SARIMA model would be relevant, because this
model uses seasonal effects to produce forecasts. If you have information on wind
speed and humidity, you could take that into account using the SARIMAX model,
because you can feed it with information from exogenous variables, such as wind
speed and humidity. We will explore these models in detail in chapters 8 and 9.

 If you managed to collect a large amount of data, such as the daily minimum tem-
perature of the last 20 years, you could use neural networks to leverage this very large
amount of training data. Unlike statistical learning methods, deep learning tends to
produce better models, as more data is used for training.

 Whichever model you develop, you will use part of the training data as a test set to
evaluate your model’s performance. The test set will always be the most recent data
points, and it must be representative of the forecasting horizon. 
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 In this case, since your horizon is one week, you can remove the last seven data
points from your training set to place them in a test set. Then, when each model is
trained, you can produce one-week forecasts and compare the results to the test set.
The model’s performance can be assessed by computing an error metric, such as the
mean squared error (MSE). This is a way to evaluate how far your predictions are
from the real values. The model with the lowest MSE will be your best-performing
model, and it is the one that will move on to the next step.

1.2.6 Deploying to production

Once you have your champion model, you must deploy it to production. This means
that your model can take in data and return a prediction for the minimum daily tem-
perature for the next 7 days. There are many ways to deploy a model to production,
and this could be the subject of an entire book. Your model could be served as an API
or integrated in a web application, or you could define your own Excel function to
run your model. Ultimately, your model is considered deployed when you can feed in
data and have forecasts returned without any manual manipulation of the data. At this
point, your model can be monitored.

1.2.7 Monitoring

Since the camping trip is 1 month from now, you can see how well your model per-
forms. Every day, you can compare your model’s forecast to the actual minimum tem-
perature recorded for the day. This allows you to determine the quality of the model’s
forecasts. 

 You can also look for unexpected events. For example, a heat wave can arise,
degrading the quality of your model’s forecasts. Closely monitoring your model and
current events allows you to determine if the unexpected event results from a tempo-
rary situation, or if it will last for the next 2 months, in which case it could impact your
decision for the camping trip.

1.2.8 Collecting new data

By monitoring your model, you necessarily collect new data as you compare the
model’s forecasts to the observed minimum temperature for the day. This new, more
recent, data can then be used in retraining your model. That way, you have up-to-date
data you can use to forecast the minimum temperature for the next 7 days.

 This cycle is repeated over the next month until you reach the day of the camping
trip, as shown in figure 1.8. By that point, you will have made many forecasts, assessed
their quality against newly observed data, and retrained your model with new daily
minimum temperatures as you recorded them. That way, you make sure that your
model is still performant and uses relevant data to forecast the temperature for your
camping trip.

 Finally, based on your model’s predictions, you can decide which sleeping bag to
bring with you.
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1.3 How time series forecasting is different from 
other regression tasks
You probably have encountered regression tasks where you must predict some contin-
uous target given a certain set of features. At first glance, time series forecasting seems
like a typical regression problem: we have some historical data, and we wish to build a
mathematical expression that will express future values as a function of past values.
However, there are some key differences between time series forecasting and regres-
sion for time-independent scenarios that deserve to be addressed before we look at
our very first forecasting technique.

1.3.1 Time series have an order

The first concept to keep in mind is that time series have an order, and we cannot
change that order when modeling. In time series forecasting, we express future values
as a function of past values. Therefore, we must keep the data in order, so as to not vio-
late this relationship.

 Also, it makes sense to keep the data in order because your model can only use
information from the past up until the present—it will not know what will be observed
in the future. Recall your camping trip. If you want to predict the temperature for
Tuesday, you cannot possibly use the information from Wednesday, since it is in the
future from the model’s point of view. You would only be able to use the data from
Monday and before. That is why the order of the data must remain the same through-
out the modeling process.

 Other regression tasks in machine learning often do not have an order. For exam-
ple, if you are tasked to predict revenue based on ad spend, it does not matter when a
certain amount was spent on ads. Instead, you simply want to relate the amount of ad
spend to the revenue. In fact, you might even randomly shuffle the data to make your
model more robust. Here the regression task is to simply derive a function such that
given an amount on ad spend, an estimate of revenue is returned.

 On the other hand, time series are indexed by time, and that order must be kept.
Otherwise, you would be training your model with future information that it would
not have at prediction time. This is called look-ahead bias in more formal terms. The
resulting model would therefore not be reliable and would most probably perform
poorly when you make future forecasts.

Develop a forecasting

model
Collect new data

Deploy to production Monitor

Figure 1.8 Visualizing the production loop. 
Once the model is in production, you enter a 
cycle where you monitor it, collect new data, 
and use that data to adjust the forecasting 
model before deploying it again.
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1.3.2 Time series sometimes do not have features

It is possible to forecast time series without the use of features other than the time
series itself.

 As data scientists, we are used to having datasets with many columns, each repre-
senting a potential predictor for our target. For example, consider the task of predict-
ing revenue based on ad spend, where the revenue is the target variable. As features,
we could have the amount spent on Google ads, Facebook ads, and television ads.
Using these three features, we would build a regression model to estimate revenue. 

 However, with time series, it is quite common to be given a simple dataset with a
time column and a value at that point in time. Without any other features, we must
learn ways of using past values of the time series to forecast future values. This is when
the moving average model (chapter 4) or autoregressive model (chapter 5) come into
play, as they are ways to express future values as a function of past values. These mod-
els are foundational to the more complex models that then allow you to consider sea-
sonal patterns and trends in time series. Starting in chapter 6, we will gradually build
on those basic models to forecast more complex time series.

1.4 Next steps
This book will cover different forecasting techniques in detail. We’ll start with some
very basic methods, such as the moving average model and autoregressive model, and
we will gradually account for more factors in order to forecast time series with trends
and seasonal patterns using the ARIMA, SARIMA, and SARIMAX models. We will also
work with time series with high dimensionality, which will require us to use deep
learning techniques for sequential data. Therefore, we will have to build neural net-
works using CNN (convolutional neural network) and LSTM (long short-term mem-
ory). Finally, you will learn how to automate the work of forecasting time series. As
mentioned, all implementations throughout the book will be done in Python.

 Now that you have learned what a time series is and how forecasting will be differ-
ent than any traditional regression tasks you might have seen before, we are ready to
move on and start forecasting. However, our first attempt at forecasting will focus on
naive methods that will serve as baseline models.

Summary
 A time series is a set of data points ordered in time. 
 Examples of time series are the closing price of a stock or the temperature

outside.
 Time series can be decomposed into three components: a trend, a seasonal com-

ponent, and residuals.
 It is important to have a goal when forecasting and to monitor the model once

it’s deployed. This will ensure the success and longevity of the project. 
 Never change the order of a time series when modeling. Shuffling the data is

not allowed.



A naive prediction
of the future
In chapter 1 we covered what time series are and how forecasting a time series is
different from a traditional regression task. You also learned the necessary steps in
building a successful forecasting project, from defining a goal to building a model,
deploying it, and updating it as new data is collected. Now you are ready to start
forecasting a time series. 

 You will first learn how to make a naive prediction of the future, which will serve
as a baseline. The baseline model is a trivial solution that uses heuristics, or simple
statistics, to compute a forecast. Developing a baseline model is not always an exact
science. It will often require some intuition that we’ll gain by visualizing the data
and detecting patterns that can be used to make predictions. In any modeling proj-
ect, it is important to have a baseline, as you can use it to compare the performance

This chapter covers
 Defining a baseline model 

 Setting a baseline using the mean

 Building a baseline using the mean of the 
previous window of time

 Creating a baseline using the previous timestep

 Implementing the naive seasonal forecast
14
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of the more complex models you’ll build down the road. The only way to know that a
model is good, or performant, is to compare it to a baseline.

 In this chapter, let’s imagine that we wish to predict the quarterly earnings per
share (EPS) of Johnson & Johnson. We can look at the dataset in figure 2.1, which is
identical to what you saw in chapter 1. Specifically, we will use the data from 1960 to
the end of 1979 in order to predict the EPS for the four quarters of 1980. The fore-
casting period is illustrated by the gray zone in figure 2.1.

You can see in figure 2.1 that our data has a trend, since it is increasing over time.
Also, we have a seasonal pattern, since over the course of a year, or four quarters, we
can observe peaks and troughs repeatedly. This means that we have seasonality. 

 Recall that we identified each of these components when we decomposed our time
series in chapter 1. The components are shown in figure 2.2. We will study some of
these components in detail later in the chapter, as they will help us gain some intu-
ition about the behavior of the data, which in turn will help us develop a good base-
line model.

 We will first define what a baseline model is, and then we will develop four differ-
ent baselines to forecast the quarterly EPS of Johnson & Johnson. This is the time
when we’ll finally get our hands dirty with Python and time series forecasting.

Figure 2.1 Quarterly earnings per share of Johnson & Johnson in US dollars (USD) 
between 1960 and 1980. We will use the data from 1960 to the last quarter of 1979 
to build a baseline model that will forecast the earnings per share for the quarters of 
1980 (as illustrated by the gray area). 
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2.1 Defining a baseline model
A baseline model is a trivial solution to our problem. It often uses heuristics, or simple
statistics, to generate predictions. The baseline model is the simplest solution you can
think of—it should not require any training, and the cost of implementation should
be very low. 

In the context of time series, one simple statistic we can use to build a baseline is the
arithmetic mean. We can simply compute the mean of the values over a certain period
and assume that future values will be equal to that mean. In the context of predicting
the EPS for Johnson & Johnson, this is like saying

The average EPS between 1960 and 1979 was $4.31. Therefore, I expect the EPS over the
next four quarters of 1980 to be equal to $4.31 per quarter.

Another possible baseline is to naively forecast the last recorded data point. In our
context, this would be like saying

If the EPS is $0.71 for this quarter, then the EPS will also be $0.71 for next quarter.

Can you think of a baseline for our project? 
Knowing that we want to forecast the EPS for Johnson & Johnson, what is the most
basic, most naive, forecast you can make?

Figure 2.2 Decomposition of quarterly earnings of Johnson & Johnson from 1960 to 1980
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Or, if we see a cyclical pattern in our data, we can simply repeat that pattern into the
future. Staying in the context of Johnson & Johnson, this is like saying

If the EPS is $14.04 for the first quarter of 1979, then the EPS for the first quarter of
1980 will also be $14.04.

You can see these three possible baselines rely on simple statistics, heuristics, and pat-
terns observed in our dataset. 

You might wonder if those baseline models are any good. How well can those simple
methods forecast the future? We can answer this question by forecasting for the year
of 1980 and testing our forecasts against the observed data in 1980. This is called out-
of-sample forecasting because we are making predictions for a period that was not
taken into account when the model was developed. That way we can measure the per-
formance of our models and see how they would perform when we forecast beyond
the data we have, which in this case is 1981 and later.

 In the next sections, you will learn how to develop the different baselines men-
tioned here to predict the quarterly EPS of Johnson & Johnson. 

2.2 Forecasting the historical mean
As mentioned at the beginning of the chapter, we are going to work with the quarterly
EPS in US dollars (USD) of Johnson & Johnson from 1960 to 1980. Our goal is to use
the data from 1960 to the end of 1979 to predict the four quarters of 1980. The first
baseline we’ll discuss uses the historical mean, which is the arithmetic mean of past
values. Its implementation is straightforward: calculate the mean of the training set,
and it will be our prediction for the four quarters of 1980. First, though, we need to do
some preliminary work that we’ll use in all of our baseline implementations.

2.2.1 Setup for baseline implementations

Our first step is to load the dataset. To do so, we will use the pandas library and load
the dataset into a DataFrame using the read_csv method. You can either download
the file on your local machine and pass the file’s path to the read_csv method, or sim-
ply type in the URL where the CSV file is hosted on GitHub. In this case, we will work
with the file:

import pandas as pd

df = pd.read_csv('../data/jj.csv')

Baseline model
A baseline model is a trivial solution to your forecasting problem. It relies on heuris-
tics or simple statistics and is usually the simplest solution. It does not require
model fitting, and it is easy to implement.



18 CHAPTER 2 A naive prediction of the future
NOTE The entire code for this chapter is available on GitHub: https://github
.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH02.

A DataFrame is the most-used data structure in pandas. It is a 2-dimensional labeled
data structure with columns that can hold different types of data, such as strings, inte-
gers, floats, or dates.

 Our second step is to split the data into a train set for training and a test set for
testing. Given that our horizon is 1 year, our train set will start in 1960 and go all the
way to the end of 1979. We will save the data collected in 1980 for our test set. You can
think of a DataFrame as a table or a spreadsheet with column names and row indices.

 With our dataset in a DataFrame, we can display the first five entries by running

df.head()

This will give us the output shown in figure 2.3.

Figure 2.3 will help you better understand what type of data our DataFrame is holding.
We have the date column, which specifies the end of each quarter, when the EPS is
calculated. The data column holds the value of the EPS in US dollars (USD). 

 We can optionally display the last five entries of our dataset and obtain the output
in figure 2.4:

df.tail()

In figure 2.4 we see the four quarters of 1980, which is what we will be trying to fore-
cast using our baseline models. We will evaluate the performance of our baselines by

Figure 2.3 The first five entries of quarterly 
earnings per share for the Johnson & Johnson 
dataset. Notice how our DataFrame has two 
columns: date and data. It also has row indices 
starting at 0.

Figure 2.4 The last five entries of our dataset. Here 
we can see the four quarters of 1980 that we will try 
to predict using different baseline models. We will 
compare our forecasts to the observed data in 1980 
to evaluate the performance of each baseline.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH02
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH02
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH02
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comparing our forecasts to the values in the data column for the four quarters of
1980. The closer our forecasts are to the observed values, the better.

 The final step before developing our baseline models is to split the dataset into the
train and test sets. As mentioned earlier, the train set will consist of the data from 1960
to the end of 1979, and the test set will consist of the four quarters of 1980. The train
set will be the only information we use to develop our models. Once a model is built,
we will forecast the next four timesteps, which will correspond to the four quarters of
1980 in our test set. That way, we can compare our forecasts to the observed data and
evaluate the performance of our baselines.

 To make the split, we’ll specify that our train set will contain all the data held in df
except the last four entries. The test set will be composed of only the last four entries.
This is what the next code block does:

train = df[:-4]
test = df[-4:]

2.2.2 Implementing the historical mean baseline

Now we are ready to implement our baseline. We will first use the arithmetic mean of
the entire train set. To compute the mean, we’ll use the numpy library, as it is a very fast
package for scientific computing in Python that plays really well with DataFrames:

import numpy as np

historical_mean = np.mean(train['data'])    

print(historical_mean)

In the preceding code block, we first import the numpy library and then compute the
average of the EPS over the entire train set and print it out on the screen. This gives a
value of 4.31 USD. This means that from 1960 to the end of 1979, the quarterly EPS of
Johnson & Johnson is on average 4.31 USD.

 Now we will naively forecast this value for each quarter of 1980. To do so, we’ll sim-
ply create a new column, pred_mean, that holds the historical mean of the training
set as a forecast:

test.loc[:, 'pred_mean'] = historical_mean     

Next, we need to define and calculate an error metric in order to evaluate the perfor-
mance of our forecasts on the test set. In this case, we will use the mean absolute percent-
age error (MAPE). It is a measure of prediction accuracy for forecasting methods that is
easy to interpret and independent of the scale of our data. This means that whether we
are working with two-digit values or six-digit values, the MAPE will always be expressed as
a percentage. Thus, the MAPE returns the percentage of how much the forecast values

Compute the arithmetic 
mean of the data column 
in the train set.

Set the historical 
mean as a forecast.
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deviate from the observed or actual values on average, whether the prediction was
higher or lower than the observed values. The MAPE is defined in equation 2.1.

Equation 2.1

In equation 2.1, Ai is the actual value at point i in time, and Fi is the forecast value at
point i in time; n is simply the number of forecasts. In our case, because we are fore-
casting the four quarters of 1980, n = 4. Inside the summation, the forecast value is
subtracted from the actual value, and that result is divided by the actual value, which
gives us the percentage error. Then we take the absolute value of the percentage
error. This operation is repeated for each of the n points in time, and the results are
added together. Finally, we divide the sum by n, the number of points in time, which
effectively gives us the mean absolute percentage error.

 Let’s implement this function in Python. We’ll define a mape function that takes in
two vectors: y_true for the actual values observed in the test set and y_pred for the fore-
cast values. In this case, because numpy allows us to work with arrays, we will not need a
loop to sum all the values. We can simply subtract the y_pred array from the y_true array
and divide by y_true to get the percentage error. Then we can take the absolute value.
After that, we take the mean of the result, which will take care of summing up each value
in the vector and dividing by the number of predictions. Finally, we’ll multiply the
result by 100 so the output is expressed as a percentage instead of a decimal number:

def mape(y_true, y_pred):
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

Now we can calculate the MAPE of our baseline. Our actual values are in the data col-
umn of test, so it will be the first parameter passed to the mape function. Our fore-
casts are in the pred_mean column of test, so it will be our second parameter for the
function:

mape_hist_mean = mape(test['data'], test['pred_mean'])
print(mape_hist_mean)

Running the function gives a MAPE of 70.00%. This means that our baseline deviates
by 70% on average from the observed quarterly EPS of Johnson & Johnson in 1980.

 Let’s visualize our forecasts to better understand our MAPE of 70%.

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.plot(train['date'], train['data'], 'g-.', label='Train')
ax.plot(test['date'], test['data'], 'b-', label='Test')

Listing 2.1 Visualizing our forecasts

MAPE
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ax.plot(test['date'], test['pred_mean'], 'r--', label='Predicted')
ax.set_xlabel('Date')
ax.set_ylabel('Earnings per share (USD)')
ax.axvspan(80, 83, color='#808080', alpha=0.2)
ax.legend(loc=2)

plt.xticks(np.arange(0, 85, 8), [1960, 1962, 1964, 1966, 1968, 1970, 1972, 
1974, 1976, 1978, 1980])

fig.autofmt_xdate()
plt.tight_layout()

In listing 2.1, we use the matplotlib library, which is the most popular library for gen-
erating visualizations in Python, to generate a graph showing the training data, the
forecast horizon, the observed values of the test set, and the predictions for each quar-
ter of 1980. 

 First, we initialize a figure and an ax object. A figure can contain many ax objects,
which allows us to create a figure with two, three, or more plots. In this case, we are
creating a figure with a single plot, so we only need one ax.

 Second, we plot our data on the ax object. We plot the train data using a green
dashed and dotted line and give this curve a label of “Train.” The label will later be
useful for generating a legend for the graph. We then plot the test data and use a blue
continuous line with a label of “Test.” Finally, we plot our predictions using a red
dashed line with a label of “Predicted.”

 Third, we label our x-axis and y-axis and draw a rectangular area to illustrate the
forecast horizon. Since our forecast horizon is the four quarters of 1980, the area should
start at index 80 and end at index 83, spanning the entire year of 1980. Remember that
we obtained the indices of the last quarter of 1980 by running df.tail(), which
resulted in figure 2.5.

We give this area a gray color and specify the opacity using the alpha parameter.
When alpha is 1, the shape is completely opaque; when alpha is 0, it is completely
transparent. In our case, we’ll use an opacity of 20%, or 0.2.

 Then we specify the labels for the ticks on the x-axis. By default, the labels would
show the data for each quarter of the dataset, which would create a crowded x-axis
with unreadable labels. Instead, we’ll display the year every 2 years. To do so, we’ll gen-

Figure 2.5 The last five 
entries of our dataset



22 CHAPTER 2 A naive prediction of the future
erate an array specifying the index at which the label must appear. That’s what
np.arange(0, 81, 8) does: it generates an array starting at 0, finishing at 80, because
the end index (81) is not included, with steps of 8, because there are 8 quarters in 2
years. This will effectively generate the following array: [0,8,16,…72,80]. Then we
specify an array containing the labels at each index, so it must start with 1960 and end
with 1980, just like our dataset.

 Finally, we use fig.automft_xdate() to automatically format the tick labels on the
x-axis. It will slightly rotate them and make sure that they are legible. The final touch-up
is using plt.tight_layout() to remove any excess white space around the figure.

 The end result is figure 2.6. Clearly, this baseline did not yield accurate predic-
tions, since the Predicted line is very far from the Test line. Now we know that our
forecasts are, on average, 70% below the actual EPS for each quarter in 1980. Whereas
the EPS in 1980 was consistently above $10, we predicted only $4.31 for each quarter.

Still, what can we learn from it? Looking at our training set, we can see a positive
trend, as the EPS is increasing over time. This is further supported by the trend com-
ponent coming from the decomposition of our dataset, shown in figure 2.7.

 As you we can see, not only do we have a trend, but the trend is not constant
between 1960 and 1980—it is getting steeper. Therefore, it might be that the EPS
observed in 1960 is not predictive of the EPS in 1980, because we have a positive
trend, and EPS values are increasing with time and are doing so at a faster rate. 

Figure 2.6 Predicting the historical mean as a baseline. You can see that the prediction 
is far from the actual values in the test set. This baseline gives a MAPE of 70%.
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2.3 Forecasting last year’s mean
The lesson learned from the previous baseline is that earlier values do not seem to be
predictive of future values in the long term because of the positive trend component
in our dataset. Earlier values seem to be too small to be representative of the new level
the EPS reaches toward the end of 1979 and onwards into 1980. 

 What if we use the mean of the last year in our training set to forecast the following
year? This means that we would compute the average EPS in 1979 and forecast it for
each quarter of 1980—the more recent values that have increased over time should
potentially be closer to what will be observed in 1980. For now, this is simply a hypoth-
esis, so let’s implement this baseline and test it to see how it performs.

 Our data is already split into test and train sets (done in section 2.2.1), so we can
go ahead and calculate the mean of the last year in the train set, which corresponds to
the last four data points in 1979:

last_year_mean = np.mean(train.data[-4:])   

print(last_year_mean)

This gives us an average EPS of $12.96. Therefore, we will predict that Johnson &
Johnson will have an EPS of $12.96 for the four quarters of 1980. Using the same pro-
cedure that we used for the previous baseline, we’ll create a new pred_last_yr_mean
column to hold the mean of last year as our predictions:

test.loc[:, 'pred__last_yr_mean'] = last_year_mean

Then, using the mape function that we defined earlier, we can evaluate the perfor-
mance of our new baseline. Remember that the first parameter is the observed values,

Can you improve our baseline?
Before moving on to the next section, can you think of a way to improve our baseline
while still using the mean? Do you think that taking the mean of a shorter and more
recent period of time would help (from 1970 to 1979, for example)?  

Figure 2.7 Trend component of our time series. You can see that we have a positive 
trend in our data, as it increases over time.

Compute the average EPS for the four 
quarters of 1979, which are the last 
four data points of the train set.
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which are held in the test set. Then we pass in the predicted values, which are in the
pred_last_yr_mean column:

mape_last_year_mean = mape(test['data'], test['pred__last_yr_mean'])
print(mape_last_year_mean)

This gives us a MAPE of 15.60%. We can visualize our forecasts in figure 2.8.

This new baseline is a clear improvement over the previous one, even though its
implementation is just as simple, as we decreased the MAPE from 70% to 15.6%. This
means that our forecasts deviate from the observed values by 15.6% on average. Using
the last year’s mean is a good step in the right direction. We want to get a MAPE as
close to 0% as possible, since that would translate into predictions that are closer to
the actual values in our forecast horizon. 

 We can learn from this baseline that future values likely depend on past values that
are not too far back in history. This is a sign of autocorrelation, and we will dive deep

Can you recreate figure 2.8? 
As an exercise, try to recreate figure 2.8 to visualize the forecasts using the mean of
the quarters of 1979. The code should be identical to listing 2.1, only this time the
predictions are in a different column.

Figure 2.8 Predicting the mean of the last year in the training set (1979) as a baseline 
model. You can see that the prediction is closer to the actual values of the test set when 
compared to the previous baseline that we built in figure 2.6.
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into this subject in chapter 5. For now, let’s look at another baseline that we could
develop for this situation.

2.4 Predicting using the last known value
Previously we used the mean over different periods to develop a baseline model. So
far, the best baseline has been the mean of the last recorded year in our training set,
since it yielded the lowest MAPE. We learned from that baseline that future values
depend on past values, but not those too far back in time. Indeed, predicting the
mean EPS from 1960 to 1979 yielded worse forecasts than predicting the mean EPS
over 1979. 

 Therefore, we could suppose that using the last known value of the training set as a
baseline model will give us even better forecasts, which would translate to a MAPE
closer to 0%. Let’s test that hypothesis.

 The first step is to extract the last known value of our train set, which corresponds
to the EPS recorded for the last quarter of 1979:

last = train.data.iloc[-1]

print(last)

When we retrieve the EPS recorded for the last quarter of 1979, we get a value of
$9.99. We will thus predict that Johnson & Johnson will have an EPS of $9.99 for the
four quarters of 1980.

 Again, we’ll append a new column called pred_last to hold the predictions.

test.loc[:, 'pred_last'] = last

Then, using the same MAPE function that we defined earlier, we can evaluate the per-
formance of this new baseline model. Again, we pass to the function the actual values
from the test set and our prediction from the pred_last column of test:

mape_last = mape(test['data'], test['pred_last'])

print(mape_last)

This gives us a MAPE of 30.45%. We can visualize the forecasts in figure 2.9.

It seems that our new hypothesis did not improve upon the last baseline that we built,
since we have a MAPE of 30.45%, whereas we achieved a MAPE of 15.60% using the

Can you recreate figure 2.9? 

Try to produce figure 2.9 on your own! As data scientists, it is important for us to con-
vey our results in a way that is accessible to people who do not work in our domain.
Thus, producing plots showing our forecasts is an important skill to develop.
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mean EPS over 1979. Therefore, these new forecasts are farther from the observed val-
ues in 1980.

 This can be explained by the fact that the EPS displays a cyclical behavior, where it
is high during the first three quarters and then falls at the last quarter. Using the last
known value does not take the seasonality into account, so we need to use another
naive forecasting technique to see if we can produce a better baseline.

2.5 Implementing the naive seasonal forecast
We considered the trend component for the first two baselines in this chapter, but we
have not studied another important component from our dataset, which is the sea-
sonal component shown in figure 2.10. There are clear cyclical patterns in our data,
and that is a piece of information that we could use to construct one last baseline: the
naive seasonal forecast.

Figure 2.9 Predicting the last known value of the train set as a baseline model. We 
can see that this baseline, with a MAPE of 30.45%, is better than our first baseline, but 
less performant than our second one.

Figure 2.10 Seasonal component of our time series. We can see periodic fluctuations 
here, which indicate the presence of seasonality.
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The naive seasonal forecast takes the last observed cycle and repeats it into the future.
In our case, a full cycle occurs in four quarters, so we will take the EPS from the first
quarter of 1979 and predict that value for the first quarter of 1980. Then we’ll take the
EPS from the second quarter of 1979 and predict that value for the second quarter of
1980. This process will be repeated for the third and fourth quarters.

 In Python, we can implement this baseline by simply taking the last four values of
the train set, which correspond to the four quarters of 1979, and assigning them to the
corresponding quarters in 1980. The following code appends the pred_last_season col-
umn to hold our predictions from the naive seasonal forecast method:

test.loc[:, 'pred_last_season'] = train['data'][-4:].values    

Then we calculate the MAPE the same way we did in the previous sections:

mape_naive_seasonal = mape(test['data'], test['pred_last_season'])

print(mape_naive_seasonal)

This gives us a MAPE of 11.56%, which is the lowest MAPE from all the baselines in
this chapter. Figure 2.11 illustrates our forecast compared to the observed data in the
test set. As an exercise, I strongly suggest that you try to recreate it on your own.

Our predictions are the last four values of our train
set, which correspond to the quarters of 1979.

Figure 2.11 Result of the naive seasonal forecast on the test set. This forecast is more 
similar to the data observed in the test set, and it resulted in the lowest MAPE. Clearly, 
the seasonality of this dataset has an impact on future values, and it must be considered 
when forecasting.
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As you can see, our naive seasonal forecast resulted in the lowest MAPE of all the base-
lines we built in this chapter. This means that seasonality has a significant impact on
future values, since repeating the last season into the future yields fairly accurate fore-
casts. Intuitively, this makes sense, because we can clearly observe a cyclical pattern
being repeated every year in figure 2.11. Seasonal effects will have to be considered
when we develop a more complex forecasting model for this problem. I will explain in
detail how to account for them in chapter 8. 

2.6 Next steps
In this chapter, we developed four different baselines for our forecasting project.
We used the arithmetic mean of the entire training set, the mean of the last year in
the train set, the last known value of the train set, and a naive seasonal forecast.
Each baseline was then evaluated on a test set using the MAPE metric. Figure 2.12
summarizes the MAPE of each baseline we developed in this chapter. As you can see,
the baseline using the naive seasonal forecast has the lowest MAPE, and therefore
the best performance. 

Keep in mind that a baseline model serves as a basis for comparison. We will develop
more complex models by applying statistical learning or deep learning techniques,
and when we evaluate our more complex solutions against the test set and record
our error metrics, we can compare them to those of the baseline. In our case, we’ll
compare the MAPE from a complex model against the MAPE of our naive seasonal

Figure 2.12 The MAPE of the four baselines developed in this chapter. The lower the 
MAPE, the better the baseline; therefore, we’ll choose the naive seasonal baseline as our 
benchmark and compare it to our more complex models.
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forecast. If the MAPE of a complex model is lower than 11.56%, then we’ll know that
we have a better-performing model. 

 There will be special situations in which a time series can only be forecast using
naive methods. These are special cases where the process moves at random and can-
not be predicted using statistical learning methods. This means that we are in the
presence of a random walk—we’ll examine this in the next chapter.

Summary
 Time series forecasting starts with a baseline model that serves as a benchmark

for comparison with more complex models.
 A baseline model is a trivial solution to our forecasting problem because it only

uses heuristics, or simple statistics, such as the mean.
 MAPE stands for mean absolute percentage error, and it is an intuitive measure of

how much a predicted value deviates from the actual value.
 There are many ways to develop a baseline. In this chapter, you saw how to use

the mean, the last known value, or the last season.



Going on a random walk
In the previous chapter, we compared different naive forecasting methods and
learned that they often serve as benchmarks for more sophisticated models. How-
ever, there are instances where the simplest methods will yield the best forecasts.
This is the case when we face a random walk process.

 In this chapter, you will learn what a random walk process is, how to recognize
it, and how to make forecasts using random walk models. Along the way, we will
look at the concepts of differencing, stationarity, and white noise, which will come
back in later chapters as we develop more advanced statistical learning models.

 For this chapter’s examples, suppose that you want to buy shares of Alphabet
Inc. (GOOGL). Ideally, you would want to buy if the closing price of the stock is

This chapter covers
 Identifying a random walk process

 Understanding the ACF function

 Classifying differencing, stationarity, and white 
noise

 Using the ACF plot and differencing to identify 
a random walk

 Forecasting a random walk 
30



313.1 The random walk process
expected to go up in the future; otherwise, your investment will not be profitable.
Hence, you decide to collect data on the daily closing price of GOOGL over 1 year
and use time series forecasting to determine the future closing price of the stock. The
closing price of GOOGL from April 27, 2020, to April 27, 2021, is shown in figure 3.1.
At the time of writing, data beyond April 27, 2021, was not available yet.

In figure 3.1 you can clearly see a long-term trend, since the closing price increased
between April 27, 2020, and April 27, 2021. However, there are also abrupt changes in
the trend, with periods where it sharply decreases before suddenly increasing again.

 It turns out that the daily closing price of GOOGL can be modeled using the ran-
dom walk model. To do so, we will first determine whether our process is stationary or
not. If it is a non-stationary process, we will have to apply transformations, such as dif-
ferencing, in order to make it stationary. Then we will be able to use the autocorrelation
function plot to conclude that the daily closing price of GOOGL can be approximated
by the random walk model. Both differencing and the autocorrelation plot will be cov-
ered in this chapter. Finally, we’ll wrap up the chapter with forecasting methods that
attempt to predict the future closing price of GOOGL.

 By the end of this chapter, you will have mastered the concepts of stationarity, differ-
encing, and autocorrelation, which will return in later chapters as we further develop
our forecasting skills. For now, let’s focus on defining the random walk process.

3.1 The random walk process
A random walk is a process in which there is an equal chance of going up or down by a
random number. This is usually observed in financial and economic data, like the

Figure 3.1 Daily closing price of GOOGL from April 27, 2020, to April 27, 2021
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daily closing price of GOOGL. Random walks often expose long periods where a posi-
tive or negative trend can be observed. They are also often accompanied by sudden
changes in direction.

 In a random walk process, we say that the present value yt is a function of the value
at the previous timestep yt –1, a constant C, and a random number ϵt, also termed white
noise. Here, ϵt is the realization of the standard normal distribution, which has a vari-
ance of 1 and a mean of 0.

 Therefore, we can mathematically express a random walk with the following equa-
tion, where yt is the value at the present time t, C is a constant, yt –1 is the value at the
previous timestep t–1, and ϵt is a random number.

                  yt = C + yt–1 + ϵt Equation 3.1

Note that if the constant C is nonzero, we designate this process as a random walk with
drift. 

3.1.1 Simulating a random walk process

To help you understand the random walk process, let’s simulate one with Python—
that way you can understand how a random walk behaves, and we can study its proper-
ties in a purely theoretical scenario. Then we’ll transpose our knowledge onto our
real-life example, where we’ll model and forecast the closing price of GOOGL.

 From equation 3.1, we know that a random walk depends on its previous value yt –1
plus white noise ϵt and some constant C. To simplify our simulation, let’s assume that
the constant C is 0. That way, our simulated random walk can be expressed as

                 yt = yt –1 + ϵt Equation 3.2

Now we must choose the first value of our simulated sequence. Again, for simplifica-
tion, we will initialize our sequence at 0. This will be the value of y0. 

 We can now start building our sequence using equation 3.2. We’ll start off with our
initial value of 0 at time t = 0. Then, from equation 3.2, the value at t = 1, represented
by y1 will be equal to the previous value y0 plus white noise.

y0 = 0

                y1 = y0 + ϵ1 = 0 + ϵ1 = ϵ1 Equation 3.3

The value at t = 2, denoted as y2, will be equal to the value at the previous step, which
is y1, plus some white noise.

y1 = ϵ1

                y2 = y1 + ϵ2 = ϵ1 + ϵ2 Equation 3.4
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Then the value at t = 3, denoted as y2, will be equal to the value at the previous step,
which is y2, plus some white noise.

y2 = ϵ1 + ϵ2

               y3 = y2 + ϵ3 = ϵ1 + ϵ2 + ϵ3 Equation 3.5

Looking at equation 3.5, you should start seeing a pattern. By initializing our random
walk process at 0 and setting the constant C to 0, we determine that the value at time t
is simply the sum of white noise from t = 1 to time t. Thus, our simulated random walk
will respect the equation 3.6, where yt is the value of the random walk process at time
t, and ϵt is a random number at time t.

                  Equation 3.6

Equation 3.6 establishes that at any point in time t, the value of our simulated time
series will be the cumulative sum of a series of random numbers. We can visualize how
our simulated random walk takes shape in figure 3.2.

We are now ready to simulate our random process using Python. In order for this
exercise to be reproducible, we will need to set a seed, which is an integer that we pass
to the random.seed method. That way, no matter how many times we run the code,
the same random numbers will be generated. This ensures that you will obtain the
same results and plot as outlined in this chapter.

NOTE At any time, you can refer to the source code for this chapter here: https://
github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH03.

Then we must decide on the length of our simulated process. For this exercise, we will
generate 1,000 samples. The numpy library allows us to generate numbers from a nor-
mal distribution by using the standard_normal method. This ensures that the num-
bers come from a distribution with mean of 0, as per the definition of white noise;
I’ve also given it a variance of 1 (a normal distribution). Then we can set the very
first value of our series to 0. Finally, the cumsum method will calculate the cumulative

t = 0

0

t = 1

0 + �1 0 + +�1 �2 0 + +�1 �t�2+ �3

t = 2 t = 3 t T=

T

t = 1

∑

...

Simulated random walk

Figure 3.2 Visualizing the construction of our simulated random walk. As you can see, our 
initial value is 0. Then, since the constant was also set to 0, the value of our random walk at 
any point in time is simply the cumulative sum of random numbers, or white noise.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH03
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH03
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH03
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sum of white noise for each timestep in our series, and we will have simulated our ran-
dom walk:

import numpy as np

np.random.seed(42)    

steps = np.random.standard_normal(1000)       
steps[0]=0      

random_walk = np.cumsum(steps)    

We can plot our simulated random walk and see what it looks like. Since our x-axis
and y-axis do not have a real-life meaning, we will simply label them as “timesteps” and
“value,” respectively. The following code block generates figure 3.3:

fig, ax = plt.subplots()

ax.plot(random_walk)
ax.set_xlabel('Timesteps')
ax.set_ylabel('Value')

plt.tight_layout()

You can see the defining characteristics of a random walk in figure 3.3. You’ll notice a
positive trend over the first 400 timesteps, followed by a negative trend, and a sharp

Set the random seed. This is 
done by passing an integer, 
in this case 42. 

Generate 1,000 random 
numbers from a normal 
distribution with a mean 
of 0 and variance of 1.

Initialize the 
first value of 
the series to 0.

Calculate the cumulative sum of errors for
each timestep in the simulated process.

Figure 3.3 A simulated random walk. Notice how we have a positive trend during the 
first 400 timesteps, followed by a negative trend, and a sharp increase toward the end. 
These are good hints that we have a random walk process.
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increase toward the end. Therefore, we have both sudden changes and long periods
where a trend is observed.

 We know this is a random walk because we simulated it. However, when dealing
with real-life data, we need to find a way to identify whether our time series is a ran-
dom walk or not. Let’s see how we can achieve this.

3.2 Identifying a random walk
To determine if our time series can be approximated as a random walk or not, we
must first define a random walk. In the context of time series, a random walk is defined
as a series whose first difference is stationary and uncorrelated. 

I’ve just introduced a lot of new concepts in a single sentence, so let’s break down the
steps to identify a random walk into a process. The steps are outlined in figure 3.4.

Random walk
A random walk is a series whose first difference is stationary and uncorrelated. 

This means that the process moves completely at random.

Gather data

Is it stationary?
Apply

transformations

Plot ACF

Is there

autocorrelation?

Not a random walk

Yes

Yes

No

No It is a random walk.

Figure 3.4 Steps to follow to identify 
whether time series data can be 
approximated as a random walk or not. 
The first step is naturally to gather the 
data. Then we test for stationarity. If it is 
not stationary, we apply transformations 
until stationarity is achieved. Then we can 
plot the autocorrelation function (ACF). If 
there is no autocorrelation, we have a 
random walk. 
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In the following subsections, we will cover the concepts of stationarity and autocor-
relation in detail.

3.2.1 Stationarity

A stationary time series is one whose statistical properties do not change over time. In
other words, it has a constant mean, variance, and autocorrelation, and these proper-
ties are independent of time. 

 Many forecasting models assume stationarity. The moving average model (chap-
ter 4), autoregressive model (chapter 5), and autoregressive moving average model
(chapter 6) all assume stationarity. These models can only be used if we verify that the
data is indeed stationary. Otherwise, the models will not be valid, and the forecasts will
not be reliable. Intuitively, this makes sense, because if the data is non-stationary, its
properties are going to change over time, which would mean that our model parame-
ters must also change through time. This means that we cannot possibly derive a func-
tion of future values as a function of past values, since the coefficients change at each
point in time, making forecasting unreliable. 

 We can view stationarity as an assumption that can make our lives easier when fore-
casting. Of course, we will rarely see a stationary time series in its original state
because we are often interested in forecasting processes with a trend or with seasonal
cycles. This is when models like ARIMA (chapter 7) and SARIMA (chapter 8) come
into play.

For now, since we are still in the early stages of time series forecasting, we’ll focus on
stationary time series, which means that we will need to find ways to transform our time
series to make them stationary. A transformation is simply a mathematical manipula-
tion of the data that stabilizes its mean and variance, thus making it stationary. 

 The simplest transformation one can apply is differencing. This transformation
helps stabilize the mean, which in turn removes or reduces the trend and seasonality
effects. Differencing involves calculating the series of changes from one timestep to
another. To accomplish that, we simply subtract the value of the previous timestep yt–1
from the value in the present yt to obtain the differenced value y't.

                 Equation 3.7

Stationarity
A stationary process is one whose statistical properties do not change over time. 

A times series is said to be stationary if its mean, variance, and autocorrelation do
not change over time.
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Figure 3.5 illustrates the process of differencing. Notice that taking the difference
makes us lose one data point, because at the initial point in time, we cannot take the
difference with its previous step, since t = –1 does not exist.

It is possible to difference a time series many times. Taking the difference once is
applying a first-order differencing. Taking it a second time would be a second-order differ-
encing. It is often not necessary to difference more than twice to obtain a stationary
series.

 While differencing is used to obtain a constant mean through time, we must also
make sure we have a constant variance in order for our process to be stationary. Loga-
rithms are used to help stabilize the variance.

Transformation in time series forecasting
A transformation is a mathematical operation applied to a time series in order to
make it stationary. 

Differencing is a transformation that calculates the change from one timestep to
another. This transformation is useful for stabilizing the mean.

Applying a log function to the series can stabilize its variance.

y0 y1 y2 y3

– y'1 y'2 y'3

t =0 t =1 t =2 t =3

t =0 t =1 t =2 t =3

y1 – y0 y2 – y1 y3 – y2

Original

Result

First-order

differencing

Figure 3.5 Visualizing the differencing transformation. Here, a first-order differencing 
is applied. Notice how we lose one data point after this transformation because the 
initial point in time cannot be differenced with previous values since they do not exist.



38 CHAPTER 3 Going on a random walk
 Keep in mind that when we model a time series that has been transformed, we
must untransform it to return the results of the model to the original units of measure-
ment. The formal term for undoing a transformation is inverse transform. Therefore, if
you apply a log transformation to your data, make sure you raise your forecast values
to the power of 10 in order to bring the values back to their original magnitude. That
way, your predictions will make sense in their original context. 

 Now that we know what type of transformations we need to apply on a time series
to make it stationary, we need to find a way to test whether a series is stationary or not.

3.2.2 Testing for stationarity

Once a transformation is applied to a time series, we need to test for stationarity to
determine if we need to apply another transformation to make the time series station-
ary, or if we need to transform it at all. A common test is the augmented Dickey-Fuller
(ADF) test.

 The ADF test verifies the following null hypothesis: there is a unit root present in a
time series. The alternative hypothesis is that there is no unit root, and therefore the
time series is stationary. The result of this test is the ADF statistic, which is a negative
number. The more negative it is, the stronger the rejection of the null hypothesis. In
its implementation in Python, the p-value is also returned. If its value is less than 0.05,
we can also reject the null hypothesis and say the series is stationary.

Let’s consider a very simple time series where the present value yt only depends on its
past value yt –1 subject to a coefficient α1, a constant C, and white noise ϵt. We can write
the following general expression:

                     yt = C + α1yt –1 + ϵt Equation 3.8

In equation 3.8, ϵt represents some error that we cannot predict, and C is a constant.
Here, α1 is the root of the time series. This time series will be stationary only if the
root lies within the unit circle. Therefore, its value must be between –1 and 1. Other-
wise the series is non-stationary.

 Let’s verify this by simulating two different series. One will be stationary and the
other will have a unit root, meaning that it will not be stationary. The stationary pro-
cess follows equation 3.9, and the non-stationary process follows equation 3.10.

Augmented Dickey-Fuller (ADF) test
The augmented Dickey-Fuller (ADF) test helps us determine if a time series is station-
ary by testing for the presence of a unit root. If a unit root is present, the time series
is not stationary.

The null hypothesis states that a unit root is present, meaning that our time series
is not stationary.
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yt = 0.5yt –1 + ϵt Equation 3.9

  yt = yt –1 + ϵt Equation 3.10

In equation 3.9, the root of the series is 0.5. Since it is between –1 and 1, this series is
stationary. On the other hand, in equation 3.10, the root of the series is 1, meaning
that it is a unit root. Therefore, we expect this series to be non-stationary.

 By looking at both series in figure 3.6, we can gain some intuition about how sta-
tionary and non-stationary series evolve through time. We can see that the non-station-
ary process has long periods of positive and negative trends. However, the stationary
process does not seem to increase or decrease over the long term. This high-level
qualitative analysis can help us intuitively determine if a series is stationary or not.

A stationary series has constant properties over time, meaning that the mean and vari-
ance are not a function of time, so let’s plot the mean of each series over time. The
mean of a stationary process should be flat over time, whereas the mean of a non-
stationary process should vary. 

 As you can see in figure 3.7, the mean of the stationary process becomes constant
after the first few timesteps. This is the expected behavior of a stationary process. The
fact that the mean does not change as a function of time means that it is independent
of time, as per the definition of a stationary process. However, the mean of the non-
stationary process is clearly a function of time, as we can see it decreasing and increasing

Figure 3.6 Simulated stationary and non-stationary time series over 400 timesteps. You 
can see that the stationary series does not increase or decrease over the long term. 
However, the non-stationary process has long periods of positive and negative trends.
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again over time. Thus, the presence of a unit root makes the mean of the series
dependent on time, so the series is not stationary.

 Let’s further prove to ourselves that a unit root is a sign of non-stationarity by plot-
ting the variance of each series over time. Again, a stationary series will have a con-
stant variance over time, meaning that it is time independent. On the other hand, the
non-stationary process will have a variance that changes over time.

 In figure 3.8 we can see that after the first few timesteps the variance of the station-
ary process is constant over time, which follows equation 3.9. Again, this corresponds
to the definition of a stationary process, since variance does not depend on time. On
the other hand, the process with a unit root has a variance that depends on time, since
it greatly varies over the 400 timesteps. Therefore, this series is not stationary.

 By now, you should be convinced that a series with a unit root is not a stationary
series. In both figures 3.7 and 3.8, the mean and variance were dependent on time, as
their values kept changing. Meanwhile, the series with a root of 0.5 displayed a con-
stant mean and variance over time, demonstrating that this series is indeed stationary.

 All these steps were performed to justify the use of the augmented Dickey-Fuller
(ADF) test. We know that the ADF test verifies the presence of a unit root in the series.
The null hypothesis, stating that a unit root is present, means that the series is not sta-
tionary. If the test returns a p-value less than a certain significance level, typically 0.05
or 0.01, then we can reject the null hypothesis, meaning that there are no unit roots,
and so the series is stationary.

Figure 3.7 Mean of stationary and non-stationary processes over time. You can see 
how the mean of the stationary process becomes constant after the first few timesteps. 
On the other hand, the mean of the non-stationary process is a clear function of time, 
as it is constantly changing.
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Once we have a stationary series, we must determine whether there is autocorrelation or
not. Remember that a random walk is a series whose first difference is stationary and
uncorrelated. The ADF test takes care of the stationarity portion, but we’ll need to use
the autocorrelation function to determine if the series is correlated or not.

3.2.3 The autocorrelation function

Once a process is stationary, plotting the autocorrelation function (ACF) is a great way
to understand what type of process you are analyzing. In this case, we will use it to
determine if we are studying a random walk or not.

 We know that correlation measures the extent of a linear relationship between two
variables. Autocorrelation therefore measures the linear relationship between lagged
values of a time series. Thus, the ACF reveals how the correlation between any two val-
ues changes as the lag increases. Here, the lag is simply the number of timesteps sepa-
rating two values.

Autocorrelation function
The autocorrelation function (ACF) measures the linear relationship between lagged
values of a time series.

In other words, it measures the correlation of the time series with itself.

Figure 3.8 Variance of the simulated stationary and non-stationary series over time. 
The variance of the stationary process is independent of time, as it is constant after the 
first few timesteps. For the non-stationary process, the variance changes over time, 
meaning that it is not independent.
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For example, we can calculate the autocorrelation coefficient between yt and yt–1. In
this case, the lag is equal to 1, and the coefficient would be denoted as r1. Similarly, we
can calculate the autocorrelation between yt and yt–2. Then the lag would be 2, and
the coefficient would be denoted as r2. When we plot the ACF function, the coeffi-
cient is the dependent variable, while the lag is the independent variable. Note that
the autocorrelation coefficient at lag 0 will always be equal to 1. This makes sense intu-
itively, because the linear relationship between a variable and itself at the same time-
step should be perfect, and therefore equal to 1.

 In the presence of a trend, a plot of the ACF will show that the coefficients are
high for short lags, and they will decrease linearly as the lag increases. If the data is
seasonal, the ACF plot will also display cyclical patterns. Therefore, plotting the ACF
function of a non-stationary process will not give us more information than is available
by looking at the evolution of our process through time. However, plotting the ACF
for a stationary process can help us identify the presence of a random walk.

3.2.4 Putting it all together

Now that you understand what stationarity is, how to transform a time series to make it
stationary, what statistical test can be used to assess stationarity, and how plotting the
ACF function can help you identify the presence of a random walk, we can put all
these concepts together and apply them in Python. In this section, we will work with
our simulated data (from section 3.1.1) and cover the necessary steps to identify a ran-
dom walk.

 The first step is to determine whether our random walk is stationary or not. We
know that since there are visible trends in our sequence, it is not stationary. Neverthe-
less, let’s apply the ADF test to make sure. We will use the statsmodels library, which
is a Python library that implements many statistical models and tests. To run the ADF
test, we simply pass it our array of simulated data. The result is a list of different values,
but we are mainly interested in the first two: the ADF statistic and the p-value.

from statsmodels.tsa.stattools import adfuller

ADF_result = adfuller(random_walk)    

print(f'ADF Statistic: {ADF_result[0]}')     
print(f'p-value: {ADF_result[1]}')    

This prints an ADF statistic of –0.97 and a p-value of 0.77. The ADF statistic is not a
large negative number, and with a p-value greater than 0.05, we cannot reject the null
hypothesis stating that our time series is not stationary. We can further support our
conclusion by plotting the ACF function.

 The statsmodels library conveniently has a function to quickly plot the ACF.
Again, we can simply pass it our array of data. We can optionally specify the number of

Pass the simulated random 
walk to the adfuller function.

Retrieve the ADF statistic, which is 
the first value in the list of results.

Retrieve the p-value, which is the 
second value in the list of results.
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lags, which will determine the range on the x-axis. In this case, we will plot the first 20
lags, but feel free to plot as many lags as you wish. 

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(random_walk, lags=20); 

The output is shown in figure 3.9.

In figure 3.9 you’ll notice how the autocorrelation coefficients slowly decrease as the
lag increases, which is a clear indicator that our random walk is not a stationary pro-
cess. Note that the shaded area represents a confidence interval. If a point is within
the shaded area, then it is not significantly different from 0. Otherwise, the autocor-
relation coefficient is significant. 

 Because our random walk is not stationary, we need to apply a transformation to
make it stationary in order to retrieve useful information from the ACF plot. Since our
sequence mostly displays changes in the trend without seasonal patterns, we will apply
a first-order differencing. Remember that we’ll lose the first data point every time we
difference.

 To difference, we will use the numpy method diff. This will difference a given array
of data. The n parameter controls how many times the array must be differenced. To
apply a first-order differencing, the n parameter must be set to 1:

diff_random_walk = np.diff(random_walk, n=1)

Figure 3.9 Plot of the ACF of our simulated random walk. Notice how the 
autocorrelation coefficients slowly decrease. Even at lag 20, the value is still 
autocorrelated, which means that our random walk is not stationary at the moment.
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We can visualize the differenced simulated random walk in figure 3.10.

As you can see in figure 3.10, we have removed the trend from our series. Furthermore,
the variance looks quite stable. Let’s test for stationarity again, using the ADF test:

ADF_result = adfuller(diff_random_walk)     

print(f'ADF Statistic: {ADF_result[0]}')
print(f'p-value: {ADF_result[1]}')

This prints out an ADF statistic of –31.79 with a p-value of 0. This time the ADF statistic is
a large negative number, and the p-value is less than 0.05. Therefore, we reject the null
hypothesis, and we can say that this process has no unit root and is thus stationary.

 We can now plot the ACF function of our newly stationary series: 

plot_acf(diff_random_walk, lags=20);

Looking at figure 3.11, you’ll notice that there are no significant autocorrelation coef-
ficients after lag 0. This means that the stationary process is completely random and
can therefore be described as white noise. Each value is simply a random step away
from the previous one, with no relation between them. 

 We have demonstrated that our simulated data is indeed a random walk: the series
is stationary and uncorrelated after a first-order differencing, which corresponds to
the definition of a random walk.

Figure 3.10 Evolution of our differenced random walk. It seems that we successfully 
removed the trend and that the variance is stable.

Here we pass in 
our differenced 
random walk.
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3.2.5 Is GOOGL a random walk?

We’ve applied the necessary steps to identify a random walk on our simulated data, so
this is a great time to test our knowledge and new skills on a real-life dataset. Taking the
closing price of GOOGL from April 27, 2020, to April 27, 2021, from finance.yahoo.com,
let’s determine whether the process can be approximated as a random walk or not. 

 You can load the data in a DataFrame using the read_csv method from pandas:

df = pd.read_csv('data/GOOGL.csv')

Hopefully, your conclusion is that the closing price of GOOGL is indeed a random
walk process. Let’s see how we arrive at this conclusion. For visualization purposes,
let’s quickly plot our data, which results in figure 3.12:

fig, ax = plt.subplots()

ax.plot(df['Date'], df['Close'])
ax.set_xlabel('Date')
ax.set_ylabel('Closing price (USD)')

plt.xticks(
    [4, 24, 46, 68, 89, 110, 132, 152, 174, 193, 212, 235], 
    ['May', 'June', 'July', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 2021, 'Feb',

➥ 'Mar', 'April']  

fig.autofmt_xdate()
plt.tight_layout()

Figure 3.11 An ACF plot of our differenced random walk. Notice how there are no 
significant coefficients after lag 0. This is a clear indicator that we are dealing with 
a random walk.

Nicely label the 
ticks on the x-axis.

finance.yahoo.com
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Looking at figure 3.12, we can see a trend in the data as the closing price is increasing
over time; therefore, we do not have a stationary process. This is further supported by
the ADF test: 

GOOGL_ADF_result = adfuller(df['Close'])

print(f'ADF Statistic: {GOOGL_ADF_result[0]}')
print(f'p-value: {GOOGL_ADF_result[1]}')

This returns an ADF statistic of 0.16 and a p-value greater than 0.05, so we know that
our data is not stationary. Hence, we will difference our data to see if that makes it
stationary:

diff_close = np.diff(df['Close'], n=1)

Next, we can run the ADF test on the differenced data:

GOOGL_diff_ADF_result = adfuller(diff_close)

print(f'ADF Statistic: {GOOGL_diff_ADF_result[0]}')
print(f'p-value: {GOOGL_diff_ADF_result[1]}')

This gives an ADF statistic of –5.3 and a p-value smaller than 0.05, meaning that we
have a stationary process.

 Now we can plot the ACF function and see if there is autocorrelation:

plot_acf(diff_close, lags=20);

Figure 3.12 Closing price of GOOGL from April 27, 2020, to April 27, 2021
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Figure 3.13 might make you scratch your head and wonder if there is autocorrelation
or not. We do not see any significant coefficients, except at lags 5 and 18. This situa-
tion can arise sometimes, and it is due to chance only. In such a situation, we can
safely assume that the coefficients at lags 5 and 18 are not significant, because we do
not have consecutive significant coefficients. It just happened by chance that the dif-
ferenced values are slightly correlated with the ones at lags 5 and 18.

Therefore, we can conclude that the closing price of GOOGL can be approximated by
a random walk process. Taking the first difference makes the series stationary, and its
ACF plot shows no autocorrelation, meaning that it is purely random.

3.3 Forecasting a random walk
Now that we know what a random walk is and how to identify one, we can start fore-
casting. This might sound surprising, since we established that a random walk takes
random steps as time progresses. 

 Predicting a random change is impossible, unless we predict a random value our-
selves, which is not ideal. In this case, we can only use naive forecasting methods, or
baselines, which we covered in chapter 2. Since the values change randomly, no statis-
tical learning model can be applied. Instead, we can only reasonably predict the his-
torical mean, or the last value. 

Figure 3.13 We can see that there are no significant coefficients in the ACF plot. 
You might notice that at lags 5 and 18 the coefficients are significant, while the 
others are not. This happens by chance with some data, and these points can be 
assumed to be non-significant, because we do not have consecutive significant 
coefficients between lags 0 and 5 or lags 0 and 18.
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 Depending on the use case, your forecasting horizon will vary. Ideally, when deal-
ing with a random walk, you will only forecast the next timestep. However, you may be
required to forecast many timesteps into the future. Let’s look at how to tackle each of
these situations.

3.3.1 Forecasting on a long horizon

In this section, we’ll forecast a random walk on a long horizon. This is not an ideal
case—a random walk can unexpectedly increase or decrease because past observa-
tions are not predictive of changes in the future. Here we’ll continue working with
our simulated random walk from section 3.1.1.

 To make things easier, we will assign the random walk to a DataFrame and split the
dataset into train and test sets. The train set will contain the first 800 timesteps, which cor-
responds to 80% of the simulated data. The test set will thus contain the last 200 values:

import pandas as pd

df = pd.DataFrame({'value': random_walk})    

train = df[:800]     
test = df[800:]   

Figure 3.14 illustrates our split. Using the train set, we must now predict the next 200
timesteps in the test set.

Assign the simulated random walk 
to a DataFrame. It will contain a 
single column called value.

The first 80% of the data is assigned to the train set. 
Since we have 1,000 timesteps, 80% of our simulated 
data corresponds to the values up to index 800.Assign the last 20% of the

simulated random walk
to the test set.

Figure 3.14 The train/test split of our generated random walk. The first 800 timesteps 
are part of the train set, and the remaining values are part of the test set. Our goal is to 
forecast the values in the shaded area.
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As mentioned, we can only use naive forecasting methods for this situation, since we
are dealing with a random walk. In this case, we will use the historical mean, the last
known value, and the drift method.

 Forecasting the mean is fairly straightforward. We’ll simply calculate the mean of
the train set and say that the next 200 timesteps will be equal to that value. Here, we’ll
create a new column pred_mean that will hold the historical mean as a prediction:

mean = np.mean(train.value)    

test.loc[:, 'pred_mean'] = mean    

test.head()  

You will get a historical mean of –3.68. This means that we’ll forecast that the next 200
timesteps of our simulated random walk will have a value of –3.68.

 Another possible baseline is to predict the last known value of the train set. Here,
we’ll simply extract the last value of the train set and assign its value as our prediction
for the next 200 timesteps:

last_value = train.iloc[-1].value     
test.loc[:, 'pred_last'] = last_value    

test.head()

This method yields forecasts with a constant value of –6.81.
 Finally, we’ll apply the drift method, which we have not covered yet. The drift

method is a modification of predicting the last known value. In this case, we allow the
values to increase or decrease over time. The rate at which values will change in the
future is equal to that seen in the train set. Therefore, it is equivalent to calculating
the slope between the first and last value of the train set and simply extrapolating this
straight line into the future.

 Remember that we can calculate the slope of a straight line by dividing the change
in the y-axis by the change in the x-axis. In our case, the change in the y-axis is the dif-
ference between the last value of our random walk yf and its initial value yi. Then, the
change in the x-axis is equivalent to the number of timesteps minus 1, as shown in
equation 3.11.

Equation 3.11

We calculated the last value of the train set when we implemented the last known value
baseline, and we know that the initial value of our simulated random walk is 0; therefore,
we can plug the numbers into equation 3.11 and calculate the drift in equation 3.12.

Equation 3.12

Calculate the mean 
of the train set.

Predict the historical 
mean for the next 200 
timesteps.

Show the first five 
rows of test.

Retrieve the last 
value of the train set.

Assign the last value as a prediction 
for the next 200 timesteps under 
the pred_last column.



50 CHAPTER 3 Going on a random walk
Let’s implement this in Python now. We will calculate the change in the x-axis and the
y-axis, and simply divide them to obtain the drift:

deltaX = 800 – 1     
deltaY = last_value – 0      

drift = deltaY / deltaX    

print(drift)

As expected, this gives us a drift of –0.0085, which means that the values of our fore-
casts will slowly decrease over time. The drift method simply states that the value of
our forecast is linearly dependent on the timestep, the value of the drift, and the ini-
tial value of our random walk, as expressed in equation 3.13. Keep in mind that our
random walk starts at 0, so we can remove that from equation 3.13.

forecast = drift × timestep + yi

                   forecast = drift × timestep Equation 3.13

Since we want to forecast the next 200 timesteps following the train set, we’ll first cre-
ate an array containing the range of timesteps starting at 800 and ending at 1000 with
a step of 1. Then we simply multiply each timestep by the drift to get our forecast val-
ues. Finally, we assign them to the pred_drift column of test:

x_vals = np.arange(800, 1001, 1)    

pred_drift = drift * x_vals   

test.loc[:, 'pred_drift'] = pred_drift   

test.head()

With all three methods, we can now visualize what our forecasts look like against the
actual values of the test set:

fig, ax = plt.subplots()

ax.plot(train.value, 'b-')   
ax.plot(test['value'], 'b-')      
ax.plot(test['pred_mean'], 'r-.', label='Mean')    
ax.plot(test['pred_last'], 'g--', label='Last value')     
ax.plot(test['pred_drift'], 'k:', label='Drift')    

Calculate the change in the x-axis, which is the difference 
between the last index (799) and first index (0). It is 
equivalent to the number of timesteps minus 1.

Calculate the difference between the last and 
initial values of the simulated random walk in 
the train set. Recall that the last value of the 
train set is in the last_value variable from the 
previous baseline we implemented.Calculate the

drift according to
equation 3.11.

Create a list containing the range of timesteps 
starting at 800 and ending at 1000 with a step of 1.

Multiply each timestep by the 
drift to get the forecast value 
at each timestep.

Assign our forecast values to
the pred_drift column.

Plot the values in the train set. Plot the 
observed 
values in 
the test set.

Plot the forecast from the 
historical mean. It will be a 
red dotted and dashed line.

Plot the forecast 
from the last value 
of train set. It will 
be a green dashed 
line.

Plot the forecast using the drift method. It will be a black dotted line.
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ax.axvspan(800, 1000, color='#808080', alpha=0.2)   
ax.legend(loc=2)     

ax.set_xlabel('Timesteps')
ax.set_ylabel('Value')

plt.tight_layout()

As you can see in figure 3.15, our forecasts are faulty. They all fail to predict the sud-
den increase observed in the test set, which makes sense, because the future change in
a random walk is completely random, and therefore unpredictable.

We can further demonstrate that by calculating the mean squared error (MSE) of our
forecasts. We cannot use the MAPE, as in chapter 2, because our random walk can take
the value 0—it is impossible to calculate the percentage difference from an observed
value of 0 because that implies a division by 0, which is not allowed in mathematics. 

 Therefore, we opt for the MSE, as it can measure the quality of the fit of a model,
even if the observed value is 0. The sklearn library has a mean_squared_error func-
tion that simply needs the observed and predicted values. It will then return the MSE. 

from sklearn.metrics import mean_squared_error

mse_mean = mean_squared_error(test['value'], test['pred_mean'])
mse_last = mean_squared_error(test['value'], test['pred_last'])
mse_drift = mean_squared_error(test['value'], test['pred_drift'])

print(mse_mean, mse_last, mse_drift)

Shade the 
forecast 
horizon.Place the legend 

in the upper-left 
corner.

Figure 3.15 Forecasting our random walk using the mean, last known value, and 
drift methods. As you can see, all predictions are fairly poor and fail to predict the 
sudden increase observed in the test set.
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You will obtain an MSE of 327, 425, and 466 for the historical mean, last value, and
drift methods, respectively. We can compare the MSEs for these three baselines in fig-
ure 3.16.

As you can see in figure 3.16, the best forecast was obtained by predicting the histori-
cal mean, and yet the MSE exceeds 300. This is an extremely high value considering
that our simulated random walk does not exceed the value of 30. 

 By now, you should be convinced that forecasting a random walk on a long hori-
zon does not make sense. Since the future value is dependent on the past value plus a
random number, the randomness portion is magnified in a long horizon where many
random numbers are added over the course of many timesteps.

3.3.2 Forecasting the next timestep

Forecasting the next timestep of a random walk is the only reasonable situation we
can tackle, although we will still use naive forecasting methods. Specifically, we will
predict the last known value. However, we will make this forecast only for the next
timestep. That way, our forecast should only be off by a random number, since the
future value of a random walk is always the past value plus white noise.

 Implementing this method is straightforward: we take our initial observed value
and use it to predict the next timestep. Once we record a new value, it will be used as
a forecast for the following timestep. This process is then repeated into the future.

Figure 3.16 MSEs of our forecasts. Clearly, the future of a random walk is 
unpredictable, with MSEs exceeding 300.
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 Figure 3.17 illustrates this process. Here, the observed value at 8:00 a.m. is used to
forecast the value for 9:00 a.m., the actual value observed at 9:00 a.m. is used to fore-
cast the value at 10:00 a.m., and so on.

Let’s apply this method to our random walk process. For the sake of illustrating this
method, we will apply it over the entire random walk. This naive forecast can look
deceptively amazing, when we are actually only predicting the last known value at each
timestep.

 A good way to simulate this process is by shifting our data, and the pandas library
has a shift method that does exactly what we want. We simply pass in the number of
periods, which in our case is 1, since we are forecasting the next timestep:

df_shift = df.shift(periods=1)    

df_shift.head()

You will notice that at step 1, the value is 0, which corresponds to the observed value at
step 0 in the simulated random walk. Therefore, we are effectively using the present
observed value as a forecast for the next timestep. Plotting our forecast yields figure 3.18.

fig, ax = plt.subplots()

ax.plot(df, 'b-', label='actual')
ax.plot(df_shift, 'r-.', label='forecast')

ax.legend(loc=2)

ax.set_xlabel('Timesteps')
ax.set_ylabel('Value')

plt.tight_layout()

10 13 8 9

8:00 a.m. 9:00 a.m. 10:00 a.m. 11:00 a.m.

– 10 13 8

8:00 a.m. 9:00 a.m. 10:00 a.m. 11:00 a.m.

Observed

Forecasts

Figure 3.17 Forecasting the following timestep of a random walk. Here, the 
observed value at a point in time will be used as a forecast for the next point in time.

df_shift is now our forecast over the 
entire random walk, and it corresponds 
to the last known value at each timestep.
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Looking at figure 3.18, you might think that we have developed an amazing model
that is almost a perfect fit to our data. It seems that we do not have two separate lines
in the graph, since both of them almost perfectly overlap, which is a sign of a perfect
fit. Now, we can calculate the MSE:

mse_one_step = mean_squared_error(test['value'], df_shift[800:])    

print(mse_one_step)

This yields a value of 0.93, which again might lead us to think that we have a very per-
formant model, since the MSE is very close to 0. However, we know that we are simply
forecasting the value observed at the previous timestep. This becomes more apparent
if we zoom in on our graph, as shown in figure 3.19.

 Therefore, if a random walk process must be forecast, it is better to make many
short-term forecasts. That way, we do not allow for many random numbers to accumu-
late over time, which will degrade the quality of our forecasts in the long term. 

 Because a random process takes random steps into the future, we cannot use statis-
tical or deep learning techniques to fit such a process: there is nothing to learn from
randomness and it cannot be predicted. Instead, we must rely on naive forecasting
methods.

Figure 3.18 A naive forecast of the next timestep of a random walk. This plot gives 
the illusion of a very good model, when we are in fact only predicting the value 
observed at the previous timestep.

Calculate the MSE on the test set.
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3.4 Next steps
So far you’ve learned how to develop baseline models, and you’ve discovered that in
the presence of a random walk you can only reasonably apply baseline models to
make forecasts. You cannot fit a statistical model or use deep learning techniques on
data that takes random steps in the future. Ultimately, you cannot predict random
movements.

 You learned that a random walk is a sequence where the first difference is not auto-
correlated and is a stationary process, meaning that its mean, variance, and autocor-
relation are constant over time. The steps required to identify a random walk are
shown in figure 3.20.

 But what happens if your process is stationary and autocorrelated, meaning that
you see consecutive significant coefficients on the ACF plot? For now, figure 3.20 sim-
ply states that it is not a random walk, so you have to find another model to approxi-
mate the process and forecast it. In such a situation, you are facing a process that can
be approximated by the moving average (MA) model, an autoregressive (AR) model,
or the combination of both processes, leading to an autoregressive moving average
(ARMA) model.

 In the next chapter, we will focus solely on the moving average model. You’ll learn
how to identify such processes and how to use the moving average model to make
forecasts. 

Figure 3.19 Close-up on the last 100 timesteps of our random walk. Here we can 
see how our forecasts are a simple shift of the original time series.
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3.5 Exercises
Now is a great time to apply the different skills you learned in this chapter. The follow-
ing three exercises will test your knowledge and understanding of random walks and
forecasting a random walk. The exercises are in order of difficulty and the time required
to complete them. The solutions to exercises 3.5.1 and 3.5.2 are on GitHub: https://
github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH03.

3.5.1 Simulate and forecast a random walk

Simulate a different random walk than the one we have worked with in this chapter.
You can simply change the seed and get new values:

1 Generate a random walk of 500 timesteps. Feel free to choose an initial value
different from 0. Also, make sure you change the seed by passing a different
integer to np.random.seed().

2 Plot your simulated random walk.
3 Test for stationarity.
4 Apply a first-order difference.

Gather data

Is it stationary?
Apply

transformations

Plot ACF

Is there

autocorrelation?

Not a random walk

Yes

Yes

No

No It is a random walk.

Figure 3.20 Steps to identify 
a random walk

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH03
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH03
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH03
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5 Test for stationarity.
6 Split your simulated random walk into a train set containing the first 400 time-

steps. The remaining 100 timesteps will be your test set.
7 Apply different naive forecasting methods and measure the MSE. Which

method yields the lowest MSE?
8 Plot your forecasts.
9 Forecast the next timestep over the test set and measure the MSE. Did it decrease?

10 Plot your forecasts.

3.5.2 Forecast the daily closing price of GOOGL

Using the GOOGL dataset that we worked with in this chapter, apply the forecasting
techniques we’ve discussed and measure their performance:

1 Keep the last 5 days of data as a test set. The rest will be the train set.
2 Forecast the last 5 days of the closing price using naive forecasting methods and

measure the MSE. Which method is the best?
3 Plot your forecasts.
4 Forecast the next timestep over the test set and measure the MSE. Did it

decrease?
5 Plot your forecasts.

3.5.3 Forecast the daily closing price of a stock of your choice

The historical daily closing price of many stocks is available for free on finance.yahoo
.com. Select a stock ticker of your choice, and download its historical daily closing
price for 1 year:

1 Plot the daily closing price of your chosen stock.
2 Determine if it is a random walk or not.
3 If it is not a random walk, explain why.
4 Keep the last 5 days of data as a test set. The rest will be the train set.
5 Forecast the last 5 days using naive forecasting methods, and measure the MSE.

Which method is the best?
6 Plot your forecasts.
7 Forecast the next timestep over the test set, and measure the MSE. Did it

decrease?
8 Plot your forecasts.

Summary
 A random walk is a process where the first difference is stationary and not auto-

correlated.
 We cannot use statistical or deep learning techniques on a random walk, since it

moves at random in the future. Therefore, we must use naive forecasts.

http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
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 A stationary time series is one whose statistical properties (mean, variance, auto-
correlation) do not change over time.

 The augmented Dickey-Fuller (ADF) test is used to assess stationarity by testing
for unit roots. 

 The null hypothesis of the ADF test is that there is a unit root in the series. If
the ADF statistic is a large negative value and the p-value is less than 0.05, the
null hypothesis is rejected, and the series is stationary. 

 Transformations are used to make a series stationary. Differencing can stabilize
the trend and seasonality, while logarithms stabilize the variance.

 Autocorrelation measures the correlation between a variable and itself at a pre-
vious timestep (lag). The autocorrelation function (ACF) shows how the auto-
correlation changes as a function of the lag.

 Ideally, we will forecast a random walk in the short term or the next timestep.
That way, we do not allow for random numbers to accumulate, which will
degrade the quality of our forecasts in the long term.



Part 2

Forecasting with
statistical models

In this part of the book, we’ll explore statistical models for time series fore-
casting. When performing statistical modeling, we need to perform hypothesis
testing, study our data carefully to extract its properties, and find the best model
for our data.

 By the end of this part, you will have a robust framework for modeling any type
of time series using statistical models. You will develop MA(q) models, AR(p) mod-
els, ARMA(p,q) models, ARIMA(p,d,q) models for non-stationary time series,
SARIMA(p,d,q)(P,D,Q)m for seasonal time series, and SARIMAX models to include
external variables in your forecast. We’ll also cover the VAR(p) model for predict-
ing many time series at once. We’ll conclude this part of the book with a capstone
project, so that you’ll get to apply what you’ve learned on your own.

 There are, of course, many other statistical models for time series forecast-
ing. For example, exponential smoothing basically takes a weighted average of
past values to predict future values. The general idea behind exponential smooth-
ing is that past values are less important than more recent values when predict-
ing the future, so they are assigned a smaller weight. This model can then be
extended to include trend and seasonal components. There are also statistical
approaches to modeling time series with different seasonal periods, such as the
BATS and TBATS models. 

 To keep this section manageable, we won’t address those models, but they
are implemented in the statsmodels library, which we will use extensively.



 



Modeling a moving
average process
In the previous chapter, you learned how to identify and forecast a random walk
process. We defined a random walk process as a series whose first difference is sta-
tionary with no autocorrelation. This means that plotting its ACF will show no sig-
nificant coefficients after lag 0. However, it is possible that a stationary process may
still exhibit autocorrelation. In this case, we have a time series that can be approxi-
mated by a moving average model MA(q), an autoregressive model AR(p), or an
autoregressive moving average model ARMA(p,q). In this chapter, we will focus on
identifying and modeling using the moving average model.

 Suppose that you want to forecast the volume of widget sales from the XYZ Wid-
get Company. By predicting futures sales, the company will be able to better man-
age its production of widgets and avoid producing too many or too few. If not
enough widgets are produced, the company will not be able to meet their clients’

This chapter covers
 Defining a moving average process

 Using the ACF to identify the order of a moving 
average process

 Forecasting a time series using the moving 
average model
61
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demands, leaving customers unhappy. On the other hand, producing too many wid-
gets will increase inventory. The widgets might become obsolete or lose their value,
which will increase the business’s liabilities, ultimately making shareholders unhappy. 

 In this example, we will study the sales of widgets over 500 days starting in 2019.
The recorded sales over time are shown in figure 4.1. Note that the volume of sales is
expressed in thousands of US dollars.

Figure 4.1 shows a long-term trend with peaks and troughs along the way. We can intu-
itively say that this time series is not a stationary process, since we can observe a trend
over time. Furthermore, there is no apparent cyclical pattern in the data, so we can
rule out any seasonal effects for now.

 In order to forecast the volume of widget sales, we need to identify the underlying
process. To do so, we will apply the same steps that we covered in chapter 3 when
working with a random walk process, shown again in figure 4.2.

 Once the data is gathered, we will test for stationarity. If it is not stationary, we will
apply a transformation to make it stationary. Then, once the series is a stationary pro-
cess, we will plot the autocorrelation function (ACF). In our example of forecasting
widget sales, our process will show significant coefficients in the ACF plot, meaning
that it cannot be approximated by the random walk model.

 In this chapter, we will discover that the volume of widget sales from the XYZ Wid-
get Company can be approximated as a moving average process, and we will look at

Figure 4.1 Volume of widget sales for the XYZ Widget Company over 500 days, 
starting on January 1, 2019. This is fictional data, but it will be useful for learning how 
to identify and model a moving average process.
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the definition of the moving average model. Then you’ll learn how to identify the
order of the moving average process using the ACF plot. The order of this process
determines the number of parameters for the model. Finally, we will apply the moving
average model to forecast the next 50 days of widget sales. 

4.1 Defining a moving average process
A moving average process, or the moving average (MA) model, states that the current
value is linearly dependent on the current and past error terms. The error terms are
assumed to be mutually independent and normally distributed, just like white noise.

 A moving average model is denoted as MA(q), where q is the order. The model
expresses the present value as a linear combination of the mean of the series µ, the
present error term ϵt, and past error terms ϵt–q. The magnitude of the impact of past
errors on the present value is quantified using a coefficient denoted as θq. Mathemati-
cally, we express a general moving average process of order q as in equation 4.1.

             yt = µ + ϵt + θ1ϵt –1 + θ2ϵt –2 +⋅⋅⋅+ θqϵt–q Equation 4.1

Gather data

Is it stationary?
Apply

transformations

Plot ACF

Is there

autocorrelation?

Not a random walk

Yes

Yes

No

No It is a random walk.

Figure 4.2 Steps for identifying 
a random walk
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The order q of the moving average model determines the number of past error terms
that affect the present value. For example, if it is of order 1, meaning that we have an
MA(1) process, the model is expressed as in equation 4.2. Here we can see that the
present value yt is dependent on the mean µ, the present error term ϵt, and the error
term at the previous timestep θ1ϵt –1. 

                   yt = µ + ϵt + θ1ϵt –1 Equation 4.2

If we have a moving average process of order 2, or MA(2), then yt is dependent on the
mean of the series µ, the present error term ϵt, the error term at the previous timestep
θ1ϵt –1, and the error term two timesteps prior θ2ϵt –2, resulting in equation 4.3.

                 yt = µ + ϵt + θ1ϵt –1 + θ2ϵt –2 Equation 4.3

Hence, we can see how the order q of the MA(q) process affects the number of past
error terms that must be included in the model. The larger q is, the more past error
terms affect the present value. Therefore, it is important to determine the order of the
moving average process in order to fit the appropriate model—if we have a second-
order moving average process, then a second-order moving average model will be used
for forecasting.

4.1.1 Identifying the order of a moving average process

To identify the order of a moving average process, we can extend the steps needed to
identify a random walk, as shown in figure 4.3.

 As usual, the first step is to gather the data. Then we test for stationarity. If our
series is not stationary, we apply transformations, such as differencing, until the series
is stationary. Then we plot the ACF and look for significant autocorrelation coeffi-
cients. In the case of a random walk, we will not see significant coefficients after lag 0.
On the other hand, if we see significant coefficients, we must check whether they
become abruptly non-significant after some lag q. If that is the case, then we know that
we have a moving average process of order q. Otherwise, we must follow a different set
of steps to discover the underlying process of our time series.

 Let’s put this in action using our data for the volume of widget sales for the XYZ Wid-
get Company. The dataset contains 500 days of sales volume data starting on January 1,

Moving average process
In a moving average (MA) process, the current value depends linearly on the mean of
the series, the current error term, and past error terms.

The moving average model is denoted as MA(q), where q is the order. The general
expression of an MA(q) model is

yt = µ + ϵt + θ1ϵt–1 + θ2ϵt–2 +⋅⋅⋅+ θqϵt–q
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2019. We will follow the steps outlined in figure 4.3 and determine the order of the
underlying moving average process.

 The first step is to gather the data. This step has already been done for you, so this
is a great time to load the data into a DataFrame using pandas and display the first five
rows of data. At any point, you can refer to the source code for this chapter on GitHub:
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH04.

import pandas as pd

df = pd.read_csv('../data/widget_sales.csv')   
df.head()     

You’ll see that the volume of sales is in the widget_sales column. Note that the volume
of sales is in units of thousands of US dollars.

Gather data

NoIs it stationary?
Apply

transformations

Plot ACF

Yes

Is there

autocorrelation?
It is a random walk.No

Do autocorrelation

coefficients become

abruptly non-significant

after lag ?q

It is an MA( ) process.qYes

No

Yes

Not a moving average

process

Figure 4.3 Steps to identify the order 
of a moving average process

Read the CSV file 
into a DataFrame.

Display the first 
five rows of data.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH04
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 We can plot our data using matplotlib. Our values of interest are in the widget_
sales columns, so that is what we pass into ax.plot(). Then we give the x-axis the label
of “Time” and y-axis the label of “Widget sales (k$).” Next, we specify that the labels for
the ticks on the x-axis should display the month of the year. Finally, we tilt the x-axis tick
labels and remove extra whitespace around the figure using plt.tight_layout(). The
result is figure 4.4.

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.plot(df['widget_sales'])    
ax.set_xlabel('Time')               
ax.set_ylabel('Widget sales (k$)')     

plt.xticks(
    [0, 30, 57, 87, 116, 145, 175, 204, 234, 264, 293, 323, 352, 382, 409, 

➥ 439, 468, 498], 
    ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 

➥ 'Nov', 'Dec', '2020', 'Feb', 'Mar', 'Apr', 'May', 'Jun'])     

fig.autofmt_xdate()  
plt.tight_layout()   

Plot the volume 
of widget sales.

Label the x-axis.

Label the y-axis.

Label the 
ticks on 
the x-axis.Tilt the labels on the x-axis ticks 

so that they display nicely.

Remove extra whitespace 
around the figure.

Figure 4.4 Volume of widget sales for the XYZ Widget Company over 500 days, starting 
on January 1, 2019
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g 
The next step is to test for stationarity. We intuitively know that the series is not sta-
tionary, since there is an observable trend in figure 4.4. Still, we will use the ADF test
to make sure. Again, we’ll use the adfuller function from the statsmodels library
and extract the ADF statistic and p-value. If the ADF statistic is a large negative num-
ber and the p-value is smaller than 0.05, our series is stationary. Otherwise, we must
apply transformations.

from statsmodels.tsa.stattools import adfuller

ADF_result = adfuller(df['widget_sales'])   

print(f'ADF Statistic: {ADF_result[0]}')    
print(f'p-value: {ADF_result[1]}')    

This results in an ADF statistic of –1.51 and a p-value of 0.53. Here, the ADF statistic is
not a large negative number, and the p-value is greater than 0.05. Therefore, our time
series is not stationary, and we must apply transformations to make it stationary.

 In order to make our series stationary, we will try to stabilize the trend by applying
a first-order differencing. We can do so by using the diff method from the numpy
library. Remember that this method takes in a parameter n that specifies the order of
differencing. In this case, because it is a first-order differencing, n will be equal to 1. 

import numpy as np

widget_sales_diff = np.diff(df['widget_sales'], n=1)   

We can optionally plot the differenced series to see if we have stabilized the trend. Fig-
ure 4.5 shows the differenced series. We can see that we successfully removed the
long-term trend component of our series, as values are hovering around 0 over the
entire period.

Now that a transformation has been applied to our series, we can test for stationarity
again using the ADF test. This time, make sure to run the test on the differenced data
stored in the widget_sales_diff variable.

ADF_result = adfuller(widget_sales_diff)    

print(f'ADF Statistic: {ADF_result[0]}')
print(f'p-value: {ADF_result[1]}')

Can you recreate figure 4.5? 
While optional, it is a good idea to plot your series as you apply transformations. This
will give you a better intuition as to whether a series is stationary or not after a par-
ticular transformation. Try recreating figure 4.5 on your own.

Run the ADF test on the volume 
of widget sales, which is stored 
in the widget_sales column.

Print the ADF statistic.

Print the p-value.

Apply first-order differencin
on our data and store the 
result in widget_sales_diff.

Run the ADF test 
on the differenced 
time series.
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This gives an ADF statistic of –10.6 and a p-value of 7 × 10–19. Therefore, with a large
negative ADF statistic and a p-value much smaller than 0.05, we can say that our series
is stationary.

 Our next step is to plot the autocorrelation function. The statsmodels library
conveniently includes the plot_acf function. We simply pass in our differenced series
and specify the number of lags in the lags parameter. Remember that the number of
lags determines the range of values on the x-axis.

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(widget_sales_diff, lags=30);    

plt.tight_layout()

The resulting ACF plot is shown in figure 4.6. You’ll notice that there are significant
coefficients up until lag 2. Then they abruptly become non-significant, as they remain
in the shaded area of the plot. This means that we have a stationary moving average
process of order 2. We can use a second-order moving average model, or MA(2)
model, to forecast our stationary time series.

 You can see how the ACF plot helps us determine the order of a moving average
process. The ACF plot will show significant autocorrelation coefficients up until lag q,
after which all coefficients will be non-significant. We can then conclude that we have
a moving average process of order q, or an MA(q) process. 

Figure 4.5 Differenced volume of widget sales. The trend component has been 
stabilized, since values are hovering around 0 over our entire sample.

Plot the ACF of the 
differenced series.
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4.2 Forecasting a moving average process
Once the order q of the moving average process is identified, we can fit the model to
our training data and start forecasting. In our case, we discovered that the differenced
volume of widget sales is a moving average process of order 2, or an MA(2) process. 

 The moving average model assumes stationarity, meaning that our forecasts must
be done on a stationary time series. Therefore, we will train and test our model on the
differenced volume of widget sales. We will try two naive forecasting techniques and fit
a second-order moving average model. The naive forecasts will serve as baselines to
evaluate the performance of the moving average model, which we expect to be better
than the baselines, since we previously identified our process to be a moving average
process of order 2. Once we obtain our forecasts for the stationary process, we will
have to inverse-transform the forecasts, meaning that we must undo the process of dif-
ferencing to bring the forecasts back to their original scale. 

 In this scenario, we will allocate 90% of the data to the train set and reserve the
other 10% for the test set, meaning that we must forecast 50 timesteps into the future.
We will assign our differenced data to a DataFrame and then split the data. 

df_diff = pd.DataFrame({'widget_sales_diff': widget_sales_diff})   

train = df_diff[:int(0.9*len(df_diff))]   
test = df_diff[int(0.9*len(df_diff)):]    

Figure 4.6 ACF plot of the differenced series. Notice how the coefficients are 
significant up until lag 2, and then they fall abruptly into the non-significance zone 
(shaded area) of the plot. There are some significant coefficients around lag 20, 
but this is likely due to chance, since they are non-significant between lags 3 and 
20 and after lag 20.

Place the differenced data in a DataFrame.The first 90% of the data goes in the training set.

The last 10% of the data goes 
in the test set for prediction.
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print(len(train))
print(len(test))

We’ve printed out the size of the train and test sets to remind you of the data point
that we lose when we difference. The original dataset contained 500 data points, while
the differenced series contains a total of 499 data points, since we differenced once.

 Now we can visualize the forecasting period for the differenced and original series.
Here we will make two subplots in the same figure. The result is shown in figure 4.7.

fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True)    

ax1.plot(df['widget_sales'])
ax1.set_xlabel('Time')
ax1.set_ylabel('Widget sales (k$)')
ax1.axvspan(450, 500, color='#808080', alpha=0.2)

ax2.plot(df_diff['widget_sales_diff'])
ax2.set_xlabel('Time')
ax2.set_ylabel('Widget sales - diff (k$)')
ax2.axvspan(449, 498, color='#808080', alpha=0.2)

plt.xticks(
    [0, 30, 57, 87, 116, 145, 175, 204, 234, 264, 293, 323, 352, 382, 409, 

439, 468, 498], 
    ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 

'Nov', 'Dec', '2020', 'Feb', 'Mar', 'Apr', 'May', 'Jun'])

fig.autofmt_xdate()
plt.tight_layout()

Make two
subplots inside

the same figure.

Figure 4.7 Forecasting period for the original and differenced series. Remember that 
our differenced series has one less data point than in its original state.
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For the forecast horizon, the moving average model brings in a particularity. The
MA(q) model does not allow us to forecast 50 steps into the future in one shot.
Remember that the moving average model is linearly dependent on past error terms,
and those terms are not observed in the dataset—they must therefore be recursively
estimated. This means that for an MA(q) model, we can only forecast q steps into the
future. Any prediction made beyond that point will not have past error terms, and the
model will only predict the mean. Therefore, there is no added value in forecasting
beyond q steps into the future, because the predictions will fall flat, as only the mean is
returned, which is equivalent to a baseline model.

 To avoid simply predicting the mean beyond two timesteps into the future, we
need to develop a function that will predict two timesteps or less at a time, until 50
predictions are made, so that we can compare our predictions against the observed
values of the test set. This method is called rolling forecasts. On the first pass, we will
train on the first 449 timesteps and predict timesteps 450 and 451. Then, on the sec-
ond pass, we will train on the first 451 timesteps, and predict timesteps 452 and 453.
This is repeated until we finally predict the values at timesteps 498 and 499.

We will compare our fitted MA(2) model to two baselines: the historical mean and the
last value. That way, we can make sure that an MA(2) model will yield better predic-
tions than naive forecasts, which should be the case, since we know the stationary pro-
cess is an MA(2) process.

NOTE You do not have to forecast two steps ahead when you perform rolling
forecasts with an MA(2) model. You can forecast either one or two steps
ahead repeatedly in order to avoid predicting only the mean. Similarly, with
an MA(3) model, you could perform rolling forecasts with one-, two-, or
three-step-ahead rolling forecasts. 

To create these forecasts, we need a function that will repeatedly fit a model and gen-
erate forecasts over a certain window of time, until forecasts for the entire test set are
obtained. This function is shown in listing 4.1.

 First, we import the SARIMAX function from the statsmodels library. This function
will allow us to fit an MA(2) model to our differenced series. Note that SARIMAX is a
complex model that allows us to consider seasonal effects, autoregressive processes,
non-stationary time series, moving average processes, and exogenous variables all in a
single model. For now, we will disregard all factors except the moving average portion.

Forecasting using the MA(q) model
When using an MA(q) model, forecasting beyond q steps into the future will simply
return the mean, because there are no error terms to estimate beyond q steps. We
can use rolling forecasts to predict up to q steps at a time in order avoid predicting
only the mean of the series.
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We will gradually build on the moving average model and eventually reach the SARIMAX
model in later chapters:

 Next, we define our rolling_forecast function. It will take in a DataFrame, the
length of the training set, the forecast horizon, a window size, and a method.
The DataFrame contains the entire time series. 

 The train_len parameter initializes the number of data points that can be
used to fit a model. As predictions are done, we can update this to simulate the
observation of new values and then use them to make the next sequence of
forecasts. 

 The horizon parameter is equal to the length of the test set and represents how
many values must be predicted. 

 The window parameter specifies how many timesteps are predicted at a time. In
our case, because we have an MA(2) process, the window will be equal to 2. 

 The method parameter specifies what model to use. The same function allows us
to generate forecasts from the naive methods and the MA(2) model. 

Note the use of type hinting in the function declaration. This will help us avoid pass-
ing parameters of an unexpected type, which might cause our function to fail.

 Then, each forecasting method is run in a loop. The loop starts at the end of the
training set and continues until total_len, exclusive, with steps of window (total_len
is the sum of train_len and horizon). This loop generates a list of 25 values,
[450,451,452,…,497], but each pass generates two forecasts, thus returning a list of 50
forecasts for the entire test set.

from statsmodels.tsa.statespace.sarimax import SARIMAX

def rolling_forecast(df: pd.DataFrame, train_len: int, horizon: int, 

➥ window: int, method: str) -> list:   
    
    total_len = train_len + horizon
    
    if method == 'mean':
        pred_mean = []
        
        for i in range(train_len, total_len, window):
            mean = np.mean(df[:i].values)
            pred_mean.extend(mean for _ in range(window))

        return pred_mean

    elif method == 'last':
        pred_last_value = []
        
        for i in range(train_len, total_len, window):
            last_value = df[:i].iloc[-1].values[0]
            pred_last_value.extend(last_value for _ in range(window))

Listing 4.1 A function for rolling forecasts on a horizon 

The function takes in a 
DataFrame containing the
full simulated moving 
average process. We also 
pass in the length of the 
training set (800 in this 
case) and the horizon of 
the forecast (200). The 
next parameter specifies 
how many steps at a time
we wish to forecast (2). 
Finally, we specify the 
method to use to make 
forecasts.
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        return pred_last_value
    
    elif method == 'MA':
        pred_MA = []
        
        for i in range(train_len, total_len, window):
            model = SARIMAX(df[:i], order=(0,0,2))  
            res = model.fit(disp=False)
            predictions = res.get_prediction(0, i + window - 1)
            oos_pred = predictions.predicted_mean.iloc[-window:]   
            pred_MA.extend(oos_pred)
            
        return pred_MA

Once it’s defined, we can use our function and forecast using three methods: the his-
torical mean, the last value, and the fitted MA(2) model. 

 First, we’ll first create a DataFrame to hold our predictions and name it pred_df.
We can copy the test set, to include the actual values in pred_df, making it easier to
evaluate the performance of our models.

 Then, we’ll specify some constants. In Python, it is a good practice to name con-
stants in capital letters. TRAIN_LEN is simply the length of our training set, HORIZON is
the length of the test set, which is 50 days, and WINDOW can be 1 or 2 because we are
using an MA(2) model. In this case we will use a value of 2.

 Next, we’ll use our rolling_forecast function to generate a list of predictions for
each method. Each list of predictions is then stored in its own column in pred_df.

pred_df = test.copy()

TRAIN_LEN = len(train)
HORIZON = len(test)
WINDOW = 2

pred_mean = rolling_forecast(df_diff, TRAIN_LEN, HORIZON, WINDOW, 'mean')
pred_last_value = rolling_forecast(df_diff, TRAIN_LEN, HORIZON, WINDOW, 

➥ 'last')
pred_MA = rolling_forecast(df_diff, TRAIN_LEN, HORIZON, WINDOW, 'MA')

pred_df['pred_mean'] = pred_mean
pred_df['pred_last_value'] = pred_last_value
pred_df['pred_MA'] = pred_MA

pred_df.head()

Now we can visualize our predictions against the observed values in the test set. Keep
in mind that we are still working with the differenced dataset, so our predictions are
also differenced values.

 For this figure, we will plot part of the training data to see the transition between
the train and test sets. Our observed values will be a solid line, and we will label this
curve as “actual.” Then we’ll plot the forecasts from the historical mean, those from

The MA(q) model is 
part of the more 
complex SARIMAX 
model. 

e predicted_mean
ethod allows us to
retrieve the actual
lue of the forecast
as defined by the

atsmodels library.
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the last observed value, and those from the MA(2) model. They will respectively be a
dotted line, a dotted and dashed line, and a dashed line, with labels of “mean,” “last,”
and “MA(2).” The result is shown in figure 4.8.

In figure 4.8 you’ll notice that the prediction coming from the historical mean, shown
as a dotted line, is almost a straight line. This is expected; the process is stationary, so
the historical mean should be stable over time. 

 The next step is to measure the performance of our models. To do so, we will cal-
culate the mean squared error (MSE). Here we will use the mean_squared_error
function from the sklearn package. We simply need to pass the observed values and
the predicted values into the function.

from sklearn.metrics import mean_squared_error

mse_mean = mean_squared_error(pred_df['widget_sales_diff'], 

➥ pred_df['pred_mean'])
mse_last = mean_squared_error(pred_df['widget_sales_diff'], 

➥ pred_df['pred_last_value'])
mse_MA = mean_squared_error(pred_df['widget_sales_diff'], 

➥ pred_df['pred_MA'])

print(mse_mean, mse_last, mse_MA)

This prints out an MSE of 2.56 for the historical mean method, 3.25 for the last value
method, and 1.95 for the MA(2) model. Here our MA(2) model is the best-performing

Figure 4.8 Forecasts of the differenced volume of widget sales. In a professional 
setting, it does not make sense to report differenced predictions. Therefore, we will undo 
the transformation later on.
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forecasting method, since its MSE is the lowest of the three methods. This is expected,
because we previously identified a second-order moving average process for the dif-
ferenced volume of widget sales, thus resulting in a smaller MSE compared to the
naive forecasting methods. We can visualize the MSE for all forecasting techniques
in figure 4.9.

Now that we have our champion model on the stationary series, we need to inverse-
transform our predictions to bring them back to the original scale of the untrans-
formed dataset. Recall that differencing is the result of the difference between a value
at time t and its previous value, as shown in figure 4.10.

 In order to reverse our first-order difference, we need to add an initial value y0 to
the first differenced value y'1. That way, we can recover y1 in its original scale. This is
what is demonstrated in equation 4.4:

                y1 = y0 + y'1 = y0 + y1 – y0 = y1 Equation 4.4

Then y2 can be obtained using a cumulative sum of the differenced values, as shown in
equation 4.5.

          y2 = y0 + y'1 + y'2 = y0 + y1 – y0 + y2 – y1 = (y0 – y0) + (y1 – y1) + y2 = y2 Equation 4.5

Applying the cumulative sum once will undo a first-order differencing. In the case
where the series was differenced twice to become stationary, we would need to repeat
this process.

Figure 4.9 MSE for each forecasting method on the differenced volume of widget 
sales. Here the MA(2) model is the champion, since its MSE is the lowest.
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Thus, to obtain our predictions in the original scale of our dataset, we need to use the
first value of the test as our initial value. Then we can perform a cumulative sum to
obtain a series of 50 predictions in the original scale of the dataset. We will assign
these predictions to the pred_widget_sales column.

df['pred_widget_sales'] = pd.Series()     
df['pred_widget_sales'][450:] = df['widget_sales'].iloc[450] +

➥ pred_df['pred_MA'].cumsum()    

Let’s visualize our untransformed predictions against the recorded data. Remember
that we are now using the original dataset stored in df.

fig, ax = plt.subplots()

ax.plot(df['widget_sales'], 'b-', label='actual')    
ax.plot(df['pred_widget_sales'], 'k--', label='MA(2)')   

ax.legend(loc=2)

ax.set_xlabel('Time')
ax.set_ylabel('Widget sales (K$)')

ax.axvspan(450, 500, color='#808080', alpha=0.2)

y0 y1 y2 y3

– y'1 y'2 y'3

t =0 t =1 t =2 t =3

t =0 t =1 t =2 t =3

y1 – y0 y2 – y1 y3 – y2

Original

Result

First-order

differencing

Figure 4.10 Visualizing a first-order difference

Initialize an empty column 
to hold our predictions.

Inverse-transform the predictions 
to bring them back to the original 
scale of the dataset.

Plot the actual 
values.

Plot the inverse-
transformed 
predictions.
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ax.set_xlim(400, 500)

plt.xticks(
    [409, 439, 468, 498], 
    ['Mar', 'Apr', 'May', 'Jun'])

fig.autofmt_xdate()
plt.tight_layout()

You can see in figure 4.11 that our forecast curve, shown with a dashed line, follows
the general trend of the observed values, although it does not predict bigger troughs
and peaks.

The final step is to report the MSE on the original dataset. In a professional setting, we
would not report the differenced predictions, because they do not make sense from a
business perspective; we must report values and errors in the original scale of the data.

 We can measure the mean absolute error (MAE) using the mean_absolute_error
function from sklearn. We’ll use this metric because it is easy to interpret, as it
returns the average of the absolute difference between the predicted and actual val-
ues, instead of a squared difference like the MSE.

from sklearn.metrics import mean_absolute_error

mae_MA_undiff = mean_absolute_error(df['widget_sales'].iloc[450:], 

➥ df['pred_widget_sales'].iloc[450:])

print(mae_MA_undiff)

Figure 4.11 Inverse-transformed MA(2) forecasts
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This prints out an MAE of 2.32. Therefore, our predictions are, on average, off by
$2,320, either above or below the actual value. Remember that our data has units of
thousands of dollars, so we multiply the MAE by 1,000 to express the average absolute
difference.

4.3 Next steps
In this chapter, we covered the moving average process and how it can be modeled by
an MA(q) model, where q is the order. You learned that to identify a moving average
process, you must study the ACF plot once it is stationary. The ACF plot will show signif-
icant peaks all the way to lag q, and the rest will not be significantly different from 0. 

 However, it is possible that when studying the ACF plot of a stationary process,
you’ll see a sinusoidal pattern, with negative coefficients and significant autocorrela-
tion at large lags. For now you can simply accept that this is not a moving average pro-
cess (see figure 4.12).

Gather data

NoIs it stationary?
Apply

transformations

Plot ACF

Yes

Is there

autocorrelation?
It is a random walk.No

Do autocorrelation

coefficients become

abruptly non-significant

after lag ?q

It is an MA( ) process.qYes

No

Yes

Not a moving average

process

Figure 4.12 Steps to identify the 
underlying process of a stationary 
time series
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When we see a sinusoidal pattern in the ACF plot of a stationary process, this is a hint
that an autoregressive process is at play, and we must use an AR(p) model to produce
our forecast. Just like the MA(q) model, the AR(p) model will require us to identify its
order. This time we will have to plot the partial autocorrelation function and see at
which lag the coefficients suddenly become non-significant. The next chapter will
focus entirely on the autoregressive process, how to identify its order, and how to fore-
cast such a process.

4.4 Exercises
Take some time to test your knowledge and mastery of the MA(q) model with these
exercises. The full solutions are available on GitHub: https://github.com/marcopeix/
TimeSeriesForecastingInPython/tree/master/CH04.

4.4.1 Simulate an MA(2) process and make forecasts

Simulate a stationary MA(2) process. To do so, use the ArmaProcess function from
the statsmodels library and simulate the following process:

yt = 0.9θt –1 + 0.3θt –2

1 For this exercise, generate 1,000 samples.

from statsmodels.tsa.arima_process import ArmaProcess
import numpy as np

np.random.seed(42)    

ma2 = np.array([1, 0.9, 0.3])
ar2 = np.array([1, 0, 0])

MA2_process = ArmaProcess(ar2, ma2).generate_sample(nsample=1000)

2 Plot your simulated moving average.
3 Run the ADF test, and check if the process is stationary.
4 Plot the ACF, and see if there are significant coefficients after lag 2.
5 Separate your simulated series into train and test sets. Take the first 800 time-

steps for the train set, and assign the rest to the test set.
6 Make forecasts over the test set. Use the mean, last value, and an MA(2) model.

Make sure you repeatedly forecast 2 timesteps at a time using the recursive_
forecast function we defined.

7 Plot your forecasts.
8 Measure the MSE, and identify your champion model.
9 Plot your MSEs in a bar plot.

Set the seed for reproducibility. 
Change the seed if you want to 
experiment with different values.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH04
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH04
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH04
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4.4.2 Simulate an MA(q) process and make forecasts

Recreate the previous exercise, but simulate a moving average process of your choice.
Try simulating a third-order or fourth-order moving average process. I recommend
generating 10,000 samples. Be especially attentive to the ACF, and see if your coeffi-
cients become non-significant after lag q.

Summary
 A moving average process states that the present value is linearly dependent on

the mean, present error term, and past error terms. The error terms are nor-
mally distributed.

 You can identify the order q of a stationary moving average process by studying
the ACF plot. The coefficients are significant up until lag q only.

 You can predict up to q steps into the future because the error terms are not
observed in the data and must be recursively estimated. 

 Predicting beyond q steps into the future will simply return the mean of the
series. To avoid that, you can apply rolling forecasts.

 If you apply a transformation to the data, you must undo it to bring your predic-
tions back to the original scale of the data.

 The moving average model assumes the data is stationary. Therefore, you can
only use this model on stationary data. 



Modeling an
autoregressive process
In the previous chapter, we covered the moving average process, also denoted as
MA(q), where q is the order. You learned that in a moving average process, the pres-
ent value is linearly dependent on current and past error terms. Therefore, if you
predict more than q steps ahead, the prediction will fall flat and will return only the
mean of the series, because the error terms are not observed in the data and must
be recursively estimated. Finally, you saw that you can determine the order of a sta-
tionary MA(q) process by studying the ACF plot; the autocorrelation coefficients
will be significant up until lag q. In the case where the autocorrelation coefficients
slowly decay or exhibit a sinusoidal pattern, then you are possibly in the presence of
an autoregressive process.

 In this chapter, we will first define the autoregressive process. Then, we will
define the partial autocorrelation function and use it to find the order of the

This chapter covers 
 Illustrating an autoregressive process

 Defining the partial autocorrelation function (PACF)

 Using the PACF plot to determine the order of an 
autoregressive process

 Forecasting a time series using the 
autoregressive model
81
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underlying autoregressive process of a dataset. Finally, we will use the AR(p) model
to produce forecasts.

5.1 Predicting the average weekly foot traffic in a retail store
Suppose that you want to forecast the average weekly foot traffic in a retail store so
that the store manager can better manage the staff’s schedule. If many people are
expected to come to the store, more employees should be present to provide assis-
tance. If fewer people are expected to visit the store, the manager can schedule fewer
employees to work. That way the store can optimize its spending on salaries and
ensure that employees are not overwhelmed or underwhelmed by store visitors.

 For this example, we have 1,000 data points, each representing the average weekly
foot traffic at a retail store starting in the year 2000. You can see the evolution of our
data through time in figure 5.1. 

In figure 5.1 we can see a long-term trend with peaks and troughs along the way. We
can intuitively say that this time series is not a stationary process, since we observe a
trend over time. Furthermore, there is no apparent cyclical pattern in the data, so we
can rule out any seasonal effects for now.

 Again, in order to forecast the average weekly foot traffic, we need to identify the
underlying process. Thus, we must apply the same steps that we covered in chapter 4.
That way, we can verify whether we have a random walk or a moving average process at
play. The steps are shown in figure 5.2.

Figure 5.1 Average weekly foot traffic in a retail store. The dataset contains 
1,000 data points, starting in the first week of 2000. Note that this is fictional data.
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In this example, the data is already collected, so we can move on to testing for station-
arity. As mentioned previously, the presence of a trend over time means that our series
is likely not stationary, so we will have to apply a transformation in order to make it sta-
tionary. Then we will plot the ACF. As we work through the chapter, you will see that
not only is there autocorrelation, but the ACF plot will have a slowly decaying trend.

 This is indicative of an autoregressive process of order p, also denoted as AR(p). In
this case, we must plot the partial autocorrelation function (PACF) to find the order p.
Just like the coefficients on an ACF plot for an MA(q) process, the coefficients on the
PACF plot will become abruptly non-significant after lag p, hence determining the
order of the autoregressive process.

 Again, the order of the autoregressive process determines how many parameters
must be included in the AR(p) model. Then we will be ready to make forecasts. In this
example, we wish to forecast next week’s average foot traffic.

Gather data

NoIs it stationary?
Apply

transformations

Plot ACF

Yes

Is there

autocorrelation?
It is a random walk.No

Do autocorrelation

coefficients become

abruptly non-significant

after lag ?q

It is an MA( ) process.qYes

No

Yes

Not a moving average

process

Figure 5.2 Steps to identify the underlying 
process of a stationary time series. So far 
we can identify a random walk or a moving 
average process.
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5.2 Defining the autoregressive process
An autoregressive process establishes that the output variable depends linearly on its
own previous values. In other words, it is a regression of the variable against itself.

 An autoregressive process is denoted as an AR(p) process, where p is the order. In
such a process, the present value yt is a linear combination of a constant C, the present
error term ϵt, which is also white noise, and the past values of the series yt–p. The mag-
nitude of the influence of the past values on the present value is denoted as φp, which
represents the coefficients of the AR(p) model. Mathematically, we express a general
AR(p) model with equation 5.1. 

               yt = C + φ1yt –1 + φ2yt–2 +⋅⋅⋅ φpyt–p + ϵt Equation 5.1

Similar to the moving average process, the order p of an autoregressive process deter-
mines the number of past values that affect the present value. If we have a first-order
autoregressive process, also denoted as AR(1), then the present value yt is only depen-
dent on a constant C, the value at the previous timestep φ1yt –1, and some white noiseϵt, as shown in equation 5.2.

                yt = C + φ1yt –1 + ϵt Equation 5.2

Looking at equation 5.2, you might notice that it is very similar to a random walk pro-
cess, which we covered in chapter 3. In fact, if φ1 = 1, then equation 5.2 becomes

yt = C + yt –1 + ϵt

which is our random walk model. Therefore, we can say that the random walk is a spe-
cial case of an autoregressive process, where the order p is 1 and φ1 is equal to 1.
Notice also that if C is not equal to 0, then we have a random walk with drift. 

 In the case of a second-order autoregressive process, or AR(2), the present value yt is
linearly dependent on a constant C, the value at the previous timestep φ1yt –1, the value
two timesteps prior φ2yt –2, and the present error term ϵt, as shown in equation 5.3.

                yt = C + φ1yt –1 + φ2yt –2 + ϵt Equation 5.3

We see how the order p influences the number of parameters that must be included
in our model. As with a moving average process, we must find the right order of an
autoregressive process in order to build the appropriate model. This means that if

Autoregressive process
An autoregressive process is a regression of a variable against itself. In a time
series, this means that the present value is linearly dependent on its past values.

The autoregressive process is denoted as AR(p), where p is the order. The general
expression of an AR(p) model is

yt = C + φ1yt–1 + φ2yt–2 +⋅⋅⋅+ φpyt–p + ϵt
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we identify an AR(3) process, we will use a third-order autoregressive model to make
forecasts.

5.3 Finding the order of a stationary autoregressive process
Just like with the moving average process, there is a way to determine the order p of a
stationary autoregressive process. We can extend the steps needed to identify the
order of a moving average, as shown in figure 5.3.
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Figure 5.3 Steps to identify the order 
of an autoregressive process
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The natural first step is to collect the data. Here we will work with the average weekly
foot traffic dataset that you saw at the beginning of the chapter. We will read the data
using pandas and store it as a DataFrame. 

NOTE Feel free to consult the source code for this chapter on GitHub at any 
time: https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/ 
master/CH05.

import pandas as pd

df = pd.read_csv('../data/foot_traffic.csv')    

df.head()    

You’ll see that our data contains a single foot_traffic column in which the average
weekly foot traffic at the retail store is recorded.

 As always, we will plot our data to see if there are any observable patterns, such as a
trend or seasonality. By now, you should be comfortable with plotting time series, so
we will not dive deeply into the code that generates the graph. The result is the plot
shown in figure 5.4.

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.plot(df['foot_traffic'])    
ax.set_xlabel('Time')    
ax.set_ylabel('Average weekly foot traffic')    

plt.xticks(np.arange(0, 1000, 104), np.arange(2000, 2020, 2))    

fig.autofmt_xdate()    
plt.tight_layout()    

Looking at figure 5.4, you’ll notice that there is no cyclical pattern, so we can rule out
the presence of seasonality. As for the trend, it is sometimes positive and sometimes
negative throughout the years, with the most recent trend being positive, since 2016.

 The next step is to check for stationarity. As mentioned before, the presence of a
trend means that our series is likely non-stationary. Let’s verify that using the ADF
test. Again, you should be comfortable running this without a detailed explanation
of the code.

from statsmodels.tsa.stattools import adfuller

ADF_result = adfuller(df['foot_traffic'])    

print(f'ADF Statistic: {ADF_result[0]}')    
print(f'p-value: {ADF_result[1]}')    

Read the CSV file into 
a DataFrame.

Display the first five 
rows of data.

Plot the average weekly foot 
traffic at a retail store.

Label the x-axis.

Label the y-axis.

Label the tick
on the x-axis.

Tilt the labels on the x-axis ticks 
so that they display nicely.

Remove extra whitespace around the figure.

Run the ADF test on the average 
weekly foot traffic, which is stored 
in the foot_traffic column.

Print the ADF statistic. the
lue.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH05
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH05
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH05
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This prints out an ADF statistic of –1.18 along with a p-value of 0.68. Since the ADF sta-
tistic is not a large negative number, and it has a p-value greater than 0.05, we cannot
reject the null hypothesis and our series is therefore non-stationary.

 Hence, we must apply a transformation to make it stationary. To remove the effect
of the trend and stabilize the mean of the series, we will use differencing. 

import numpy as np
foot_traffic_diff = np.diff(df['foot_traffic'], n=1)    

Optionally, we could plot our differenced series foot_traffic_diff to see if we suc-
cessfully removed the effect of the trend. The differenced series is shown in figure 5.5.
We can see that we indeed removed the long-term trend, since the series starts and fin-
ishes roughly at the same value.

 

Can you recreate figure 5.5? 
While optional, it is a good idea to plot your series as you apply transformations. This
will give you a better intuition as to whether the series is stationary or not after a par-
ticular transformation. Try recreating figure 5.5 on your own. 

Figure 5.4 Average weekly foot traffic in a retail store. The dataset contains 1,000 
data points, starting in the first week of 2000.

Apply a first-order 
differencing on the data 
and store the result in 
foot_traffic_diff.
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With a transformation applied to the series, we can verify whether the series is station-
ary by running the ADF test on the differenced series.

ADF_result = adfuller(foot_traffic_diff)    

print(f'ADF Statistic: {ADF_result[0]}')
print(f'p-value: {ADF_result[1]}')

This prints out an ADF statistic of –5.27 and a p-value of 6.36×10–6. With a p-value
smaller than 0.05, we can reject the null hypothesis, meaning that we now have a sta-
tionary series.

 The next step is to plot the ACF and see if there is autocorrelation and if the coef-
ficients become abruptly non-significant after a certain lag. As we did in the two previ-
ous chapters, we will use the plot_acf function from statsmodels. The result is shown
in figure 5.6.

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(foot_traffic_diff, lags=20);    

plt.tight_layout()

Looking at figure 5.6, you’ll notice that we have significant autocorrelation coeffi-
cients beyond lag 0. Therefore, we know that our process is not a random walk. Fur-
thermore, you’ll notice that the coefficients are decaying exponentially as the lag

Figure 5.5 Differenced average weekly foot traffic at a retail store. Notice that the trend 
effect has been removed, since the series starts and ends at roughly the same value.

Run the ADF test on the 
differenced time series.

Plot the ACF of the 
differenced series.
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increases. Therefore, there is no lag at which the coefficients abruptly become non-
significant. This means that we do not have a moving average process and that we are
likely studying an autoregressive process.

 When the ACF plot of a stationary process exhibits a pattern of exponential decay,
we probably have an autoregressive process in play, and we must find another way to
identify the order p of the AR(p) process. Specifically, we must turn our attention to
the partial autocorrelation function (PACF) plot.

5.3.1 The partial autocorrelation function (PACF)

In an attempt to identify the order of a stationary autoregressive process, we used
the ACF plot just as we did for a moving average process. Unfortunately, the ACF
plot cannot give us this information, and we must turn to the partial autocorrelation
function (PACF).

 Remember that the autocorrelation measures the linear relationship between
lagged values of a time series. Consequently, the autocorrelation function measures
how the correlation changes between two values as the lag is increased.

 To understand the partial autocorrelation function, let’s consider the following
scenario. Suppose we have the following AR(2) process:

                 yt = 0.33yt –1 + 0.50yt –2 Equation 5.4

We wish to measure how yt relates to yt –2; in other words, we want to measure their cor-
relation. This is done with the autocorrelation function (ACF). However, from the

Figure 5.6 ACF plot of the differenced average weekly foot traffic at a retail store. 
Notice how the plot is slowly decaying. This is a behavior that we have not observed 
before, and it is indicative of an autoregressive process.
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equation, we can see that yt –1 also has an influence on yt. Even more important, it also
has an impact on the value of yt –2, since in an AR(2) process, each value depends on
the previous two values. Therefore, when we measure the autocorrelation between yt
and yt –2 using the ACF, we are not taking into account the fact that yt –1 has an influ-
ence on both yt and yt –2. This means that we are not measuring the true impact of yt –2
on yt. To do so, we must remove the effect of yt –1. Thus, we are measuring the partial
autocorrelation between yt and yt –2.

 In more formal terms, the partial autocorrelation measures the correlation between
lagged values in a time series when we remove the influence of correlated lagged values
in between. Those are known as confounding variables. The partial autocorrelation func-
tion will reveal how the partial autocorrelation varies when the lag increases.

Let’s verify whether plotting the PACF will reveal the order of the process shown in equa-
tion 5.4. We know from equation 5.4 that we have a second-order autoregressive process,
or AR(2). We will simulate it using the ArmaProcess function from statsmodels. The
function expects an array containing the coefficients of an MA(q) process and an array
containing the coefficients for an AR(p) process. Since we are only interested in simulat-
ing an AR(2) process, we will set the coefficients of the MA(q) process to 0. Then, as spec-
ified by the statsmodels documentation, the coefficients of the AR(2) process must
have opposite signs to those we wish to simulate. Therefore, the array will contain –0.33
and –0.50. In addition, the function requires us to include the coefficient at lag 0, which
is the number that multiplies yt. Here, that number is simply 1. 

 Once the arrays of coefficients are defined, we can feed them to the ArmaProcess
function, and we will generate 1,000 samples. Make sure you set the random seed to
42 in order to reproduce the results shown here.

from statsmodels.tsa.arima_process import ArmaProcess
import numpy as np

np.random.seed(42)    

ma2 = np.array([1, 0, 0])    
ar2 = np.array([1, -0.33, -0.50])     

AR2_process = ArmaProcess(ar2, ma2).generate_sample(nsample=1000)    

Partial autocorrelation
Partial autocorrelation measures the correlation between lagged values in a time
series when we remove the influence of correlated lagged values in between. We can
plot the partial autocorrelation function to determine the order of a stationary AR(p)
process. The coefficients will be non-significant after lag p.

Set the random seed to 42 in order to 
reproduce the results shown here.

Set the coefficients of the 
MA(q) process to 0, since 
we are only interested in 
simulating an AR(2) process
Note that the first coefficien
is 1 for lag 0, and it must b
provided as specified by the
documentation.

Set the coefficients for the AR(2) process. Again, the coefficient at 
lag 0 is 1. Then, write the coefficients with opposite signs to what 
was defined in equation 5.4, as specified by the documentation.

Simulate the AR(2)
process and generate

1,000 samples.
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Now that we have a simulated AR(2) process, let’s plot the PACF and see if the coef-
ficients become abruptly non-significant after lag 2. If that is the case, we’ll know
that we can use the PACF plot to determine the order of a stationary autoregressive
process, just as we can use the ACF plot to determine the order of a stationary mov-
ing average process.

 The statsmodels library allows us to plot the PACF rapidly. We can use the
plot_pacf function, which simply requires our series and the number of lags to dis-
play on the plot. 

from statsmodels.graphics.tsaplots import plot_pacf

plot_pacf(AR2_process, lags=20);    

plt.tight_layout()

The resulting plot is shown in figure 5.7, and it shows that we have an autoregressive
process of order 2. 

We now know that we can use the PACF plot to identify the order of a stationary AR(p)
process. The coefficients in the PACF plot will be significant up until lag p. Afterward,
they should not be significantly different from 0. 

 Let’s see if we can apply the same strategy to our average weekly foot traffic data-
set. We made the series stationary and saw that the ACF plot exhibited a slowly

Plot the PACF of our 
simulated AR(2) process.

Figure 5.7 Plot of the PACF for our simulated AR(2) process. You can clearly 
see here that after lag 2, the partial autocorrelation coefficients are not 
significantly different from 0. Therefore, we can identify the order of a stationary 
AR(p) model using the PACF plot.
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decaying trend. Let’s plot the PACF to see if the lags become non-significant after a
particular lag.

 The process is exactly the same as what we just did, but this time we will plot the
PACF of our differenced series stored in foot_traffic_diff. You can see the result-
ing plot in figure 5.8.

plot_pacf(foot_traffic_diff, lags=20);    

plt.tight_layout()

Looking at figure 5.8, you can see that there are no significant coefficients after lag 3.
Therefore, the differenced average weekly foot traffic is an autoregressive process of
order 3, which can also be denoted as AR(3).

5.4 Forecasting an autoregressive process
Once the order is determined, we can fit an autoregressive model to forecast our
time series. In this case, the model is also termed AR(p), where p is still the order of
the process.

 We will forecast next week’s average foot traffic in a retail store using the same
dataset we have been working with. In order to evaluate our forecasts, we will hold out
the last 52 weeks of data for our test set, while the rest will be used for training. That
way, we can evaluate the performance of our forecast over a period of 1 year.

Plot the PACF of our 
differenced series.

Figure 5.8 The PACF of our differenced average weekly foot traffic in a retail 
store. You can see that the coefficients are non-significant after lag 3. 
Therefore, we can say that our stationary process is a third-order 
autoregressive process, or an AR(3) process.
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df_diff = pd.DataFrame({'foot_traffic_diff': foot_traffic_diff})    

train = df_diff[:-52]    
test = df_diff[-52:]    

print(len(train))    
print(len(test))    

You can see that our training set contains 947 data points, while the test set contains
52 data points as expected. Note that the sum of both sets gives 999, which is one less
data point than our original series. This is normal, since we applied differencing to
make the series stationary, and we know that differencing removes the first data point
from the series.

 Next, we will visualize the testing period for our scenario, in both the original
series and the differenced series. The plot is shown in figure 5.9.

fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True, 

➥ figsize=(10, 8))    

ax1.plot(df['foot_traffic'])
ax1.set_xlabel('Time')
ax1.set_ylabel('Avg. weekly foot traffic')
ax1.axvspan(948, 1000, color='#808080', alpha=0.2)

ax2.plot(df_diff['foot_traffic_diff'])
ax2.set_xlabel('Time')
ax2.set_ylabel('Diff. avg. weekly foot traffic')
ax2.axvspan(947, 999, color='#808080', alpha=0.2)

plt.xticks(np.arange(0, 1000, 104), np.arange(2000, 2020, 2))

fig.autofmt_xdate()
plt.tight_layout()

Given that our objective is to forecast next week’s average foot traffic at the retail
store, we will perform rolling forecasts over our test set. Remember that our data was
recorded over a weekly period, so predicting the next timestep means we’re forecast-
ing next week’s average foot traffic.

 We will forecast using three different methods. The historical mean method and
the last known value method will act as baselines, and we will use an AR(3) model,
since we previously established that we have a stationary third-order autoregressive
process. As we did in the previous chapter, we will use the mean squared error (MSE)
to evaluate the performance of each forecasting method. 

 Also, we will reuse the function we defined in the previous chapter to recursively
forecast over the testing period. However, this time we must include a method to use
an autoregressive model.

Create a DataFrame
from the differenced

foot traffic data.
The training set is all the data 
except the last 52 data points.

The test set is the 
last 52 data points.

Display how many data 
points are in the train set.

Display how many data 
points are in the test set.

Specify the figure’s size using the figsize 
parameter. The first number is the height, and 
the second number is the width, both in inches.
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We will again use the SARIMAX function from statsmodels, as it encompasses an AR
model. As mentioned previously, SARIMAX is a complex model that allows us to con-
sider seasonal effects, autoregressive processes, non-stationary time series, moving
average processes, and exogenous variables all in one single model. For now, we will
disregard all factors except the moving autoregressive portion.

def rolling_forecast(df: pd.DataFrame, train_len: int, horizon: int, 

➥ window: int, method: str) -> list:
    

    total_len = train_len + horizon
    end_idx = train_len
    

Listing 5.1 A function for rolling forecasts on a horizon

Figure 5.9 Testing period for our forecasts on the original and differenced series. Keep in mind that our differenced 
series has lost its first data point.
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    if method == 'mean':
        pred_mean = []
        
        for i in range(train_len, total_len, window):
            mean = np.mean(df[:i].values)
            pred_mean.extend(mean for _ in range(window))
            
        return pred_mean

    elif method == 'last':
        pred_last_value = []
        
        for i in range(train_len, total_len, window):
            last_value = df[:i].iloc[-1].values[0]
            pred_last_value.extend(last_value for _ in range(window))
            
        return pred_last_value
    
    elif method == 'AR':
        pred_AR = []
        
        for i in range(train_len, total_len, window):
            model = SARIMAX(df[:i], order=(3,0,0))    
            res = model.fit(disp=False)
            predictions = res.get_prediction(0, i + window - 1)
            oos_pred = predictions.predicted_mean.iloc[-window:]
            pred_AR.extend(oos_pred)
            
        return pred_AR

Once our function is defined, we can use it to generate the predictions according to
each method. We will assign them to their own column in test.

TRAIN_LEN = len(train)    
HORIZON = len(test)    
WINDOW = 1        

pred_mean = rolling_forecast(df_diff, TRAIN_LEN, HORIZON, WINDOW, 'mean')
pred_last_value = rolling_forecast(df_diff, TRAIN_LEN, HORIZON, WINDOW, 

➥ 'last')    
pred_AR = rolling_forecast(df_diff, TRAIN_LEN, HORIZON, WINDOW, 'AR')

test['pred_mean'] = pred_mean               
test['pred_last_value'] = pred_last_value   
test['pred_AR'] = pred_AR                   

test.head()

We can now visualize our predictions against the observed values in the test set. Note
that we are working with the differenced series, so our predictions are also differ-
enced values. The result is shown in figure 5.10.

The order specifies 
an AR(3) model.

Store the length of the training set. 
Note that constants are usually in 
capital letters in Python.

Store the length 
of the test set.

Since we wish to predict the 
next timestep, our window is 1.

Store the predictions 
in their respective 
columns in test.
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fig, ax = plt.subplots()

ax.plot(df_diff['foot_traffic_diff'])    
ax.plot(test['foot_traffic_diff'], 'b-', label='actual')    
ax.plot(test['pred_mean'], 'g:', label='mean')    
ax.plot(test['pred_last_value'], 'r-.', label='last')    
ax.plot(test['pred_AR'], 'k--', label='AR(3)')   

ax.legend(loc=2)

ax.set_xlabel('Time')
ax.set_ylabel('Diff. avg. weekly foot traffic')

ax.axvspan(947, 998, color='#808080', alpha=0.2)

ax.set_xlim(920, 999)

plt.xticks([936, 988],[2018, 2019])

fig.autofmt_xdate()
plt.tight_layout()

Looking at figure 5.10, you’ll see that, once again, using the historical mean produces
a straight line, which is shown in the plot as a dotted line. As for the predictions from
the AR(3) model and the last known value method, the curves are almost confound-
ing with that of the test set, so we will have to measure the MSE to assess which
method is the most performant. Again, we will use the mean_squared_error function
from the sklearn library.

Plot part of the training set so we can see the 
transition from the training set to the test set.

Plot the values 
from the test set.

Plot the predictions 
from the historical 
mean method.

Plot the predictions 
from the last known 
value method.

Plot the 
predictions from 
the AR(3) model.

Figure 5.10 Forecasts of the differenced average weekly foot traffic in a retail store
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ffrom sklearn.metrics import mean_squared_error

mse_mean = mean_squared_error(test['foot_traffic_diff'], test['pred_mean'])
mse_last = mean_squared_error(test['foot_traffic_diff'], 

➥ test['pred_last_value'])
mse_AR = mean_squared_error(test['foot_traffic_diff'], test['pred_AR'])

print(mse_mean, mse_last, mse_AR)

This prints out an MSE of 3.11 for the historical mean method, 1.45 for the last known
value method, and 0.92 for the AR(3) model. Since the MSE for the AR(3) model is
the lowest of the three, we conclude that the AR(3) model is the best-performing
method for forecasting next week’s average foot traffic. This is expected, since we
established that our stationary process was a third-order autoregressive process. It
makes sense that modeling using an AR(3) model will yield the best predictions.

 Since our forecasts are differenced values, we need to reverse the transformation
in order to bring our forecasts back to the original scale of the data; otherwise, our pre-
dictions will not make sense in a business context. To do this, we can take the cumula-
tive sum of our predictions and add it to the last value of our training set in the
original series. This point occurs at index 948, since we are forecasting the last 52
weeks in a dataset containing 1,000 points.

df['pred_foot_traffic'] = pd.Series()
df['pred_foot_traffic'][948:] = df['foot_traffic'].iloc[948] + 

➥ pred_df['pred_AR'].cumsum()    

Now we can plot our undifferenced predictions against the observed values in the test
set of the original series in its original scale. 

fig, ax = plt.subplots()

ax.plot(df['foot_traffic'])
ax.plot(df['foot_traffic'], 'b-', label='actual')    
ax.plot(df['pred_foot_traffic'], 'k--', label='AR(3)')   

ax.legend(loc=2)

ax.set_xlabel('Time')
ax.set_ylabel('Average weekly foot traffic')

ax.axvspan(948, 1000, color='#808080', alpha=0.2)

ax.set_xlim(920, 1000)
ax.set_ylim(650, 770)

plt.xticks([936, 988],[2018, 2019])

fig.autofmt_xdate()
plt.tight_layout()

Assign the undifferenced 
predictions to the pred_foot_traffic 
column in df.

Plot the actual values.

Plot the 
undifferenced 
predictions.
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In figure 5.11 you can see that our model (shown as a dashed line) follows the general
trend of the observed values in the test set. 

Now we can measure the mean absolute error (MAE) on the original dataset to get its
meaning in a business context. We’ll simply measure the MAE using the undiffer-
enced predictions.

from sklearn.metrics import mean_absolute_error

mae_AR_undiff = mean_absolute_error(df['foot_traffic'][948:], 

➥ df['pred_foot_traffic'][948:])

print(mae_AR_undiff)

This prints out a mean absolute error of 3.45. This means that our predictions are off
by 3.45 people on average, either above or below the actual value for the week’s foot
traffic. Note that we report the MAE because it has a simple business meaning that is
easy to understand and interpret.

5.5 Next steps
In this chapter, we covered the autoregressive process and how it can be modeled by
an AR(p) model, where p is the order, and it determines how many lagged values are
included in the model. We also saw how plotting the ACF cannot help us determine
the order of a stationary AR(p) process. Instead, we must plot the PACF, in which the
partial autocorrelation coefficients will be significant up until lag p only.

Figure 5.11 Undifferenced forecasts from the AR(3) model
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 However, there might be a situation where neither the ACF nor PACF gives us
information. What if both the ACF and PACF plots exhibit a slow decay or a sinusoi-
dal pattern? In that case, there is no order for the MA(q) or AR(p) process that can
be inferred. This means that we are facing a more complex process that is likely a
combination of both an AR(p) process and an MA(q) process. This is called an autore-
gressive moving average (ARMA) process, or ARMA(p,q), and it will the subject of the
next chapter.

5.6 Exercises
Test your knowledge and mastery of the AR(p) model with these exercises. The solu-
tions to all exercises are available on GitHub: https://github.com/marcopeix/Time
SeriesForecastingInPython/tree/master/CH05.

5.6.1 Simulate an AR(2) process and make forecasts

Simulate a stationary AR(2) process. Use the ArmaProcess function from the stats-
models library and simulate this process:

yt = 0.33yt –1 + 0.50yt –2

1 For this exercise, generate 1,000 samples.

from statsmodels.tsa.arima_process import ArmaProcess
import numpy as np

np.random.seed(42)    

ma2 = np.array([1, 0, 0])
ar2 = np.array([1, -0.33, -0.50])

AR2_process = ArmaProcess(ar2, ma2).generate_sample(nsample=1000)

2 Plot your simulated autoregressive process.
3 Run the ADF test and check if the process is stationary. If not, apply differencing.
4 Plot the ACF. Is it slowly decaying?
5 Plot the PACF. Are there significant coefficients after lag 2?
6 Separate your simulated series into train and test sets. Take the first 800 time-

steps for the train set and assign the rest to the test set.
7 Make forecasts over the test set. Use the historical mean method, last known

value method, and an AR(2) model. Use the rolling_forecast function, and
use a window length of 2.

8 Plot your forecasts.
9 Measure the MSE, and identify your champion model.

10 Plot your MSEs in a bar plot.

Set the seed for reproducibility. 
Change the seed if you want to 
experiment with different values.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH05
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH05
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH05


100 CHAPTER 5 Modeling an autoregressive process
5.6.2 Simulate an AR(p) process and make forecasts

Recreate the previous exercise but simulate an AR(p) process of your choice. Experi-
ment with a third- or fourth-order autoregressive process. I would recommend gener-
ating 10,000 samples. 

 When forecasting, experiment with different values for the window parameter of
your rolling_forecast function. How does it affect the model’s performance? Is
there a value that minimizes the MSE?

Summary
 An autoregressive process states that the present value is linearly dependent on

its past values and an error term.
 If the ACF plot of a stationary process shows a slow decay, then you likely have

an autoregressive process.
 The partial autocorrelation measures the correlation between two lagged val-

ues of a time series when you remove the effect of the other autocorrelated
lagged values. 

 Plotting the PACF of a stationary autoregressive process will show the order p of
the process. The coefficients will be significant up until lag p only.



Modeling
complex time series
In chapter 4 we covered the moving average process, denoted as MA(q), where q is
the order. You learned that in a moving average process, the present value is lin-
early dependent on the mean, the current error term, and past error terms. The
order q can be inferred using the ACF plot, where autocorrelation coefficients will
be significant up until lag q only. In the case where the ACF plot shows a slowly
decaying pattern or a sinusoidal pattern, it is possible that you are in the presence
of an autoregressive process instead of a moving average process.

This chapter covers
 Examining the autoregressive moving average 

model or ARMA(p,q)

 Experimenting with the limitations of the ACF 
and PACF plots

 Selecting the best model with the Akaike 
information criterion (AIC)

 Analyzing a time series model using residual 
analysis

 Building a general modeling procedure

 Forecasting using the ARMA(p,q) model
101
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 This led us to chapter 5, in which we covered the autoregressive process, denoted
as AR(p), where p is the order. In the autoregressive process, the present value is lin-
early dependent on its own past value. In other words, it is a regression of the variable
against itself. You saw that we can infer the order p using the PACF plot, where the par-
tial autocorrelation coefficients will be significant up until lag p only. We are therefore
at a point where we can identify, model, and predict a random walk, a pure moving
average process, and a pure autoregressive process.

 The next step is learning how to treat time series where you cannot infer an order
from the ACF plot or from the PACF plot. This means that both figures exhibit a
slowly decaying pattern or a sinusoidal pattern. In such a case, we are in the presence
of an autoregressive moving average (ARMA) process. This denotes the combination
of both the autoregressive and moving average processes that we covered in the two
previous chapters. 

 In this chapter, we will examine the autoregressive moving average process,
ARMA(p,q), where p denotes the order of the autoregressive portion and q denotes
the order of the moving average portion. Furthermore, using the ACF and PACF plots
to determine the orders q and p, respectively, becomes difficult, as both plots will show
either a slowly decaying or sinusoidal pattern. Thus, we will define a general modeling
procedure that will allow us to model such complex time series. This procedure involves
model selection using the Akaike information criterion (AIC), which will determine the
optimal combination of p and q for our series. Then we must evaluate the model’s valid-
ity using residual analysis by studying the correlogram, Q-Q plot, and density plot of the
model’s residuals to assess if they closely resemble white noise. If that is the case, we can
move on to forecasting our time series using the ARMA(p,q) model.

 This chapter will introduce foundational knowledge for forecasting complex time
series. All the concepts introduced here will be reused in further chapters when we
start modeling non-stationary time series and incorporating seasonality and exoge-
nous variables.

6.1 Forecasting bandwidth usage for data centers
Suppose that you are tasked with predicting bandwidth usage for a large data center.
Bandwidth is defined as the maximum rate of data that can be transferred. Its base
unit is bits per second (bps). 

 Forecasting bandwidth usage allows data centers to better manage their comput-
ing resources. In the case where less bandwidth usage is expected, they can shut down
some of their computing resources. This in turns reduces expenses and allows for
maintenance. On the other hand, if bandwidth usage is expected to increase, they can
dedicate the required resources to sustain the demand and ensure low latency, thus
keeping their customers satisfied.

 For this situation, there are 10,000 data points representing the hourly bandwidth
usage starting in January 1, 2019. Here the bandwidth is measured in megabits per sec-
ond (Mbps), which is equivalent to 106 bps. We can visualize our time series in figure 6.1.
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Looking at figure 6.1, you can see long-term trends over time, meaning that this series
is likely not stationary, so we need to apply a transformation. Also, there seems to be
no cyclical behavior, so we can rule out the presence of seasonality in our series.

 In order to forecast bandwidth usage, we need to identify the underlying process
in our series. Thus, we’ll follow the steps that we defined in chapter 5. That way, we
can verify whether we have a random walk, a moving average process, or an autore-
gressive process. The steps are shown in figure 6.2.

 The first step is to collect the data, which is already done in this case. Then we
must determine if our series is stationary or not. The presence of a trend in the plot
hints that our series is not stationary. Nevertheless, we will apply the ADF test to check
for stationarity and apply a transformation accordingly. 

 Then we will plot the ACF function and find that there are significant autocorrela-
tion coefficients after lag 0, which means it is not a random walk. However, we will
observe that coefficients slowly decay. They do not become abruptly non-significant
after a certain lag, which means that it is not a purely moving average process. 

 We’ll then move on to plotting the PACF function. This time we will notice a sinu-
soidal pattern, meaning that coefficients do not become abruptly non-significant after
a certain lag. This will lead us to the conclusion that it is not a purely autoregressive
process either.

 Therefore, it must be a combination of autoregressive and moving average pro-
cesses, resulting in an autoregressive moving average process that can be modeled
with the ARMA(p,q) model, where p is the order of the autoregressive process and q is

Figure 6.1 Hourly bandwidth usage in a data center since January 1, 2019. The 
dataset contains 10,000 points.
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the order of the moving average process. It is difficult to use the ACF and PACF plots
to respectively find p and q, so we will fit many ARMA(p,q) models with different com-
binations of values for p and q. We will then select a model according to the Akaike

Gather data

NoIs it stationary?
Apply

transformations

Plot ACF

Yes

Is there

autocorrelation?
It is a random walk.No

Do autocorrelation

coefficients become

abruptly non-significant

after lag ?q

Yes

It is an MA( ) process.qYes

No

Do coefficients become

abruptly non-significant

after lag ?p

It is an AR( ) process.p

No

Yes

Not an AR( ) processp

Plot PACF

Figure 6.2 Steps to identify a random 
walk, a moving average process, and an 
autoregressive process
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information criterion and assess its viability by analyzing its residuals. Ideally, the resid-
uals of a model will have characteristics similar to white noise. Then we will be able to
use this model to make forecasts. For this example, we will forecast the hourly band-
width usage over the next two hours.

6.2 Examining the autoregressive moving average process
The autoregressive moving average process is a combination of the autoregressive process
and the moving average process. It states that the present value is linearly dependent
on its own previous values and a constant, just like in an autoregressive process, as well
as on the mean of the series, the current error term, and past error terms, like in a
moving average process.

 The autoregressive moving average process is denoted as ARMA(p,q), where p is
the order of the autoregressive portion, and q is the order of the moving average por-
tion. Mathematically, the ARMA(p,q) process is expressed as a linear combination of a
constant C, the past values of the series yt–p, the mean of the series µ, past error termsϵt–q, and the current error term ϵt, as shown in equation 6.1.

               yt = C + φ1yt–1 + φ2yt–2 +⋅⋅⋅+ φpyt–p + ϵt + θ1ϵt–1 + θ2ϵt–2 +⋅⋅⋅+ θqϵt–q Equation 6.1

Again, the order p determines the number of past values that affect the present value.
Similarly, the order q determines the number of past error terms that affect the pres-
ent value. In other words, the orders p and q dictate the number of parameters for the
autoregressive and moving average portions, respectively.

 Thus, if we have an ARMA(1,1) process, we are combining an autoregressive pro-
cess of order 1, or AR(1), with a moving average process of order 1, or MA(1). Recall
that a first-order autoregressive process is a linear combination of a constant C, the
value of the series at the previous timestep φ1yt –1, and white noise ϵt, as shown in equa-
tion 6.2.

                  AR(1) := yt = C + φ1yt –1 + ϵt Equation 6.2

Autoregressive moving average process
The autoregressive moving average process is a combination of the autoregressive
process and the moving average process. 

It is denoted as ARMA(p,q), where p is the order of the autoregressive process, and
q is the order of the moving average process. The general equation of the ARMA(p,q)
model is

yt = C + φ1yt–1 + φ2yt–2 +⋅⋅⋅+ φpyt–p + µ + ϵt + θ1ϵt–1 + θ2ϵt–2 +⋅⋅⋅+ θqϵt–q

An ARMA(0,q) process is equivalent to an MA(q) process, since the order p = 0 can-
cels the AR(p) portion. An ARMA(p,0) process is equivalent to an AR(p) process, since
the order q = 0 cancels the MA(q) portion.
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Also recall that a first-order moving average process, or MA(1), is a linear combina-
tion of the mean of the series µ, the current error term ϵt , and the error term at the
previous timestep θ1ϵt –1, as shown in equation 6.3.

                   MA(1) := yt = µ + ϵt + θ1ϵt –1 Equation 6.3

We can combine the AR(1) and MA(1) processes to obtain an ARMA(1,1) process as
shown in equation 6.4, which combines the effects of equations 6.2 and 6.3. 

                ARMA(1,1) := yt = C + φ1yt –1 + ϵt + θ1ϵt –1 Equation 6.4

If we have an ARMA(2,1) process, we are combining a second-order autoregressive
process with a first-order moving average process. We know that we can express an
AR(2) process as equation 6.5, while the MA(1) process from equation 6.3 remains
the same.

               Equation 6.5

Thus, an ARMA(2,1) process can be expressed as the combination of the AR(2) pro-
cess defined in equation 6.5 and the MA(1) process defined in equation 6.3. This is
shown in equation 6.6.

                 Equation 6.6

In the case where p = 0, we have an ARMA(0,q) process, which is equivalent to a pure
MA(q) process as seen in chapter 4. Similarly, if q = 0, we have an ARMA(p,0) process,
which is equivalent to a pure AR(p) process, as seen in chapter 5.

 We can see now how the order p only affects the autoregressive portion of the pro-
cess by determining the number of past values to include in the equation. Similarly,
the order q only affects the moving average portion of the process by determining the
number of past error terms to include in the equation of ARMA(p,q). Of course, the
higher the orders p and q, the more terms that are included, and the more complex
our process becomes.

 In order to model and forecast an ARMA(p,q) process, we need to find the orders
p and q. That way, we can use an ARMA(p,q) model to fit the available data and pro-
duce forecasts.

6.3 Identifying a stationary ARMA process
Now that we’ve defined the autoregressive moving average process and seen how the
orders p and q affect the model’s equation, we need to determine how to identify such
an underlying process in a given time series.

 We’ll extend the steps that we defined in chapter 5 to include the final possibility
that we have an ARMA(p,q) process, as shown in figure 6.3.
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In figure 6.3 you’ll notice that if neither of the ACF and PACF plots shows a clear cut-
off between significant and non-significant coefficients, then we have an ARMA(p,q)
process. To verify that, let’s simulate our own ARMA process.

Gather data

NoIs it stationary?
Apply

transformations

Plot ACF

Yes

Is there

autocorrelation?
It is a random walk.No

Do autocorrelation

coefficients become

abruptly non-significant

after lag ?q

Yes

It is an MA( ) process.qYes

No

Plot PACF

Do coefficients become

abruptly non-significant

after lag ?p

It is an AR( ) process.p

No

Yes

It is an ARMA( , ) process.p q

Figure 6.3 Steps to identify a random 
walk, a moving average process MA(q), 
an autoregressive process AR(p), and an 
autoregressive moving average process 
ARMA(p,q)
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 We’ll simulate an ARMA(1,1) process. This is equivalent to combining an MA(1)
process with an AR(1) process. Specifically, we will simulate the ARMA(1,1) process
defined in equation 6.7. Notice that the constant C and mean µ are both equal to 0
here. The coefficients 0.33 and 0.9 are subjective choices for this simulation.

                           yt = 0.33yt –1 + 0.9ϵt –1 + ϵt Equation 6.7

The objective of this simulation is to demonstrate that we cannot use the ACF plot to
identify the order q of an ARMA(p,q) process, which in this case is 1, nor can we use the
PACF plot to identify the order p of an ARMA(p,q) process, which in this case is 1 also.

 We’ll use the ArmaProcess function from the statsmodels library to simulate our
ARMA(1,1) process. As in previous chapters, we’ll define the array of coefficients for
the AR(1) process, as well as for the MA(1) process. From equation 6.7, we know our
AR(1) process will have a coefficient of 0.33. However, keep in mind that the function
expects to have the coefficient of the autoregressive process with its opposite sign, as
this is how it is implemented in the statsmodels library. Therefore, we input it as –0.33.
For the moving average portion, equation 6.7 specifies that the coefficient is 0.9. Also
recall that when defining your arrays of coefficients, the first coefficient is always equal
to 1, as specified by the library, which represents the coefficient at lag 0. Once our
coefficients are defined, we will generate 1,000 data points. 

NOTE The source code for this chapter is available on GitHub: https://
github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH06.

from statsmodels.tsa.arima_process import ArmaProcess
import numpy as np

np.random.seed(42)

ar1 = np.array([1, -0.33])   
ma1 = np.array([1, 0.9])    

ARMA_1_1 = ArmaProcess(ar1, ma1).generate_sample(nsample=1000)    

With our simulated data ready, we can move on to the next step and verify whether
our process is stationary or not. We can do this by running the augmented Dickey-
Fuller (ADF) test. We’ll print out the ADF statistic as well as the p-value. If the ADF sta-
tistic is a large negative number, and if we have a p-value smaller than 0.05, we can
reject the null hypothesis and conclude that we have a stationary process.

from statsmodels.tsa.stattools import adfuller

ADF_result = adfuller(ARMA_1_1)    

print(f'ADF Statistic: {ADF_result[0]}')
print(f'p-value: {ADF_result[1]}')

Define the coefficients for the AR(1) portion. 
Remember that the first coefficient is always 1, 
as specified by the documentation. Also, we must 
write the coefficient of the AR portion with the 
opposite sign of what is defined in equation 6.7.

Define the coefficients for the MA(1) portion. The first 
coefficient is 1, for lag 0, as specified by the documentation. 

Generate
1,000 samples.

Run the ADF test 
on the simulated 
ARMA(1,1) data.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH06
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH06
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH06
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This returns an ADF statistic of –6.43 and a p-value of 1.7×10–8. Since we have a large
negative ADF statistic and a p-value that’s much smaller than 0.05, we can conclude
that our simulated ARMA(1,1) process is stationary.

 Following the steps outlined in figure 6.3, we’ll plot the ACF and see if we can infer
the order of the moving average portion of our simulated ARMA(1,1) process. Again,
we’ll use the plot_acf function from statsmodels to generate figure 6.4.

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(ARMA_1_1, lags=20);

plt.tight_layout()

In figure 6.4 you’ll notice a sinusoidal pattern in the plot, which indicates the pres-
ence of an autoregressive process. This is expected, since we simulated an ARMA(1,1)
process and we know of the existence of the autoregressive portion. Furthermore,
you’ll notice that the last significant coefficient is at lag 2. However, we know that our
simulated data has an MA(1) process, so we would expect to have significant coeffi-
cients up to lag 1 only. We can thus conclude that the ACF plot does not reveal any
useful information about the order q of our ARMA(1,1) process. 

 We can now move on to the next step outlined in figure 6.3 and plot the PACF. In
chapter 5 you learned that the PACF can be used to find the order of a stationary
AR(p) process. We will now verify whether we can find the order p of our simulated

Figure 6.4 ACF plot of our simulated ARMA(1,1) process. Notice the 
sinusoidal pattern on the plot, meaning that an AR(p) process is in play. 
Also, the last significant coefficient is at lag 2, which suggests that q = 2. 
However, we know that we simulated an ARMA(1,1) process, so q must be 
equal to 1! Therefore, the ACF plot cannot be used to infer the order q of 
an ARMA(p,q) process.
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ARMA(1,1) process, where p = 1. We’ll use the plot_pacf function to generate fig-
ure 6.5.

from statsmodels.graphics.tsaplots import plot_pacf

plot_pacf(ARMA_1_1, lags=20);

plt.tight_layout()

In figure 6.5 we can see a clear sinusoidal pattern, meaning that we cannot infer a
value for the order p. We know that we simulated an ARMA(1,1) process, but we can-
not determine that value from the PACF plot in figure 6.5, since we have significant
coefficients past lag 1. Therefore, the PACF plot cannot be used to find the order p of
an ARMA(p,q) process.

 According to figure 6.3, since there is no clear cutoff between significant and non-
significant coefficients in both the ACF and PACF plots, we can conclude that we have
an ARMA(p,q) process, which is indeed the case. 

Identifying a stationary ARMA(p,q) process
If your process is stationary and both the ACF and PACF plots show a decaying or sinu-
soidal pattern, then it is a stationary ARMA(p,q) process.

Figure 6.5 PACF plot of our simulated ARMA(1,1) process. Again, we have a 
sinusoidal pattern with no clear cutoff between significant and non-significant 
coefficients. From this plot, we cannot infer that p = 1 in our simulated 
ARMA(1,1) process, meaning that we cannot determine the order p of an 
ARMA(p,q) process using a PACF plot.
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We know that determining the order of our process is key in modeling and forecast-
ing, since the order will dictate how many parameters must be included in our model.
Since the ACF and PACF plots are not useful in the case of an ARMA(p,q) process, we
must thus devise a general modeling procedure that will allow us to find the appropri-
ate combination of (p,q) for our model.

6.4 Devising a general modeling procedure
In the previous section, we covered the steps for identifying a stationary ARMA(p,q)
process. We saw that if both the ACF and PACF plots display a sinusoidal or decaying
pattern, our time series can be modeled by an ARMA(p,q) process. However, neither
plot was useful for determining the orders p and q. With our simulated ARMA(1,1)
process, we noticed that coefficients were significant after lag 1 in both plots.

 Therefore, we must devise a procedure that allows us to find the orders p and q.
This procedure will have the advantage that it can also be applied in situations where
our time series is non-stationary and has seasonal effects. Furthermore, it will also be
suitable for cases where p or q are equal to 0, meaning that we can move away from
plotting the ACF and PACF and rely entirely on a model selection criterion and resid-
ual analysis. The steps are shown in figure 6.6.

 In figure 6.6 you can see that this new modeling procedure completely removes
the plotting of the ACF and PACF. It allows us to select a model based entirely on sta-
tistical tests and numerical criteria, instead of relying on the qualitative analysis of the
ACF and PACF plots.

 The first few steps remain unchanged from those we gradually built up until chap-
ter 5, as we must still gather the data, test for stationarity, and apply transformations
accordingly. Then we list different possible values of p and q—note that they only take
positive integers. With a list of possible values, we can fit every unique combination of
ARMA(p,q) to our data. 

 Once that’s done, we can compute the Akaike information criterion (AIC), which is
discussed at length in sections 6.4.1 and 6.4.2. This quantifies the quality of each
model in relation to each other. The model with the lowest AIC is then selected. 

 From there, we can analyze the model’s residuals, which is the difference between
the actual and predicted values of the model. Ideally, the residuals will look like white
noise, which would mean that any difference between the predicted values and actual
values is due to randomness. Therefore, the residuals must be uncorrelated and inde-
pendently distributed. We can assess those properties by studying the quantile-quantile
plot (Q-Q plot) and running the Ljung-Box test, which we’ll explore in section 6.4.3. If the
analysis leads us to conclude that the residuals are completely random, we have a
model ready for forecasting. Otherwise, we must try a different set of values for p and
q and start the process over.

 A lot of new concepts and techniques will be introduced as we work through our
new general modeling procedure. We will dive into each step in detail in future sections
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Figure 6.6 General modeling procedure for an ARMA(p,q) process. The first steps are to 
gather the data, test for stationarity, and apply transformations accordingly. Then we define a 
list of possible values for p and q. We then fit every combination of ARMA(p,q) to our data and 
select the model with the lowest AIC. Then we perform the residual analysis by looking at the 
Q-Q plot and the residual correlogram. If they approach that of white noise, the model can be 
used for forecasts. Otherwise, we must try different values for p and q.
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and work with our simulated ARMA(1,1) process. Then we will apply the same proce-
dure to model bandwidth usage.

6.4.1 Understanding the Akaike information criterion (AIC)

Before covering the steps outlined in figure 6.6, we need to determine how we will
choose the best model of all the models that we will fit. Here we will use the Akaike
information criterion (AIC) to select the optimal model.

 The AIC estimates the quality of a model relative to other models. Given that there
will be some information lost when a model is fitted to the data, the AIC quantifies the
relative amount of information lost by the model. The less information lost, the lower
the AIC value and the better the model. 

 The AIC is a function of the number of estimated parameters k and the maximum
value of the likelihood function for the model , as shown in equation 6.8.

Equation 6.8

The number of estimated parameters k is directly related to the order (p,q) of an
ARMA(p,q) model. If we fit an ARMA(2,2) model, then we have 2 + 2 = 4 parameters
to estimate. If we fit an ARMA(3,4) model, then we have 3 + 4 = 7 parameters to esti-
mate. You can see how fitting a more complex model can penalize the AIC score: as the
order (p,q) increases, the number of parameters k increases, and so the AIC increases. 

 The likelihood function measures the goodness of fit of a model. It can be viewed
as the opposite of the distribution function. Given a model with fixed parameters, the
distribution function will measure the probability of observing a data point. The likeli-
hood function flips the logic. Given a set of observed data, it will estimate how likely it
is that different model parameters will generate the observed data. 

 For example, consider the situation where we roll a six-sided die. The distribution
function tells us that there is a 1/6 probability that we’ll observe one of these values:
[1,2,3,4,5,6]. Now let’s flip this logic to explain the likelihood function. Suppose that
you roll a die 10 times and you obtain the following values: [1,5,3,4,6,2,4,3,2,1]. The

Akaike information criterion (AIC)
The Akaike information criterion (AIC) is a measure of the quality of a model in rela-
tion to other models. It is used for model selection.

The AIC is a function of the number of parameters k in a model and the maximum
value of the likelihood function :

The lower the value of the AIC, the better the model. Selecting according to the AIC
allows us to keep a balance between the complexity of a model and its goodness of
fit to the data.
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likelihood function will determine how likely it is that the die has six sides. Applying
this logic to the context of AIC, we can think of the likelihood function as an answer
to the question “How likely is it that my observed data is coming from an ARMA(1,1)
model?” If it is very likely, meaning that L̂ is large, then the ARMA(1,1) model fits the
data well.

 Therefore, if a model fits the data really well, the maximum value of the likelihood
will be high. Since the AIC subtracts the natural logarithm of the maximum value of
the likelihood, represented by L̂ in equation 6.8, then a large value of L̂ will lower
the AIC.

 You can see how the AIC keeps a balance between underfitting and overfitting.
Remember that the lower the AIC, the better the model relative to other models. There-
fore, an overfitting model would have a very good fit, meaning that L̂ is large and AIC
decreases. However, the number of parameters k would be large as well, which penal-
izes the AIC. An underfitting model would have a small number of parameters, so k
would be small. However, the maximum value of the likelihood function would also
be small due to the poor fit, meaning again that the AIC is penalized. Thus, the AIC
allows us to find a balance between the number of parameters in a model and a good
fit to the training data.

 Finally, we must keep in mind that the AIC quantifies the quality of a model in rela-
tion to other models only. It is therefore a relative measure of quality. In the event that
we fit only poor models to our data, the AIC will simply help us determine the best
from that group of models. 

 Now let’s use the AIC to help us select an appropriate model for our simulated
ARMA(1,1) process.

6.4.2 Selecting a model using the AIC

We’ll now cover the steps of the general modeling procedure outlined in figure 6.6
using our simulated ARMA(1,1) process.

 In section 6.3 we tested for stationarity and concluded that our simulated process
is already stationary. Therefore, we can move on to defining a list of possible values for
p and q. While we know the values of both orders from the simulation, let’s consider
the following steps as a demonstration that the general modeling procedure works.

 We will allow the values of p and q to vary from 0 to 3. Note that this range is arbi-
trary, and you may try a larger range of values if you wish. We will create a list of all
possible combinations of (p,q), using the product function from itertools. Since
there four possible values for p and q, this will generate a list of 16 unique combina-
tions of (p,q).

from itertools import product

ps = range(0, 4, 1)    
qs = range(0, 4, 1)     

order_list = list(product(ps, qs))   

Create a list of possible values for p starting from 
0 inclusively to 4 exclusively, with steps of 1.

Create a list of possible values for q starting from 
0 inclusively to 4 exclusively, with steps of 1.

Generate a list containing all 
unique combinations of (p,q).
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With our list of possible values created, we must now fit all unique 16 ARMA(p,q) mod-
els to our simulated data. To do so, we’ll define an optimize_ARMA function that takes
the data and the list of unique (p,q) combinations as input. Inside the function, we’ll
initialize an empty list to store each (p,q) combination and its corresponding AIC.
Then we’ll iterate over each (p,q) combination and fit an ARMA(p,q) model to our
data. We’ll compute the AIC and store the result. Then we’ll create a DataFrame and
sort it by AIC value in ascending order, since the lower the AIC, the better the model.
Our function will finally output the ordered DataFrame so we can select the appropri-
ate model. The optimize_ARMA function is shown in the following listing.

from typing import Union
from tqdm import tqdm_notebook
from statsmodels.tsa.statespace.sarimax import SARIMAX

def optimize_ARMA(endog: Union[pd.Series, list], order_list: list) -> 

➥ pd.DataFrame:    
    
    results = []   
    
    for order in tqdm_notebook(order_list):    
        try: 
            model = SARIMAX(endog, order=(order[0], 0, order[1]), 

➥ simple_differencing=False).fit(disp=False)     
        except:
            continue
            
        aic = model.aic    
        results.append([order, aic])  
        
    result_df = pd.DataFrame(results)    
    result_df.columns = ['(p,q)', 'AIC']   
    
    #Sort in ascending order, lower AIC is better
    result_df = result_df.sort_values(by='AIC', 

➥ ascending=True).reset_index(drop=True)    
    
    return result_df

With our function defined, we can now use it and fit the different ARMA(p,q) models.
The output is shown in figure 6.7. You’ll see that the model with the lowest AIC corre-
sponds to an ARMA(1,1) model, which is exactly the process that we simulated. 

result_df = optimize_ARMA(ARMA_1_1, order_list)  
result_df    

Listing 6.1 Function to fit all unique ARMA(p,q) models

The function takes as inputs the time series 
data and the list of unique (p,q) combinations.

Initialize an empty list to 
store the order (p,q) and its 
corresponding AIC as a tuple.

Iterate over each unique 
(p,q) combination. The use 
of tqdm_notebook will 
display a progress bar.

Fit an ARMA(p,q) model using 
the SARIMAX function. We specify 
simple_differencing=False to 
prevent differencing. Recall 
that differencing is the result 
of yt – yt–1. We also specify 
disp=False to avoid printing 
convergence messages to the 
console.

Calculate the 
model’s AIC.

pend the (p,q)
bination and

C as a tuple to
he results list.

Store the (p,q) 
combination and AIC 
in a DataFrame.

Label the
olumns of
ataFrame.

Sort the DataFrame in
ascending order of AIC

values. The lower the AIC,
the better the model.

Fit the different ARMA(p,q) 
models on the simulated 
ARMA(1,1) data.

Display the resulting DataFrame.
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As mentioned in the previous section, the AIC is a measure of relative quality. Here we
can say that an ARMA(1,1) model is the best model relative to all other models that
we fit to our data. Now we need an absolute measure of the model’s quality. This
brings us to the next step of our modeling procedure, which is residual analysis.

6.4.3 Understanding residual analysis

Up to this point, we have fit different ARMA(p,q) models to our simulated ARMA(1,1)
process. Using the AIC as a model selection criterion, we found that an ARMA(1,1)
model is the best model relative to all others that were fit. Now we must measure its
absolute quality by performing an analysis on the model’s residuals.

 This brings us to the last steps before forecasting, which is residual analysis and
answering the two questions in figure 6.8: does the Q-Q plot show a straight line, and
are the residuals uncorrelated? If the answer to both questions is yes, then we have a
model that’s ready to make forecasts. Otherwise, we must try different combinations
of (p,q) and restart the process.

 The residuals of a model are simply the difference between the predicted values
and the actual values. Consider our simulated ARMA(1,1) process expressed in equa-
tion 6.9.

                   Equation 6.9

Figure 6.7 Resulting DataFrame from fitting all 
ARMA(p,q) models to the simulated ARMA(1,1) 
data. We can see that the model with the lowest 
AIC corresponds to an ARMA(1,1) model, meaning 
that we successfully identified the order of our 
simulated data.
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Now suppose that we fit an ARMA(1,1) model to our process, and we estimate the
model’s coefficients perfectly, such that the model is expressed as equation 6.10.

                       Equation 6.10
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Figure 6.8 The general modeling 
procedure for an ARMA(p,q) process
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The residuals will be the difference between the values coming from our model and
the observed values from our simulated process. In other words, the residuals are
the difference between equation 6.9 and equation 6.10. The result is shown in equa-
tion 6.11.

                    Equation 6.11

As you can see in equation 6.11, in a perfect situation the residuals of a model are
white noise. This indicates that the model has captured all predictive information,
and there is only a random fluctuation left that cannot be modeled. Thus, the residu-
als must be uncorrelated and have a normal distribution in order for us to conclude
that we have a good model for making forecasts.

 There are two aspects to residual analysis: a qualitative analysis and a quantitative
analysis. The qualitative analysis focuses on studying the Q-Q plot, while the quantita-
tive analysis determines whether our residuals are uncorrelated.

QUALITATIVE ANALYSIS: STUDYING THE Q-Q PLOT

The first step in residual analysis is the study of the quantile-quantile plot (Q-Q plot).
The Q-Q plot is a graphical tool for verifying our hypothesis that the model’s residuals
are normally distributed.

 The Q-Q plot is constructed by plotting the quantiles of our residuals on the y-axis
against the quantiles of a theoretical distribution, in this case the normal distribution,
on the x-axis. This results in a scatterplot. We are comparing the distribution to a nor-
mal distribution because we want the residuals to be similar to white noise, which is
normally distributed.

 If both distributions are similar, meaning that the distribution of the residuals is
close to a normal distribution, the Q-Q plot will display a straight line that approxi-
mately lies on y = x. This in turn means that our model is a good fit for our data. You
can see an example of a Q-Q plot where the residuals are normally distributed in fig-
ure 6.9.

 On the other hand, a Q-Q plot of residuals that are not close to a normal distribu-
tion will generate a curve that departs from y = x. In figure 6.10 you can see that the
thick line is not straight and not lying on y = x. If we get this sort of result, we can con-
clude that the distribution of our residuals does not resemble a normal distribution,
which is a sign that our model is not a good fit for our data. Therefore, we must try a
different range of values for p and q, fit the models, select the one with the lowest AIC,
and perform residual analysis on the new model.
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Figure 6.9 A Q-Q plot of randomly distributed residuals. On the y-axis, we 
have the quantiles coming from the residuals. On the x-axis, we have the 
quantiles coming from a theoretical normal distribution. You can see a 
straight line approximately lying on y = x. This is an indication that our 
residuals are very close to a normal distribution.

Figure 6.10 A Q-Q plot of residuals that are not close to a normal 
distribution. You can clearly see that the thick line is curved, and it is not 
lying on y = x. Therefore, the distribution of the residuals is very different 
from a normal distribution.
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You can see how the Q-Q plot can help us. We know that if a model is a good fit to our
data, the residuals will be similar to white noise and therefore will have similar proper-
ties. This means that they should be normally distributed. Hence, if the Q-Q plot dis-
plays a straight line, we have a good model. Otherwise, our model must be discarded,
and we must try to fit a better model.

 While the Q-Q plot is a fast method for assessing the quality of our model, this
analysis remains subjective. Thus, we will further support our residual analysis with a
quantitative method by applying the Ljung-Box test.

QUANTITATIVE ANALYSIS: APPLYING THE LJUNG-BOX TEST

Once we have analyzed the Q-Q plot and determined that our residuals are approxi-
mately normally distributed, we can then apply the Ljung-Box test to demonstrate that
the residuals are uncorrelated. Remember that a good model has residuals that are sim-
ilar to white noise, so the residuals should be normally distributed and uncorrelated.

 The Ljung-Box test is a statistical test that tests if the autocorrelation of a group of
data is significantly different from 0. In our case, we will apply the Ljung-Box test to the
model’s residuals to assess whether they are correlated or not. The null hypothesis states
that the data is independently distributed, meaning that there is no autocorrelation.

Quantile-quantile plot (Q-Q plot)
A Q-Q plot is a plot of the quantiles of two distributions against each other. In time
series forecasting, we plot the distribution of our residuals on the y-axis against the
theoretical normal distribution on the x-axis.

This graphical tool allows to us to assess the goodness of fit of our model. If the dis-
tribution of our residuals is similar to a normal distribution, we will see a straight line
lying on y = x. This means that our model is a good fit, because the residuals are
similar to white noise.

On the other hand, if the distribution of our residuals is different from a normal dis-
tribution, we will see a curved line. We can then conclude that our model is not a good
fit, since the residuals’ distribution is not close to a normal distribution, and therefore
the residuals are not similar to white noise.

Ljung-Box test
The Ljung-Box test is a statistical test that determines whether the autocorrelation of
a group of data is significantly different from 0.

In time series forecasting, we apply the Ljung-Box test on the model’s residuals to
test whether they are similar to white noise. The null hypothesis states that the data
is independently distributed, meaning that there is no autocorrelation. If the p-value
is larger than 0.05, we cannot reject the null hypothesis, meaning that the residuals
are independently distributed. Therefore, there is no autocorrelation, the residuals
are similar to white noise, and the model can be used for forecasting.
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The test will return the Ljung-Box statistic and a p-value. If the p-value is less than 0.05,
we reject the null hypothesis, meaning that the residuals are not independently distrib-
uted, which in turn means that there is autocorrelation. In such a situation, the residuals
do not approximate the properties of white noise, and the model must be discarded.

 If the p-value is larger than 0.05, we cannot reject the null hypothesis, meaning
that our residuals are independently distributed. Thus, there is no autocorrelation,
and the residuals are similar to white noise. This means that we can move on with our
model and make forecasts.

 Now that you understand the concepts of residual analysis, let’s apply these tech-
niques to our simulated ARMA(1,1) process.

6.4.4 Performing residual analysis

We will now resume the modeling procedure for our simulated ARMA(1,1) process.
We have successfully selected a model with the lowest AIC, which was expectedly an
ARMA(1,1) model. Now, as you can see in figure 6.11, we need to perform residual
analysis to assess whether our model is a good fit to the data.

 We know that our ARMA(1,1) model must be good, since we simulated an
ARMA(1,1) process, but this section will demonstrate that our modeling procedure
works. We are not likely to be modeling and forecasting simulated data in a business
context, so it is important to cover the entire modeling procedure on a known process
first, to convince ourselves that it works, before applying it on real-life data.

 To perform residual analysis, we need to fit our model and store the residuals in a
variable for easy access. Using statsmodels, we will first define an ARMA(1,1) model
before fitting it to our simulated data. Then we can access the residuals with the resid
property.

model = SARIMAX(ARMA_1_1, order=(1,0,1), simple_differencing=False)
model_fit = model.fit(disp=False)
residuals = model_fit.resid    

The next step is to plot the Q-Q plot, and we’ll use the qqplot function from stats-
models to display  our residuals against a normal distribution. The function simply
requires the data, and it will by default compare its distribution to a normal distribu-
tion. We’ll also need to display the line y = x in order to assess the similarity of both dis-
tributions. 

from statsmodels.graphics.gofplots import qqplot

qqplot(residuals, line='45');    

If the p-value is less than 0.05, we reject the null hypothesis, meaning that our resid-
uals are not independently distributed and are correlated. The model cannot be used
for forecasting.

Store the model’s residuals.

Plot the Q-Q plot of the residuals. 
Specify the display of the line y = x.
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The result is shown in figure 6.12. You will see a thick straight line that approximately
lies on y = x. Therefore, from a qualitative standpoint, the model’s residuals seem to
be normally distributed, just like white noise, which is an indication that our model
fits the data well.
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Figure 6.11 General modeling procedure 
for an ARMA(p,q) process
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We’ll extend our qualitative analysis by using the plot_diagnostics method. This
generates a figure containing four different plots, including a Q-Q plot. 

model_fit.plot_diagnostics(figsize=(10, 8));

The result is shown in figure 6.13. You can see how statsmodels makes it easy for us
to qualitatively analyze the residuals.

 The top-left plot shows the residuals across the entire dataset. You can see that
there is no trend, and the mean seems stable over time, which is indicative of station-
arity, just like white noise.

 The top-right plot shows a histogram of the residuals. You can see the shape of a
normal distribution on this plot, which again indicates that the residuals are close to
white noise, as white noise is normally distributed as well.

 At the bottom left, we have the Q-Q plot, which is identical to figure 6.12, and
therefore leads us to the same conclusion.

 Finally, the bottom-right plot shows the autocorrelation function of our residuals. You
can see that there is only a significant peak at lag 0, and no significant coefficients other-
wise. This means that the residuals are not correlated, which further supports the conclu-
sion that they are similar to white noise, which is what we expect from a good model.

 The final step in residual analysis is applying the Ljung-Box test. This allows us to
quantitatively assess whether our residuals are indeed uncorrelated. We will use the
acorr_ljungbox function from statsmodels to perform the Ljung-Box test on the
residuals. The function takes as input the residuals as well as a list of lags. Here we will
compute the Ljung-Box statistic and p-value for 10 lags. 

Figure 6.12 Q-Q plot of our ARMA(1,1) residuals. You can see a thick straight 
line lying on y = x. This means that our residuals are normally distributed, just 
like white noise.
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from statsmodels.stats.diagnostic import acorr_ljungbox

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1))    

print(pvalue)     

The resulting list of p-values shows that each is above 0.05. Therefore, at each lag, the
null hypothesis cannot be rejected, meaning that the residuals are independently dis-
tributed and uncorrelated.

 We can conclude from our analysis that the residuals are similar to white noise.
The Q-Q plot showed a straight line, meaning that the residuals are normally distrib-
uted. Furthermore, the Ljung-Box test shows that the residuals are uncorrelated, just
like white noise. Thus, the residuals are completely random, meaning that we have a
model that fits our data well.

 Now let’s apply the same modeling procedure to the bandwidth dataset.

Figure 6.13 Model diagnostics from statsmodels. The top-left plot displays the residuals, the 
histogram of the residuals is at the top right, the Q-Q plot of the residuals is at the bottom left, and the 
bottom right shows the ACF plot of the residuals.

Apply the Ljung-Box test on
the residuals, on 10 lags.

Display the p-value 
for each lag.
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6.5 Applying the general modeling procedure
We now have a general modeling procedure that allows us to model and forecast a
general ARMA(p,q) model, as outlined in figure 6.14. We applied this procedure to
our simulated ARMA(1,1) process and found that the best fit was an ARMA(1,1) model,
as expected.
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Figure 6.14 General modeling procedure 
for an ARMA(p,q) process
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Now we can apply the same procedure on the bandwidth dataset to obtain the best
model possible for this situation. Recall that our objective is to forecast bandwidth
usage for the next 2 hours.

 The first step is to gather and load the data using pandas:

import pandas as pd

df = pd.read_csv('data/bandwidth.csv')

We can then plot our time series and look for a trend or a seasonal pattern. By now,
you should be comfortable with plotting your time series. The result is shown in fig-
ure 6.15.

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.plot(df.hourly_bandwidth)
ax.set_xlabel('Time')
ax.set_ylabel('Hourly bandwith usage (MBps)')

plt.xticks(
    np.arange(0, 10000, 730), 
    ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 

➥ 'Nov', 'Dec', '2020', 'Feb'])

fig.autofmt_xdate()
plt.tight_layout()

Figure 6.15 Hourly bandwidth usage in a data center since January 1, 2019. The 
dataset contains 10,000 points.



1276.5 Applying the general modeling procedure
With the data plotted in figure 6.15, you can see that there is no periodic pattern in the
data. However, you’ll notice the presence of a long-term trend, meaning that our data is
likely not stationary. Let’s apply the ADF test to verify our hypothesis. Again, we’ll use the
adfuller function from statsmodels and print out the ADF statistic and the p-value.

from statsmodels.tsa.stattools import adfuller

ADF_result = adfuller(df['hourly_bandwidth'])

print(f'ADF Statistic: {ADF_result[0]}')
print(f'p-value: {ADF_result[1]}')

This prints out an ADF statistic of –0.8 and a p-value of 0.80. Therefore, we cannot
reject the null hypothesis, meaning that our time series is not stationary. 

 We must apply a transformation to our data in order to make it stationary. Let’s
apply a first-order differencing using numpy.

import numpy as np

bandwidth_diff = np.diff(df.hourly_bandwidth, n=1)

With this done, we can apply the ADF test again, this time on the differenced data, in
order to test for stationarity.

ADF_result = adfuller(bandwidth_diff)

print(f'ADF Statistic: {ADF_result[0]}')
print(f'p-value: {ADF_result[1]}')

This returns an ADF statistic of –20.69 and a p-value of 0.0. With a large, negative ADF
statistic and a p-value that is much smaller than 0.05, we can say that our differenced
series is stationary.

 We are now ready to start modeling our stationary process using an ARMA(p,q)
model. We’ll split our series into train and test sets. Here we’ll keep the last 7 days of
data for the test set. Since our forecasts are for the next 2 hours, the test set thus con-
tains 84 periods of 2 hours on which to evaluate our models’ performance, since 7 days
of hourly data totals 168 hours.

df_diff = pd.DataFrame({'bandwidth_diff': bandwidth_diff})

train = df_diff[:-168]
test = df_diff[-168:]   

print(len(train))
print(len(test))

We can print out the length of the train and test sets as a sanity check, and sure
enough, the test set has 168 data points, and the train set has 9,831 data points.

 Now let’s visualize our train set and test set for both the differenced and original
series. The resulting plot is shown in figure 6.16.

There are 168 hours in a week, 
so we will assign the last 168 
data points to the test set.
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fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(10, 

➥ 8))

ax1.plot(df.hourly_bandwidth)
ax1.set_xlabel('Time')
ax1.set_ylabel('Hourly bandwidth')
ax1.axvspan(9831, 10000, color='#808080', alpha=0.2)

ax2.plot(df_diff.bandwidth_diff)
ax2.set_xlabel('Time')
ax2.set_ylabel('Hourly bandwidth (diff)')
ax2.axvspan(9830, 9999, color='#808080', alpha=0.2)

plt.xticks(
    np.arange(0, 10000, 730), 
    ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 

➥ 'Nov', 'Dec', '2020', 'Feb'])

fig.autofmt_xdate()
plt.tight_layout()

Figure 6.16 Train and test sets for the original and differenced series



1296.5 Applying the general modeling procedure

 

Ap
co
A

colu
D

With our train set ready, we can now fit different ARMA(p,q) models using the optimize_
ARMA function that we defined earlier. Remember that the function takes the data and
the list of unique (p,q) combinations as input. Inside the function, we initialize an
empty list to store each (p,q) combination and its corresponding AIC. Then we iterate
over each (p,q) combination and fit an ARMA(p,q) model on our data. We compute
the AIC and store the result. Then we create a DataFrame and sort it by AIC value in
ascending order, since the lower the AIC, the better the model. Our function finally
outputs the ordered DataFrame so we can select the appropriate model. The optimize_
ARMA function is shown in the following listing.

from typing import Union
from tqdm import tqdm_notebook
from statsmodels.tsa.statespace.sarimax import SARIMAX

def optimize_ARMA(endog: Union[pd.Series, list], order_list: list) -> 

➥ pd.DataFrame:    
    
    results = []   
    
    for order in tqdm_notebook(order_list):    
        try: 
            model = SARIMAX(endog, order=(order[0], 0, order[1]), 

➥ simple_differencing=False).fit(disp=False)   
        except:
            continue
            
        aic = model.aic    
        results.append([order, aic])    
        
    result_df = pd.DataFrame(results)   
    result_df.columns = ['(p,q)', 'AIC']   
    
    #Sort in ascending order, lower AIC is better
    result_df = result_df.sort_values(by='AIC', 

➥ ascending=True).reset_index(drop=True)  
    
    return result_df

Here we will try values for p and q ranging from 0 to 3 inclusively. This means that we
will fit 16 unique ARMA(p,q) models to our training set and select the one with the
lowest AIC. Feel free to change the range of values for p and q, but keep in mind that
a larger range will result in more models being fit and a longer computation time.
Also, you don’t need to worry about overfitting—we are selecting our model using the
AIC, which will prevent us from selecting a model that overfits.

Listing 6.2 Function to fit all unique ARMA(p,q) models

The function takes as inputs the time series 
data and the list of unique (p,q) combinations.

Initialize an empty list to store the order 
(p,q) and its corresponding AIC as a tuple.

Iterate over each unique 
(p,q) combination. The use
of tqdm_notebook will 
display a progress bar.

Fit an ARMA(p,q) model 
using the SARIMAX 
function. We specify 
simple_differencing=False 
to prevent differencing. We 
also specify disp=False to 
avoid printing convergence 
messages to the console.

Calculate the 
model’s AIC.

pend the (p,q)
mbination and
IC as a tuple to
the results list.

Store the (p,q) 
combination and AIC 
in a DataFrame.

Label the
mns of the
ataFrame.

Sort the DataFrame in ascending 
order of AIC value. The lower the 
AIC, the better the model.
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ps = range(0, 4, 1)  
qs = range(0, 4, 1)     

order_list = list(product(ps, qs))    

With this step done, we can pass in our training set and the list of unique (p,q) combi-
nations to the optimize_ARMA function.

result_df = optimize_ARMA(train['bandwidth_diff'], order_list)
result_df

The resulting DataFrame is shown in figure 6.17. You’ll notice that the first three mod-
els all have an AIC of 27,991, with only slight differences. Therefore, I would argue
that the ARMA(2,2) model is the model that should be selected. Its AIC value is very
close to the ARMA(3,2) and ARMA(2,3) models, while being less complex, since it has
four parameters to be estimated instead of five. Therefore, we’ll select the ARMA(2,2)
model and move on to the next steps, which is the analysis of the model’s residuals.

To perform the residual analysis, we’ll fit the ARMA(2,2) model on our training set.
Then we’ll use the plot_diagnostics method to study the Q-Q plot, as well as the
other accompanying plots. The result is shown in figure 6.18.

The order p can have the values {0,1,2,3}.

The order q can have the values {0,1,2,3}.

Generate the unique (p,q) combinations.

Figure 6.17 A DataFrame ordered by 
ascending value of AIC, resulting from fitting 
different ARMA(p,q) models on the differenced 
bandwidth dataset. Notice how the first three 
models all have an AIC value of 27,991.
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model = SARIMAX(train['bandwidth_diff'], order=(2,0,2), 

➥ simple_differencing=False)
model_fit = model.fit(disp=False)model_fit = best_model.fit(disp=False)
model_fit.plot_diagnostics(figsize=(10, 8));

In figure 6.18 you can see that the top-left plot shows no trend, and the mean seems
constant over time, meaning that our residuals are likely stationary. The top right dis-
plays a density plot with a shape similar to that of a normal distribution. The Q-Q plot
at the bottom left shows a thick straight line that is very close to y = x. Finally, the ACF
plot at the bottom right shows no autocorrelation after lag 0. Thus, figure 6.18 indi-
cates that our residuals clearly resemble white noise, since they are normally distrib-
uted and uncorrelated.

 Our last step is to run the Ljung-Box test on the residuals for the first 10 lags. If
the returned p-values exceed 0.05, we cannot reject the null hypothesis, which

Figure 6.18 Model diagnostics from statsmodels. The top-left plot displays the residuals, the 
histogram of the residuals is at the top right, the Q-Q plot of the residuals is at the bottom left, and the 
bottom right shows the ACF plot of the residuals.
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means that our residuals are uncorrelated and independently distributed, just like
white noise.

residuals = model_fit.resid

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1))

print(pvalue)

The returned p-values all exceed 0.05. Therefore, we can conclude that our residuals
are indeed uncorrelated. Our ARMA(2,2) model has passed all the checks on the
residual analysis, and we are ready to use this model to forecast bandwidth usage.

6.6 Forecasting bandwidth usage
In the previous section, we applied the general modeling procedure on the band-
width dataset and concluded than an ARMA(2,2) model was the best model for our
data. Now we will use the ARMA(2,2) model to forecast the next 2 hours of bandwidth
usage over 7 days.

 We will reuse the rolling_forecast function that we defined and used in chap-
ters 4 and 5, as shown in listing 6.3. Recall that this function allows us to forecast a few
timesteps at a time, until we have forecasts for the entire horizon. This time, of course,
we’ll fit an ARMA(2,2) model to our differenced data. Also, we’ll compare the
model’s performance to two benchmarks: the mean and the last known value. This
will allow us to make sure that an ARMA(2,2) model performs better than naive fore-
casting methods.

def rolling_forecast(df: pd.DataFrame, train_len: int, horizon: int, 

➥ window: int, method: str) -> list:
    
    total_len = train_len + horizon
    end_idx = train_len
    
    if method == 'mean':
        pred_mean = []
        
        for i in range(train_len, total_len, window):
            mean = np.mean(df[:i].values)
            pred_mean.extend(mean for _ in range(window))
            
        return pred_mean

    elif method == 'last':
        pred_last_value = []
        
        for i in range(train_len, total_len, window):
            last_value = df[:i].iloc[-1].values[0]
            pred_last_value.extend(last_value for _ in range(window))

Listing 6.3 A function to perform a rolling forecast on a horizon
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        return pred_last_value
    
    elif method == 'ARMA':
        pred_ARMA = []
        
        for i in range(train_len, total_len, window):
            model = SARIMAX(df[:i], order=(2,0,2))  
            res = model.fit(disp=False)
            predictions = res.get_prediction(0, i + window - 1)
            oos_pred = predictions.predicted_mean.iloc[-window:]
            pred_ARMA.extend(oos_pred)
            
        return pred_ARMA

With rolling_forecast defined, we can use it to evaluate the performance of the dif-
ferent forecasting methods. We’ll first create a DataFrame to hold the actual values of
the test set as well as the predictions from the different methods. Then we’ll specify
the size of the train and test sets. We will predict two steps at a time, because we have
an ARMA(2,2) model, meaning that there is an MA(2) component. We know from
chapter 4 that predicting beyond q steps into the future with an MA(q) model will sim-
ply return the mean, so the predictions will remain flat. We’ll therefore avoid this situ-
ation by setting the window to 2. We can then forecast on the test set using the mean
method, the last known value method, and the ARMA(2,2) model, and store each
forecast in its appropriate column in test. 

pred_df = test.copy()

TRAIN_LEN = len(train)
HORIZON = len(test)
WINDOW = 2

pred_mean = recursive_forecast(df_diff, TRAIN_LEN, HORIZON, WINDOW, 'mean')
pred_last_value = recursive_forecast(df_diff, TRAIN_LEN, HORIZON, WINDOW, 

➥ 'last')
pred_ARMA = recursive_forecast(df_diff, TRAIN_LEN, HORIZON, WINDOW, 'ARMA')

test.loc[:, 'pred_mean'] = pred_mean
test.loc[:, 'pred_last_value'] = pred_last_value
test.loc[:, 'pred_ARMA'] = pred_ARMA

pred_df.head()

We can then plot and visualize the forecasts for each method.

fig, ax = plt.subplots()

ax.plot(df_diff['bandwidth_diff'])
ax.plot(test['bandwidth_diff'], 'b-', label='actual')
ax.plot(test['pred_mean'], 'g:', label='mean')
ax.plot(test['pred_last_value'], 'r-.', label='last')
ax.plot(test['pred_ARMA'], 'k--', label='ARMA(2,2)')
ax.legend(loc=2)

The order specifies 
an ARMA(2,2) model.
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ax.set_xlabel('Time')
ax.set_ylabel('Hourly bandwidth (diff)')

ax.axvspan(9830, 9999, color='#808080', alpha=0.2)     

ax.set_xlim(9800, 9999)   

plt.xticks(
    [9802, 9850, 9898, 9946, 9994],
    ['2020-02-13', '2020-02-15', '2020-02-17', '2020-02-19', '2020-02-21'])

fig.autofmt_xdate()
plt.tight_layout()

The results are shown in figure 6.19. I’ve zoomed in on the testing period for a better
visualization.

In figure 6.19 you can see that the ARMA(2,2) forecasts, shown as a dashed line,
almost coincide with the actual values of the test set. The same can be said of the fore-
casts from the last known value method, shown as a dashed and dotted line. Of
course, the forecasts using the mean, shown as a dotted line, are completely flat over
the testing period.

 We’ll now measure the mean squared error (MSE) to evaluate the performance of
each model. The model with the lowest MSE is the best-performing model.

Assign a gray 
background for 
the testing period.

Zoom in on the 
testing period.

Figure 6.19 Forecasts of the differenced hourly bandwidth usage using the mean, the 
last known value, and an ARMA(2,2) model. You can see how the ARMA(2,2) forecasts 
and last known value forecasts almost coincide with the actual values of the test set.
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mse_mean = mean_squared_error(test['bandwidth_diff'], test['pred_mean'])
mse_last = mean_squared_error(test['bandwidth_diff'], 

➥ test['pred_last_value'])
mse_ARMA = mean_squared_error(test['bandwidth_diff'], test['pred_ARMA'])

print(mse_mean, mse_last, mse_ARMA) 

This returns an MSE of 6.3 for the mean method, 2.2 for the last known value method,
and 1.8 for the ARMA(2,2) model. The ARMA(2,2) model outperforms the bench-
marks, meaning that we have a well-performing model.

 The final step is to reverse the transformation of our forecast in order to bring it to
the same scale as our original data. Remember that we differenced the original data to
make it stationary. The ARMA(2,2) model was then applied on the stationary dataset
and produced forecasts that are differenced. 

 To reverse the differencing transformation, we can apply a cumulative sum, just as
we did in chapters 4 and 5.

df['pred_bandwidth'] = pd.Series()
df['pred_bandwidth'][9832:] = df['hourly_bandwidth'].iloc[9832] + 

➥ pred_df['pred_ARMA'].cumsum()

We can then plot the forecasts on the original scale of the data.

fig, ax = plt.subplots()

ax.plot(df['hourly_bandwidth'])
ax.plot(df['hourly_bandwidth'], 'b-', label='actual')
ax.plot(df['pred_bandwidth'], 'k--', label='ARMA(2,2)')

ax.legend(loc=2)

ax.set_xlabel('Time')
ax.set_ylabel('Hourly bandwith usage (MBps)')

ax.axvspan(9831, 10000, color='#808080', alpha=0.2)

ax.set_xlim(9800, 9999)

plt.xticks(
    [9802, 9850, 9898, 9946, 9994],
    ['2020-02-13', '2020-02-15', '2020-02-17', '2020-02-19', '2020-02-21'])

fig.autofmt_xdate()
plt.tight_layout()

Looking at the results in figure 6.20, you can see that our forecasts, shown as a dashed
line, closely follow the actual values of the test set, and the two lines almost coincide.
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We can measure the mean absolute error (MAE) of the undifferenced ARMA(2,2)
predictions to understand how far apart the predictions are from the actual values.
We’ll use the MAE simply because it is easy to interpret.

mae_ARMA_undiff = mean_absolute_error(df['hourly_bandwidth'][9832:], 

➥ df['pred_bandwidth'][9832:])

print(mae_ARMA_undiff)

This returns an MAE of 14, meaning that, on average, our forecasts are 14 Mbps above
or below the actual bandwidth usage.

6.7 Next steps
In this chapter, we covered the ARMA(p,q) model and how it effectively combines an
AR(p) model with an MA(q) model to model and forecast more complex time series.
This required us to define an entirely new modeling procedure that does not rely on
the qualitative study of the ACF and PACF plots. Instead, we fit many ARMA(p,q) mod-
els with different (p,q) combinations and selected the model with the lowest AIC.
Then we analyzed the model’s residuals to make sure that their properties were simi-
lar to white noise: normally distributed, stationary, and uncorrelated. This analysis is
both qualitative, because we can study the Q-Q plot to evaluate whether the residuals
are normally distributed, as well as quantitative, since we can apply the Ljung-Box test

Figure 6.20 Undifferenced predictions of hourly bandwidth usage. Notice how the 
dashed line representing our predictions almost coincides with the solid line 
representing the actual values. This means that our predictions are very close to the 
actual values, indicating a performant model.



1376.8 Exercises
to determine whether the residuals are correlated or not. If the model’s residuals
have the properties of a random variable, like white noise, the model can be used for
forecasting.

 So far we have covered different models for stationary time series: mainly the
MA(q) model, AR(p) model, and ARMA(p,q) model. Each model required us to trans-
form our data to make it stationary before we could forecast. Furthermore, we had to
reverse the transformation on our forecast to obtain predictions in the original scale
of the data.

 However, there is a way to model non-stationary time series without having to trans-
form them and reverse the transformation on the predictions. Specifically, we can
model integrated time series using the autoregressive integrated moving average model or
ARIMA(p,d,q). This will be the subject of the next chapter.

6.8 Exercises
It is time to test your knowledge and apply the general modeling procedure with these
exercises. The solutions are available on GitHub: https://github.com/marcopeix/
TimeSeriesForecastingInPython/tree/master/CH06.

6.8.1 Make predictions on the simulated ARMA(1,1) process

1 Reusing the simulated ARMA(1,1) process, split it into train and test sets.
Assign 80% of the data to the train set and the remaining 20% to the test set.

2 Use the rolling_forecast function to make predictions using the ARMA(1,1)
model, the mean method, and the last known value method.

3 Plot your forecasts.
4 Evaluate each method’s performance using the MSE. Which method per-

formed best?

6.8.2 Simulate an ARMA(2,2) process and make forecasts

Simulate a stationary ARMA(2,2) process. Use the ArmaProcess function from stats-
models and simulate this:

yt  = 0.33yt –1 + 0.50yt –2 + 0.9ϵt –1 + 0.3ϵt –2

1 Simulate 10,000 samples.

from statsmodels.tsa.arima_process import ArmaProcess
import numpy as np

np.random.seed(42)   

ma2 = np.array([1, 0.9, 0.3])
ar2 = np.array([1, -0.33, -0.5])

ARMA_2_2 = ArmaProcess(ar2, ma2).generate_sample(nsample=10000)

Set the seed for reproducibility. 
Change the seed if you want 
to experiment with different 
values.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH06
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH06
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH06
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2 Plot your simulated process.
3 Test for stationarity using the ADF test.
4 Split your data into train and test sets. The test set must contain the last 200

timesteps. The rest is for the train set.
5 Define a range of values for p and q, and generate all unique combinations of

orders (p,q).
6 Use the optimize_ARMA function to fit all unique ARMA(p,q) models, and

select the one with the lowest AIC. Is the ARMA(2,2) model the one with the
lowest AIC?

7 Select the best model according to the AIC, and store the residuals in a variable
called residuals.

8 Perform a qualitative analysis of the residuals with the plot_diagnostics
method. Does the Q-Q plot show a straight line that lies on y = x? Does the cor-
relogram show significant coefficients?

9 Perform a quantitative analysis of the residuals by applying the Ljung-Box test
on the first 10 lags. Are all returned p-values above 0.05? Are the residuals cor-
related or not?

10 Use the rolling_forecast function to make predictions using the selected
ARMA(p,q) model, the mean method, and the last known value method.

11 Plot your forecasts.
12 Evaluate each method’s performance using the MSE. Which method per-

formed best?

Summary
 The autoregressive moving average model, denoted as ARMA(p,q), is the combi-

nation of the autoregressive model AR(p) and the moving average model MA(q). 
 An ARMA(p,q) process will display a decaying pattern or a sinusoidal pattern on

both the ACF and PACF plots. Therefore, they cannot be used to estimate the
orders p and q.

 The general modeling procedure does not rely on the ACF and PACF plots.
Instead, we fit many ARMA(p,q) models and perform model selection and
residual analysis.

 Model selection is done with the Akaike information criterion (AIC). It quanti-
fies the information loss of a model, and it is related to the number of parame-
ters in a model and its goodness of fit. The lower the AIC, the better the model.

 The AIC is relative measure of quality. It returns the best model among other
models. For an absolute measure of quality, we perform residual analysis.

 Residuals of a good model must approximate white noise, meaning that they
must be uncorrelated, normally distributed, and independent.

 The Q-Q plot is a graphical tool for comparing two distributions. We use it to
compare the distribution of the residuals against a theoretical normal distribution.
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If the plot shows a straight line that lies on y = x, then both distributions are sim-
ilar. Otherwise, it means that the residuals are not normally distributed.

 The Ljung-Box test allows us to determine whether the residuals are correlated
or not. The null hypothesis states that the data is independently distributed
and uncorrelated. If the returned p-values are larger than 0.05, we cannot
reject the null hypothesis, meaning that the residuals are uncorrelated, just
like white noise.



Forecasting
non-stationary time series
In chapters 4, 5, and 6 we covered the moving average model, MA(q); the autoregres-
sive model, AR(p); and the ARMA model, ARMA(p,q). We saw how these models can
only be used for stationary time series, which required us to apply transformations,
mainly differencing, and test for stationarity using the ADF test. In the examples
that we covered, the forecasts from each model returned differenced values, which
required us to reverse this transformation in order to bring the values back to the
scale of the original data.

 Now we’ll add another component to the ARMA(p,q) model so we can forecast
non-stationary time series. This component is the integration order, which is denoted
by the variable d. This leads us to the autoregressive integrated moving average (ARIMA)
model, or ARIMA(p,d,q). Using this model, we can take into account non-stationary
time series and avoid the steps of modeling on differenced data and having to
inverse transform the forecasts.

This chapter covers
 Examining the autoregressive integrated moving 

average model, or ARIMA(p,d,q)

 Applying the general modeling procedure for non-
stationary time series

 Forecasting using the ARIMA(p,d,q) model
140
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 In this chapter, we’ll define the ARIMA(p,d,q) model and the order of integration d.
Then we’ll add a step to our general modeling procedure. Figure 7.1 shows the gen-
eral modeling procedure as defined in chapter 6. We must add a step to determine
the order of integration in order to use this procedure with the ARIMA(p,d,q) model.

Gather data

NoIs it stationary?
Apply

transformations

Yes

List values

of andp q

Fit every combination

of ARMA ( , )p q

Select model with

lowest AIC

Residual analysis

Q-Q plot shows a

straight line?

Yes

No

Uncorrelated

residuals?

No

Ready for

forecasts

Figure 7.1 General modeling procedure using 
an ARMA(p,q) model. In this chapter, we will 
add another step to this procedure in order to 
accommodate the ARIMA(p,d,q) model.
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Then we’ll apply our modified procedure to forecast a non-stationary time series,
meaning that the series has a trend, or its variance is not constant over time. Specifi-
cally, we’ll revisit the dataset of Johnson & Johnson’s quarterly earnings per share
(EPS) between 1960 and 1980, which we first studied in chapters 1 and 2. The series is
shown in figure 7.2. We’ll apply the ARIMA(p,d,q) model to forecast the quarterly EPS
for 1 year.

7.1 Defining the autoregressive integrated moving 
average model
An autoregressive integrated moving average process is the combination of an autoregressive
process AR(p), integration I(d), and the moving average process MA(q).

 Just like the ARMA process, the ARIMA process states that the present value is
dependent on past values, coming from the AR(p) portion, and past errors, coming
from the MA(q) portion. However, instead of using the original series, denoted as yt,
the ARIMA process uses the differenced series, denoted as y't. Note that y't can repre-
sent a series that has been differenced more than once.

 Therefore, the mathematical expression of the ARIMA(p,d,q) process states that
the present value of the differenced series y't is equal to the sum of a constant C, past
values of the differenced series ϕpy't–p, the mean of the differenced series µ, past error
terms θqϵt–q, and a current error term ϵt, as shown in equation 7.1.

                y't = C + ϕ1y't –1 +⋅⋅⋅ ϕpy't–p + θ1ϵ't –1 +⋅⋅⋅+ θqϵ't –q + ϵt Equation 7.1

Figure 7.2 Quarterly earnings per share (EPS) of Johnson & Johnson from 1960 to 
1980. We worked with the same dataset in chapters 1 and 2.
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Just like in the ARMA process, the order p determines how many lagged values of the
series are included in the model, while the order q determines how many lagged error
terms are included in the model. However, in equation 7.1 you’ll notice that there is
no order d explicitly displayed.

 Here, the order d is defined as the order of integration. Integration is simply the
reverse of differencing. The order of integration is thus equal to the number of times
a series has been differenced to become stationary.

 If we difference a series once and it becomes stationary, then d = 1. If a series is dif-
ferenced twice to become stationary, then d = 2. 

A time series that can be rendered stationary by applying differencing is said to be an
integrated series. In the presence of a non-stationary integrated time series, we can use
the ARIMA(p,d,q) model to produce forecasts.

 Thus, in simple terms, the ARIMA model is simply an ARMA model that can be
applied on non-stationary time series. Whereas the ARMA(p,q) model requires the
series to be stationary before fitting an ARMA(p,q) model, the ARIMA(p,d,q) model
can be used on non-stationary series. We must simply find the order of integration d,
which corresponds to the minimum number of times a series must be differenced to
become stationary.

 Therefore, we must add the step of finding the order of integration to our general
modeling procedure before we apply it to forecast the quarterly EPS of Johnson &
Johnson.

7.2 Modifying the general modeling procedure to account 
for non-stationary series
In chapter 6 we built a general modeling procedure that allowed us to model more
complex time series, meaning that the series has both an autoregressive and a moving

Autoregressive integrated moving average model
An autoregressive integrated moving average (ARIMA) process is the combination of
the AR(p) and MA(q) processes, but in terms of the differenced series.

It is denoted as ARIMA(p,d,q), where p is the order of the AR(p) process, d is the order
of integration, and q is the order of the MA(q) process.

Integration is the reverse of differencing, and the order of integration d is equal to the
number of times the series has been differenced to be rendered stationary. 

The general equation of the ARIMA(p,d,q) process is

y't = C + ϕ1y't–1 +⋅⋅⋅ ϕp y't–p + θ1ϵ't–1 +⋅⋅⋅+ θqϵ't–q + ϵt

Note that y't represents the differenced series, and it may have been differenced
more than once.
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average component. This procedure involves fitting many ARMA(p,q) models and
selecting the one with the lowest AIC. Then we study the model’s residuals to verify
that they resemble white noise. If that is the case, the model can be used for forecast-
ing. We can visualize the general modeling procedure in its present state in figure 7.3.
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NoIs it stationary?
Apply

transformations

Yes

List values

of andp q
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of ARMA ( , )p q
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Yes
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Ready for
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Figure 7.3 General modeling procedure 
using an ARMA(p,q) model. Now we must 
adapt it to apply to an ARIMA(p,d,q) model, 
allowing us to work with non-stationary 
time series.
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The next iteration of the general modeling procedure will include a step to deter-
mine the order of integration d. That way, we can apply the same procedure but using
an ARIMA(p,d,q) model, which will allow us to forecast non-stationary time series.

 From the previous section, we know that the order of integration d is simply the
minimum number of times a series must be differenced to become stationary. There-
fore, if a series is stationary after being differenced once, then d = 1. If it is stationary
after being differenced twice, then d = 2. In my experience, a time series rarely needs
to be differenced more than twice to become stationary.

 We can add a step such that when transformations are applied to the series, we set
the value of d to the number of times the series was differenced. Then, instead of fit-
ting many ARMA(p,q) models, we fit many ARIMA(p,d,q) models. The rest of the pro-
cedure remains the same, as we still use the AIC to select the best model and study its
residuals. The resulting procedure is shown in figure 7.4.

 Note that in the case where d = 0, it is equivalent to an ARMA(p,q) model. This also
means that the series did not need to be differenced to be stationary. It must also be
specified that the ARMA(p,q) model can only be applied on a stationary series, whereas
the ARIMA(p,d,q) model can be applied on a series that has not been differenced.

 Let’s apply our new general modeling procedure to forecast the quarterly earnings
per share of Johnson & Johnson.

7.3 Forecasting a non-stationary times series
We are now going to apply the general modeling procedure displayed in figure 7.4 to
forecast the quarterly earnings per share (EPS) of Johnson & Johnson. We’ll use the
same dataset that was introduced in chapters 1 and 2. We will forecast 1 year’s quar-
terly EPS, meaning that we must forecast four timesteps into the future, since there
are four quarters in a year. The dataset covers the period between 1960 and 1980.

 As always, the first step is to collect our data. Here it is done for us, so we can sim-
ply load it and display the series. The result is shown in figure 7.5. 

NOTE At any time, feel free to refer to the source for this chapter on GitHub:
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/
CH07.

df = pd.read_csv('../data/jj.csv')

fig, ax = plt.subplots()

ax.plot(df.date, df.data)
ax.set_xlabel('Date')
ax.set_ylabel('Earnings per share (USD)')

plt.xticks(np.arange(0, 81, 8), [1960, 1962, 1964, 1966, 1968, 1970, 1972, 

➥ 1974, 1976, 1978, 1980])

fig.autofmt_xdate()
plt.tight_layout()

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH07
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH07
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Figure 7.4 General modeling procedure for using 
the ARIMA(p,d,q) model. Notice the addition of a 
step where we specify the parameter d for the 
ARIMA(p,d,q) model. Here, d is simply the 
minimum number of times a series must be 
differenced to become stationary.
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Following our procedure, we must check if the data is stationary. Figure 7.5 shows a
positive trend, as the quarterly EPS tends to increase over time. Nevertheless, we can
apply the augmented Dickey-Fuller (ADF) test to determine if it is stationary or not.
By now you should be very comfortable with these steps, so they will be accompanied
by minimal comments.

ad_fuller_result = adfuller(df['data'])

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

This block of code returns an ADF statistic of 2.74 with a p-value of 1.0. Since the ADF
statistic is not a large negative number, and the p-value is larger than 0.05, we cannot
reject the null hypothesis, meaning that our series is not stationary.

 We need to determine how many times the series must be differenced to become
stationary. This will then set the order of integration d. We can apply a first-order dif-
ferencing and test for stationarity.

eps_diff = np.diff(df['data'], n=1)    

ad_fuller_result = adfuller(eps_diff)     

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

Figure 7.5 Quarterly earnings per share (EPS) of Johnson & Johnson between 1960 
and 1980

Apply first-order 
differencing.

Test for 
stationarity.
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This results in an ADF statistic of –0.41 and a p-value of 0.9. Again, the ADF statistic is
not a large negative number, and the p-value is larger than 0.05. Therefore, we cannot
reject the null hypothesis and we must conclude that after a first-order differencing,
the series is not stationary.

 Let’s try differencing again to see if the series becomes stationary:

eps_diff2 = np.diff(eps_diff, n=1)    

ad_fuller_result = adfuller(eps_diff2)    

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

This results in an ADF statistic of –3.59 and a p-value of 0.006. Now that we have a
p-value smaller than 0.05 and a large negative ADF statistic, we can reject the null
hypothesis and conclude that our series is stationary. It took two rounds of differ-
encing to make our data stationary, which means that our order of integration is 2,
so d = 2.

 Before we move on to fitting different combinations of ARIMA(p,d,q) models, we
must separate our data into train and test sets. We will hold out the last year of data for
testing. This means that we will fit the model with data from 1960 to 1979 and predict
the quarterly EPS in 1980 to evaluate the quality of our model against the observed
values in 1980. In figure 7.6 the testing period is the shaded area.

Take the differenced series 
and difference it again.

Test for 
stationarity.

Figure 7.6 The train and test sets. The training period spans the years 1960 to 1979 
inclusively, while the test set is the quarterly EPS reported in 1980. This test set 
corresponds to the last four data points of the dataset.
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Da
To fit the many ARIMA(p,d,q) models, we’ll define the optimize_ARIMA function. It is
almost identical to the optimize_ARMA function that we defined in chapter 6, only this
time we’ll add the order of integration d as an input to the function. The remainder
of the function stays the same, as we fit the different models and order them by
ascending AIC in order to select the model with the lowest AIC. The optimize_ARIMA
function is shown in the following listing.

from typing import Union
from tqdm import tqdm_notebook
from statsmodels.tsa.statespace.sarimax import SARIMAX

def optimize_ARIMA(endog: Union[pd.Series, list], order_list: list, d: int) 

➥ -> pd.DataFrame:     
    
    results = []   
    
    for order in tqdm_notebook(order_list):    
        try: 
            model = SARIMAX(endog, order=(order[0], d, order[1]), 

➥ simple_differencing=False).fit(disp=False)     
        except:
            continue
            
        aic = model.aic   
        results.append([order, aic])    
        
    result_df = pd.DataFrame(results)    
    result_df.columns = ['(p,q)', 'AIC']    
    
    #Sort in ascending order, lower AIC is better
    result_df = result_df.sort_values(by='AIC', 

➥ ascending=True).reset_index(drop=True)   
    
    return result_df

With the function in place, we can define a list of possible values for the orders p and
q. In this case, we’ll try the values 0, 1, 2, and 3 for both orders and generate the list of
unique (p,q) combinations.

from itertools import product

ps = range(0, 4, 1)   
qs = range(0, 4, 1)   
d = 2    

order_list = list(product(ps, qs))    

Listing 7.1 Function to fit all unique ARIMA(p,d,q) models

The function takes as inputs the time series data, the list of 
unique (p,q) combinations, and the order of integration d.

Initialize an empty list to 
store each order (p,q) and its 
corresponding AIC as a tuple.

Iterate over each unique 
(p,q) combination. The use of 
tqdm_notebook will display 
a progress bar.

Fit an ARIMA(p,d,q) model 
using the SARIMAX function. 
We specify simple_differencing
=False to prevent differencing. 
We also specify disp=False to 
avoid printing convergence 
messages to the console.

Calculate the
model’s AIC.

Append the (p,q)
combination and AIC as a

tuple to the results list.

Store the (p,q) 
combination and AIC 
in a DataFrame.

Label the
columns
of your

taFrame.

Sort the DataFrame in ascending 
order of AIC values. The lower the 
AIC, the better the model.

Create a list of possible values for p from 0 
inclusively to 4 exclusively, with steps of 1.

Create a list of possible values for q from 0 
inclusively to 4 exclusively, with steps of 1.

Set d to 2, as the series needed to be 
differenced twice to become stationary.

Generate a list containing all unique combinations of (p,q).
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Note that we do not give a range of values for the parameter d because it has a very
specific definition: it is the number of times a series must be differenced to become
stationary. Hence, it must be set to a specific value, which in this case is 2.

 Furthermore, d must be constant in order to compare models using the AIC. Vary-
ing d would change the likelihood function used in the calculation of the AIC value,
so comparing models using the AIC as a criterion would not be valid anymore. 

 We can now run the optimize_ARIMA function using the training set. The function
returns a DataFrame with the model that has the lowest AIC at the top.

train = df.data[:-4]  

result_df = optimize_ARIMA(train, order_list, d)   
result_df  

The returned DataFrame shows that a value of 3 for both p and q results in the lowest
AIC. Therefore, an ARIMA(3,2,3) model seems to be the most suitable for this situa-
tion. Now let’s assess the validity of the model by studying its residuals.

 To do so, we’ll fit an ARIMA(3,2,3) model on the training set and display the
residuals’ diagnostics using the plot_diagnostics method. The result is shown in
figure 7.7.

model = SARIMAX(train, order=(3,2,3), simple_differencing=False)   
model_fit = model.fit(disp=False)

model_fit.plot_diagnostics(figsize=(10,8));     

In figure 7.7, the top-left plot shows the residuals over time. While there is no trend in
the residuals, the variance does not seem to be constant, which is a discrepancy in
comparison to white noise. At the top right is the distribution of the residuals. We can
see it is fairly close to a normal distribution. The Q-Q plot leads us to the same conclu-
sion, as it displays a line that is fairly straight, meaning that the residuals’ distribution
is close to a normal distribution. Finally, by looking at the correlogram at the bottom
right, we can see that a coefficient seems to be significant at lag 3. However, since it is
not preceded by any significant autocorrelation coefficients, we can assume that this is
due to chance. Therefore, we can say that the correlogram shows no significant coeffi-
cients after lag 0, just like white noise.

 Thus, from a qualitative standpoint, it seems that our residuals are close to white
noise, which is a good sign, as it means that the model’s errors are random.

 The last step is to evaluate the residuals from a quantitative standpoint. We’ll thus
apply the Ljung-Box test to determine whether the residuals are correlated. We’ll
apply the test on the first 10 lags and study the p-values. If all p-values are greater than

The training set consists of all 
data points except the last four. Run the 

optimize_ARIMA 
function to obtain 
the model with the 
lowest AIC.Display the resulting 

DataFrame.

Fit an ARIMA(3,2,3)
model on the training
set, since this model

has the lowest AIC.Display the residuals’
diagnostics.
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0.05, we cannot reject the null hypothesis and we’ll conclude that the residuals are not
correlated, just like white noise.

from statsmodels.stats.diagnostic import acorr_ljungbox

residuals = model_fit.resid   

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1))    

print(pvalue)

Running the Ljung-Box test on the first 10 lags of the model’s residuals returns a list
of p-values that are all larger than 0.05. Therefore, we do not reject the null hypothe-
sis, and we conclude that the residuals are not correlated, just like white noise.

 Our ARIMA(3,2,3) model has passed all the checks, and it can now be used for
forecasting. Remember that our test set is the last four data points, corresponding to

Figure 7.7 Diagnostics of the ARIMA(3,2,3) residuals. The Q-Q plot at the bottom left displays a fairly 
straight line with some deviation at the extremities.

Store the model’s 
residuals in a variable.

Apply the Ljung-Box test
on the first 10 lags.



152 CHAPTER 7 Forecasting non-stationary time series
the four quarterly EPS reported in 1980. As a benchmark for our model, we will use
the naive seasonal method. This means that we’ll take the EPS of the first quarter of
1979 and use it as a forecast for the EPS of the first quarter of 1980. Then the EPS of
the second quarter of 1979 will be used as a forecast for the EPS of the second quarter
of 1980, and so on. Remember that we need a benchmark, or a baseline model, when
modeling to determine whether the model we develop is better than a naive method.
The performance of a model must always be assessed relative to a baseline model. 

test = df.iloc[-4:]    

test['naive_seasonal'] = df['data'].iloc[76:80].values   

With our baseline in place, we can now make forecasts using the ARIMA(3,2,3) model
and store the results in the ARIMA_pred column.

ARIMA_pred = model_fit.get_prediction(80, 83).predicted_mean    

test['ARIMA_pred'] = ARIMA_pred   

Let’s visualize our forecasts to see how close the predictions from each method are to
the observed values. The resulting plot is shown in figure 7.8.

The test set corresponds to 
the last four data points.

The naive seasonal forecast is implemented by selecting the quarterly EPS
reported in 1979 and using the same values as a forecast for the year 1980.

Get the predicted values
for the year 1980.

Assign the forecasts to
the ARIMA_pred column.

Figure 7.8 Forecasts of the quarterly EPS of Johnson & Johnson in 1980. We can see 
that the predictions coming from the ARIMA(3,2,3) model, shown as a dashed line, 
almost perfectly overlap the observed data in 1980.
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In figure 7.8 we can see the naive seasonal forecast as a dotted line and the ARIMA(3,2,3)
forecasts as a dashed line. The ARIMA(3,2,3) model predicted the quarterly EPS with
a very small error.

 We can quantify that error by measuring the mean absolute percentage error
(MAPE) and display the metric for each forecasting method in a bar plot, as shown in
figure 7.9.

def mape(y_true, y_pred):   
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

mape_naive_seasonal = mape(test['data'], test['naive_seasonal'])   
mape_ARIMA = mape(test['data'], test['ARIMA_pred'])    

fig, ax = plt.subplots()

x = ['naive seasonal', 'ARIMA(3,2,3)']
y = [mape_naive_seasonal, mape_ARIMA]

ax.bar(x, y, width=0.4)
ax.set_xlabel('Models')
ax.set_ylabel('MAPE (%)')
ax.set_ylim(0, 15)

for index, value in enumerate(y):
    plt.text(x=index, y=value + 1, s=str(round(value,2)), ha='center')

plt.tight_layout()

Define a function to 
compute the MAPE.

Compute the
MAPE for the

naive seasonal
method.

Compute the
MAPE for the
ARIMA(3,2,3)

model.

Figure 7.9 The MAPE for both forecasting methods. You can see that the ARIMA 
model has an error metric that is one fifth of the baseline.
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In figure 7.9, you can see that the MAPE for the naive seasonal forecast is 11.56%,
while the MAPE for the ARIMA(3,2,3) model is 2.19%, which roughly one fifth of the
benchmark value. This means that our predictions are on average 2.19% off from the
actual values. The ARIMA(3,2,3) model is clearly a better model than the naive sea-
sonal method.

7.4 Next steps
In this chapter, we covered the ARIMA(p,d,q) model, which allows us to model and
forecast non-stationary time series. 

 The order of integration d defines how many times a series must be differenced to
become stationary. This parameter then allows us to fit the model on the original
series and get a forecast in the same scale, unlike the ARMA(p,q) model, which required
the series to be stationary for the model to be applied and required us to reverse the
transformations on the forecasts.

 To apply the ARIMA(p,d,q) model, we added an extra step to our general model-
ing procedure, which simply involves finding the value for the order of integration.
This corresponds to the minimum number of times a series must be differenced to
become stationary.

 Now we can add another layer to the ARIMA(p,d,q) model that allows us to con-
sider yet another property of time series: seasonality. We have studied the Johnson &
Johnson dataset enough times to realize that there are clear cyclical patterns in the
series. To integrate the seasonality of a series in a model, we must use the seasonal
autoregressive integrated moving average (SARIMA) model, or SARIMA(p,d,q)(P,D,Q)m.
This will be the subject of the next chapter.

7.5 Exercises
Now is the time to apply the ARIMA model on previous datasets that we have explored.
The full solution to this exercise is available on GitHub: https://github.com/marcopeix/
TimeSeriesForecastingInPython/tree/master/CH07.

7.5.1 Apply the ARIMA(p,d,q) model on the datasets from chapters 4, 
5, and 6

In chapters 4, 5, and 6, non-stationary time series were introduced to show you how to
apply the MA(q), AR(p), and ARMA(p,q) models. In each chapter, we transformed the
series to make it stationary, fit the model, made forecasts, and had to reverse the trans-
formation on the forecasts to bring them back to the original scale of the data.

 Now that you know how to account for non-stationary time series, revisit each data-
set and apply the ARIMA(p,d,q) model. For each dataset, do the following:

 Apply the general modeling procedure.
 Is an ARIMA(0,1,2) model suitable for the dataset in chapter 4?
 Is an ARIMA(3,1,0) model suitable for the dataset in chapter 5?
 Is an ARIMA(2,1,2) model suitable for the dataset in chapter 6?

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH07
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH07
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH07


155Summary
Summary
 The autoregressive integrated moving average model, denoted as ARIMA(p,d,q),

is the combination of the autoregressive model AR(p), the order of integration
d, and the moving average model MA(q).

 The ARIMA(p,d,q) model can be applied on non-stationary time series and
has the added advantage of returning forecasts in the same scale as the origi-
nal series.

 The order of integration d is equal to the minimum number of times a series
must be differenced to become stationary.

 An ARIMA(p,0,q) model is equivalent to an ARMA(p,q) model.



Accounting
for seasonality
In the previous chapter, we covered the autoregressive integrated moving average
model, ARIMA(p,d,q), which allows us to model non-stationary time series. Now
we’ll add another layer of complexity to the ARIMA model to include seasonal pat-
terns in time series, leading us to the SARIMA model.

 The seasonal autoregressive integrated moving average (SARIMA) model, or SARIMA
(p,d,q)(P,D,Q)m, adds another set of parameters that allows us to take into account
periodic patterns when forecasting a time series, which is not always possible with
an ARIMA(p,d,q) model. 

 In this chapter, we’ll examine the SARIMA(p,d,q)(P,D,Q)m model and adapt our
general modeling procedure to account for the new parameters. We’ll also deter-
mine how to identify seasonal patterns in a time series and apply the SARIMA model
to forecast a seasonal time series. Specifically, we’ll apply the model to forecast the

This chapter covers
 Examining the seasonal autoregressive 

integrated moving average model, 
SARIMA(p,d,q)(P,D,Q)m

 Analyzing seasonal patterns in a time series

 Forecasting using the SARIMA(p,d,q)(P,D,Q)m 
model
156
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total number of monthly passengers for an airline. The data was recorded from Janu-
ary 1949 to December 1960. The series is shown in figure 8.1.

In figure 8.1 we can see a clear seasonal pattern in the series. The number of air pas-
sengers is lower at the beginning and end of the year, and it spikes up during the
months of June, July, and August. Our objective is to forecast the number of monthly
air passengers for the one year. It is important for an airline company to forecast the
number of air passengers so they can better price their tickets and schedule flights to
meet the demand for a given month.

8.1 Examining the SARIMA(p,d,q)(P,D,Q)m model
The SARIMA(p,d,q)(P,D,Q)m model expands on the ARIMA(p,d,q) model from the pre-
vious chapter by adding seasonal parameters. You’ll notice four new parameters in the
model: P, D, Q, and m. The first three have the same meaning as in the ARIMA(p,d,q)
model, but they are their seasonal counterparts. To understand the meaning of these
parameters and how they affect the final model, we must first define m.

 The parameter m stands for the frequency. In the context of a time series, the fre-
quency is defined as the number of observations per cycle. The length of the cycle will
depend on the dataset. For data that was recorded every year, quarter, month, or
week, the length of a cycle is considered to be 1 year. If the data was recorded annu-
ally, m = 1 since there is only one observation per year. If the data was recorded quar-
terly, m = 4 since there are four quarters in a year, and therefore four observations per

Figure 8.1 Monthly total number of air passengers for an airline, from January 1949 to 
December 1960. You’ll notice a clear seasonal pattern in the series, with peak traffic 
occurring toward the middle of each year.
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year. Of course, if the data was recorded monthly, m = 12. Finally, for weekly data, m = 52.
Table 8.1 indicates the appropriate value of m depending on the frequency at which
the data was collected.

When data is collected on a daily or sub-daily basis, there are multiple ways of inter-
preting the frequency. For example, daily data can have a weekly seasonality. In that
case, the frequency is m = 7 because there would be seven observations in a full cycle
of 1 week. It could also have a yearly seasonality, meaning that m = 365. Thus, you can
see that daily and sub-daily data can have a different cycle length, and therefore a dif-
ferent frequency m. Table 8.2 provides the appropriate value of m depending on the
seasonal cycle for daily and sub-daily data.

Now that you understand the parameter m, the meanings of P, D, and Q become intui-
tive. As mentioned before, they are the seasonal counterparts of the p, d, and q param-
eters that you know from the ARIMA(p,d,q) model.

Table 8.1 Appropriate frequency m depending on the data

Data collection Frequency m

Annual 1

Quarterly 4

Monthly 12

Weekly 52

Table 8.2 Appropriate frequency m for daily and sub-daily data

Data collection
Frequency m

Minute Hour Day Week Year

Daily 7 365

Hourly 24 168 8766

Every minute 60 1440 10080 525960

Every second 60 3600 86400 604800 31557600

Seasonal autoregressive integrated moving average (SARIMA) model
The seasonal autoregressive integrated moving average (SARIMA) model adds sea-
sonal parameters to the ARIMA(p,d,q) model.

It is denoted as SARIMA(p,d,q)(P,D,Q)m, where P is the order of the seasonal AR(P)
process, D is the seasonal order of integration, Q is the order of the seasonal MA(Q)
process, and m is the frequency, or the number of observations per seasonal cycle.

Note that a SARIMA(p,d,q)(0,0,0)m model is equivalent to an ARIMA(p,d,q) model.
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Let’s consider an example where m = 12. If P = 2, this means that we are including two
past values of the series at a lag that is a multiple of m. Therefore, we’ll include the val-
ues at yt –12 and yt –24. 

 Similarly, if D = 1, this means that a seasonal difference makes the series stationary.
In this case, a seasonal difference would be expressed as equation 8.1.

                     y't = yt – yt –12 Equation 8.1

In a situation where Q = 2, we’ll include past error terms at lags that are a multiple of
m. Therefore, we’ll include the errors ϵt –12 and ϵt –24. 

 Let’s put this into perspective using the airline’s total monthly air passengers data-
set. We know that this is monthly data, which means that m = 12. Also, we can see that
the months of July and August usually have the highest numbers of air passengers in
the year, as shown by the round markers in figure 8.2. Therefore, if we are to forecast
the month of July in 1961, the information coming from the month of July in prior
years is likely going to be useful, since we can intuitively expect the number of air pas-
sengers to be at its highest point in the month of July 1961. The parameters P, D, Q,
and m allow us to capture that information from the previous seasonal cycle to help us
forecast our time series.

Figure 8.2 Marking the month of July of each year. You can see how the month of July 
has the highest number of air passengers. Therefore, it would make sense if July of the 
following year also saw the highest number of air passengers in the year. That kind of 
information is captured by the seasonal parameters P, D, Q, and m of the 
SARIMA(p,d,q)(P,D,Q)m model.
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Now that we have examined the SARIMA model and you understand how it expands
on the ARIMA model, let’s move on to identifying the presence of seasonal patterns in
a time series.

8.2 Identifying seasonal patterns in a time series
Intuitively, we know that it makes sense to apply the SARIMA model on data that
exhibits a seasonal pattern. Therefore, it is important to determine ways to identify
seasonality in time series.

 Usually, plotting the time series data is enough to observe periodic patterns. For
example, looking at the total monthly air passengers in figure 8.3, it is easy for us to
identify a repeating pattern every year, with a high number of passengers being
recorded during June, July, and August of each year, and fewer passengers in Novem-
ber, December, and January of each year.

Another way of identifying seasonal patterns in a time series is using time series
decomposition, a method that we first used in chapter 1. Time series decomposition is
a statistical task that separates the time series into its three main components: a trend
component, a seasonal component, and the residuals. 

 The trend component represents the long-term change in the time series. This
component is responsible for time series that increase or decrease over time. The

Figure 8.3 Highlighting the seasonal pattern in the monthly number of air passengers. 
The dashed vertical lines separate periods of twelve months. We can clearly see how a 
peak occurs in the middle of each year, and there is a very similar pattern for the 
beginning and end of each year. This observation is usually enough to determine that the 
dataset is seasonal.
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seasonal component is, of course, the seasonal pattern in the time series. It represents
repeated fluctuations that occur over a fixed period of time. Finally, the residuals, or
the noise, express any irregularity that cannot be explained by the trend or the sea-
sonal component.

NOTE The source code for this chapter is available on GitHub: https://github
.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH08.

With time series decomposition, we can clearly identify and visualize the seasonal
component of a time series. We can decompose the dataset for air passengers using
the STL function from the statsmodels library to generate figure 8.4. 

from statsmodels.tsa.seasonal import STL

decomposition = STL(df['Passengers'], period=12).fit()  

fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=4, ncols=1, sharex=True, 

➥ figsize=(10,8))   

ax1.plot(decomposition.observed)
ax1.set_ylabel('Observed')

ax2.plot(decomposition.trend)
ax2.set_ylabel('Trend')

ax3.plot(decomposition.seasonal)
ax3.set_ylabel('Seasonal')

ax4.plot(decomposition.resid)
ax4.set_ylabel('Residuals')

plt.xticks(np.arange(0, 145, 12), np.arange(1949, 1962, 1))

fig.autofmt_xdate()
plt.tight_layout()

In figure 8.4 you can see each component of our time series. You’ll notice that the y-axis
for the plots of the trend, seasonal, and residuals components are all slightly different

Time series decomposition
Time series decomposition is a statistical task that separates the time series into its
three main components: a trend component, a seasonal component, and the residuals. 

The trend component represents the long-term change in the time series. This com-
ponent is responsible for time series that increase or decrease over time. The sea-
sonal component is the periodic pattern in the time series. It represents repeated
fluctuations that occur over a fixed period of time. Finally, the residuals, or the noise,
express any irregularity that cannot be explained by the trend or the seasonal com-
ponent.

Decompose the series using
the STL function. The period
is equal to the frequency m.

Since we have monthly
data, the period is 12.

Plot each 
component 
in a figure.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH08
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH08
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH08
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from the observed data. This is because each plot shows the magnitude of change that
is attributed to that particular component. That way, the sum of the trend, seasonal,
and residuals components results in the observed data shown in the top plot. This
explains why the seasonal component is sometimes in the negative values and other
times in the positive values, as it creates the peaks and troughs in the observed data.

 In a situation where we have a time series with no seasonal pattern, the decomposi-
tion process will display a flat horizontal line at 0 for the seasonal component. To
demonstrate that, I simulated a linear time series and decomposed it into its three
components using the method you just saw. The result is shown in figure 8.5.

 You can see how time series decomposition can help us determine if our data is sea-
sonal or not. This is a graphical method and not a statistical test, but it is enough to

Figure 8.4 Decomposing the dataset for air passengers. The first plot shows the observed data. The second plot 
shows the trend component, which tells us that the number of air passengers is increasing over time. The third 
plot displays the seasonal component, and we can clearly see a repeating pattern through time. Finally, the last 
plot shows the residuals, which are variations in the data that cannot be explained by the trend or the seasonal 
component.
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determine whether a series is seasonal or not, so that we can apply the appropriate model
for forecasting. In fact, there are no statistical tests to identify seasonality in time series.

 Now that you know how to identify seasonal patterns in a series, we can move on to
adapting the general modeling procedure to include the new parameters of the
SARIMA(p,d,q)(P,D,Q)m model and forecast the number of monthly air passengers.

8.3 Forecasting the number of monthly air passengers
In the previous chapter, we adapted our general modeling procedure to account for
the new parameter d in the ARIMA model that allows us to forecast non-stationary
time series. The steps are outlined in figure 8.6. Now we must modify it again to
account for the new parameters of the SARIMA model, which are P, D, Q, and m.

Figure 8.5 Time series decomposition of a simulated linear series. The top plot shows the observed data, and 
you’ll notice that I simulated a perfectly linear series. The second plot shows the trend component, which is 
expected to be the same as the observed data, since the series is linearly increasing over time. Since there is no 
seasonal pattern, the seasonal component is a flat horizontal line at 0. Here the residuals are also 0, because I 
simulated a perfectly linear series.
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Figure 8.6 General modeling procedure for an 
ARIMA model. We now need to adapt the steps 
to account for the parameters P, D, Q, and m of 
the SARIMA model. 
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The first step of gathering data remains untouched. Then we still check for stationar-
ity and apply transformation in order to set the parameter d. However, we can also
perform seasonal differencing to make the series stationary, and D will be equal to the
minimum number of times we applied seasonal differencing. 

 Then we set a range of possible values for p, q, P, and Q, as the SARIMA model
can also incorporate the order of the seasonal autoregressive and seasonal moving
average processes. Note that the addition of these two new parameters will increase
the number of unique combinations of SARIMA(p,d,q)(P,D,Q)m models we can fit,
so this step will take longer to complete. The rest of the procedure remains the
same, as we still need to select the model with the lowest AIC and perform residual
analysis before using the model for forecasting. The resulting modeling procedure
is shown in figure 8.7.

 With our new modeling procedure defined, we are now ready to forecast the total
number of monthly air passengers. For this scenario, we wish to forecast 1 year of
monthly air passengers, so we will use the data from 1960 as the test set, as shown in
figure 8.8.

 The baseline model will be the naive seasonal forecast, and we will use both the
ARIMA(p,d,q) and SARIMA(p,d,q)(P,D,Q)m models to verify whether the addition of
seasonal components will yield better forecasts.

8.3.1 Forecasting with an ARIMA(p,d,q) model

We’ll first model the dataset using an ARIMA(p,d,q) model. That way, we can compare
its performance to the SARIMA(p,d,q)(P,D,Q)m model.

 Following the general modeling procedure we outlined before, we’ll first test for
stationarity. Again, we use the ADF test.

ad_fuller_result = adfuller(df['Passengers'])

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

This prints out an ADF statistic of 0.82 and a p-value of 0.99. Therefore, we cannot
reject the null hypothesis and the series is not stationary. We’ll difference the series
and test for stationarity again.

df_diff = np.diff(df['Passengers'], n=1)   

ad_fuller_result = adfuller(df_diff)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

First-order 
differencing
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Figure 8.7 General modeling procedure for the 
SARIMA model. Note that we can set P, D, and 
Q to 0 to obtain an ARIMA(p,d,q) model.
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This returns an ADF statistic of –2.83 and a p-value of 0.054. Again, we cannot reject
the null hypothesis, and differencing the series once did not make it stationary. There-
fore, we’ll difference it again and test for stationarity.

df_diff2 = np.diff(df_diff, n=1)    

ad_fuller_result = adfuller(df_diff2)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

This returns an ADF statistic of –16.38 and a p-value of 2.73 × 10–29. Now we can reject
the null hypothesis, and our series is considered to be stationary. Since the series was
differenced twice to become stationary, d = 2. 

 Now we can define a range of possible values for the parameters p and q and fit all
unique ARIMA(p,d,q) models. We’ll specifically choose a range from 0 to 12 to allow
the ARIMA model to go back 12 timesteps in time. Since the data is sampled monthly
and we know it is seasonal, we can hypothesize that the number of air passengers in
January of a given year is likely predictive of the number of air passengers in January
of the following year. Since these two points are 12 timesteps apart, we’ll allow the val-
ues of p and q to vary from 0 to 12 in order to potentially capture this seasonal infor-
mation in the ARIMA(p,d,q) model. Finally, since we are working with an ARIMA
model, we’ll set P, D, and Q to 0. Note the use of the parameter s in the following

Figure 8.8 Train set and test set split for the air passengers dataset. The shaded area 
represents the testing period, which corresponds to the full year of 1960, as our goal 
is to forecast a year of monthly air passengers.

Series is now 
differenced 
twice
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code, which is equivalent to m. The implementation of SARIMA in statsmodels sim-
ply uses s instead of m—they both denote the frequency. 

ps = range(0, 13, 1)   
qs = range(0, 13, 1)    
Ps = [0]    
Qs = [0]    

d = 2   
D = 0     
s = 12   

ARIMA_order_list = list(product(ps, qs, Ps, Qs))   

You’ll notice that we set the parameters P, D, Q, and m, even though we are working
with an ARIMA model. This is because we are going to define an optimize_SARIMA
function that will then be reused in the next section. We set P, D, and Q to 0 because a
SARIMA(p,d,q)(0,0,0)m model is equivalent to an ARIMA(p,d,q) model.

 The optimize_SARIMA function builds on the optimize_ARIMA function that we
defined in the previous chapter. This time, we’ll integrate the possible values of P and
Q, as well as add the seasonal order of integration D and the frequency m. The func-
tion is shown in the following listing.

from typing import Union
from tqdm import tqdm_notebook
from statsmodels.tsa.statespace.sarimax import SARIMAX

def optimize_SARIMA(endog: Union[pd.Series, list], order_list: list, d: 

➥ int, D: int, s: int) -> pd.DataFrame:   
    
    results = []
    
    for order in tqdm_notebook(order_list):   
        try: 
            model = SARIMAX(
                endog, 
                order=(order[0], d, order[1]),
                seasonal_order=(order[2], D, order[3], s),
                simple_differencing=False).fit(disp=False)
        except:
            continue
            

Listing 8.1 Defining a function to select the best SARIMA model

Allow p and q to vary from 
0 to 12 in order to capture 
seasonal information.

Set P and Q to 0, since 
we are working with an 
ARIMA(p,d,q) model.

Set the parameter d to the number 
of times the series was differenced 
to become stationary.

D is set to 0 because we are working 
with an ARIMA(p,d,q) model.

The parameter s is equivalent to m. They both 
denote the frequency. This is simply how the 
SARIMA model is implemented in the 
statsmodels library.

Generate all possible 
combinations of 
(p,d,q)(0,0,0).

The order_list parameter now 
includes p, q, P, and Q orders. We also 
add the seasonal order of differencing 
D and the frequency. Remember that 
the frequency m in the SARIMA model 
is denoted as s in the implementation 
in the statsmodels library.Loop over all unique 

SARIMA(p,d,q)(P,D,Q)m 
models, fit them, and 
store the AICs.
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        aic = model.aic
        results.append([order, aic])

    result_df = pd.DataFrame(results)
    result_df.columns = ['(p,q,P,Q)', 'AIC']
    
    #Sort in ascending order, lower AIC is better
    result_df = result_df.sort_values(by='AIC', 

➥ ascending=True).reset_index(drop=True)
    
    return result_df    

With the function ready, we can launch it using the train set and get the ARIMA
model with the lowest AIC. Despite the fact that we are using the optimize_SARIMA
function, we are still fitting an ARIMA model because we specifically set P, D, and Q to
0. For the train set, we’ll take all data points but the last twelve, as they will be used for
the test set.

train = df['Passengers'][:-12]   

ARIMA_result_df = optimize_SARIMA(train, ARIMA_order_list, d, D, s)  
ARIMA_result_df    

This returns a DataFrame where the model with the lowest AIC is a
SARIMA(11,2,3)(0,0,0)12 model, which is equivalent to an ARIMA(11,2,3) model. As
you can see, allowing the order p to vary from 0 to 12 was beneficial for the model, as
the model with the lowest AIC takes into account the past 11 values of the series, since
p = 11. We will see if this is enough to capture seasonal information from the series,
and we will compare the performance of the ARIMA model to the SARIMA model in
the next section.

 For now, we’ll focus on performing residual analysis. We can fit the ARIMA(11,2,3)
model obtained previously and plot the residuals’ diagnostics. 

ARIMA_model = SARIMAX(train, order=(11,2,3), simple_differencing=False)
ARIMA_model_fit = ARIMA_model.fit(disp=False)

ARIMA_model_fit.plot_diagnostics(figsize=(10,8));

The result is shown in figure 8.9. Based on the qualitative analysis, the residuals are
close to white noise, meaning that the errors are random.

 
 
 

Return the sorted DataFrame, 
starting with the lowest AIC.

The train set consists of all data 
points but the last 12, as the last 
year of data is used for the test set.

Run the
optimize_SARIMA

function.

Display the sorted 
DataFrame in increasing 
order of AIC.
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The next step is to run the Ljung-Box test on the residuals to make sure that they are
independent and uncorrelated.

from statsmodels.stats.diagnostic import acorr_ljungbox

residuals = ARIMA_model_fit.resid

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1))

print(pvalue)

Figure 8.9 Residuals’ diagnostics of the ARIMA(11,2,3) model. In the top-left plot, the residuals have 
no trend with a variance that seems fairly constant over time, which resembles the behavior of white 
noise. The top-right plot shows the distribution of the residuals, which approaches a normal distribution, 
despite the unusual peak. This is further confirmed by the Q-Q plot at the bottom left, which displays a 
fairly straight line that lies on y = x. Finally, the correlogram in the bottom-right plot shows no significant 
autocorrelation coefficients after lag 0, which is exactly like white noise. From this analysis, the 
residuals resemble white noise.
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The returned p-values are all greater than 0.05 except for the first two values. This
means that, according to the Ljung-Box test, we reject the null hypothesis with a 5%
chance of being wrong, since we set our significance boundary to 0.05. However, the
third value and onwards are all greater than 0.05, so we reject the null hypothesis, con-
cluding that the residuals are uncorrelated starting at lag 3.

 This is an interesting situation to dissect, because the graphical analysis of the
residuals leads us to conclude that they resemble white noise, but the Ljung-Box test
points to some correlation at lags 1 and 2. This means that our ARIMA model is not
capturing all the information from the data. 

 In this case, we’ll move forward with the model, because we know that we are mod-
eling seasonal data with a non-seasonal model. Therefore, the Ljung-Box test is really
telling us that our model is not perfect, but that’s okay, because part of this exercise is
to compare the performance of ARIMA and SARIMA and demonstrate that SARIMA
is the way to go when dealing with seasonal data.

 As previously mentioned, we wish to predict a full year of monthly air passengers,
using the last 12 months of data as our test set. The baseline model is the naive sea-
sonal forecast, where we simply use the number of air passengers for each month of
1959 as a forecast for each month of 1960.

test = df.iloc[-12:]   

test['naive_seasonal'] = df['Passengers'].iloc[120:132].values   

We can append the forecasts from our ARIMA(11,2,3) model to the test DataFrame.

ARIMA_pred = ARIMA_model_fit.get_prediction(132, 143).predicted_mean    

test['ARIMA_pred'] = ARIMA_pred    

With forecasts from the ARIMA model stored in test, we will now use a SARIMA model
and later compare the performance of both models to see if the SARIMA model actually
performs better than the ARIMA model when applied on a seasonal time series.

8.3.2 Forecasting with a SARIMA(p,d,q)(P,D,Q)m model

In the previous section, we used an ARIMA(11,2,3) model to forecast the number of
monthly air passengers. Now we’ll fit a SARIMA model and see if it performs better
than the ARIMA model. Hopefully the SARIMA model will perform better, since it
can capture seasonal information, and we know that our dataset exhibits clear season-
ality, as shown in figure 8.10.

 

Create the test set. It 
corresponds to the last 12 
data points, which is the 
data for 1960.

The naive seasonal
forecast simply reuses
the data from 1959 as

a forecast for 1960.

Get predictions
for each month

of 1960.
Append 
predictions 
to test.
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Following the steps in our general modeling procedure (figure 8.11), we’ll first check
for stationarity and apply the required transformations.

ad_fuller_result = adfuller(df['Passengers'])

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

The ADF test on the dataset returns an ADF statistic of 0.82 and a p-value of 0.99.
Therefore, we cannot reject the null hypothesis and the series is not stationary. We
can apply a first-order differencing and test for stationarity.

df_diff = np.diff(df['Passengers'], n=1)

ad_fuller_result = adfuller(df_diff)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

This returns an ADF statistic of –2.83 and a p-value of 0.054. Since the p-value is
greater than 0.05, we cannot reject the null hypothesis, and the series is still non-
stationary. Therefore, let’s apply a seasonal difference and test for stationarity.

df_diff_seasonal_diff = np.diff(df_diff, n=12)   

ad_fuller_result = adfuller(df_diff_seasonal_diff)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

Figure 8.10 Monthly total number of air passengers for an airline, from January 1949 
to December 1960. You can see a clear seasonal pattern in the series, with peak traffic 
occurring toward the middle of the year.

Seasonal differencing. Since we 
have monthly data, m = 12, so 
the seasonal difference is the 
difference between two values 
that are 12 timesteps apart.
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This returns an ADF statistic of –17.63 and a p-value of 3.82 × 10–30. With a large and
negative ADF statistic and a p-value smaller than 0.05, we can reject the null hypothe-
sis and consider the transformed series as stationary. Therefore, we performed one
round of differencing, meaning that d = 1, and one round of seasonal differencing,
meaning that D = 1.

 With this step done, we can now define the range of possible values for p, q, P, and Q,
fit each unique SARIMA(p,d,q)(P,D,Q)m model, and select the one with the lowest AIC. 

ps = range(0, 4, 1)    
qs = range(0, 4, 1)
Ps = range(0, 4, 1)
Qs = range(0, 4, 1)

SARIMA_order_list = list(product(ps, qs, Ps, Qs))  

train = df['Passengers'][:-12]   

d = 1
D = 1
s = 12

SARIMA_result_df = optimize_SARIMA(train, SARIMA_order_list, d, D, s)   
SARIMA_result_df    

Once the function is done running, we find that the SARIMA(2,1,1)(1,1,2)12 model
has the lowest AIC, which is a value of 892.24. We can fit this model again on the train-
ing set to perform residual analysis. 

 We’ll start by plotting the residuals’ diagnostics in figure 8.12. 

SARIMA_model = SARIMAX(train, order=(2,1,1), seasonal_order=(1,1,2,12), 

➥ simple_differencing=False)
SARIMA_model_fit = SARIMA_model.fit(disp=False)

SARIMA_model_fit.plot_diagnostics(figsize=(10,8));

The results show that our residuals are completely random, which is exactly what we
are looking for in a good model.

 The final test to determine whether we can use this model for forecasting or not is
the Ljung-Box test.

from statsmodels.stats.diagnostic import acorr_ljungbox

residuals = SARIMA_model_fit.resid

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1))

print(pvalue)

We try values of 
[0,1,2,3] for p, q, 
P, and Q.

Generate the unique 
combinations of 
orders.

The train set consists of all the data 
except the last 12 data points, which 
are used for the test set.

Fit all SARIMA models
on the training set.

Display the 
result.
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The returned p-values are all greater than 0.05. Therefore, we do not reject the null
hypothesis, and we conclude that the residuals are independent and uncorrelated,
just like white noise.

 Our model has passed all the tests from the residuals analysis, and we are ready to
use it for forecasting. Again, we’ll forecast the number of monthly air passengers for
the year of 1960 to compare the predicted values to the observed values in the test set.

SARIMA_pred = SARIMA_model_fit.get_prediction(132, 143).predicted_mean   

test['SARIMA_pred'] = SARIMA_pred

Now that we have the results, we can compare the performance of each model and
determine the best forecasting method for our problem.

Figure 8.12 Residuals’ diagnostics of the SARIMA(2,1,1)(1,1,2)12 model. The top-left plot shows that 
the residuals do not exhibit a trend or a change in variance. The top-right plot shows that the residuals’ 
distribution is very close to a normal distribution. This is further supported by the Q-Q plot at the bottom 
left, which displays a fairly straight line that lies on y = x. Finally, the correlogram at the bottom right 
shows no significant coefficients after lag 0. Therefore, everything leads to the conclusion that the 
residuals resemble white noise.

Forecast the number of monthly
air passengers for the year 1960.
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8.3.3 Comparing the performance of each forecasting method

We can now compare the performance of each forecasting method: the naive seasonal
forecasts, the ARIMA model, and the SARIMA model. We’ll use the mean absolute
percentage error (MAPE) to evaluate each model.

 We can first visualize the forecasts against the observed values of the test set. 

fig, ax = plt.subplots()

ax.plot(df['Month'], df['Passengers'])
ax.plot(test['Passengers'], 'b-', label='actual')
ax.plot(test['naive_seasonal'], 'r:', label='naive seasonal')
ax.plot(test['ARIMA_pred'], 'k--', label='ARIMA(11,2,3)')
ax.plot(test['SARIMA_pred'], 'g-.', label='SARIMA(2,1,1)(1,1,2,12)')

ax.set_xlabel('Date')
ax.set_ylabel('Number of air passengers')
ax.axvspan(132, 143, color='#808080', alpha=0.2)

ax.legend(loc=2)

plt.xticks(np.arange(0, 145, 12), np.arange(1949, 1962, 1))
ax.set_xlim(120, 143)   

fig.autofmt_xdate()
plt.tight_layout()

The plot is shown in figure 8.13. The lines from the ARIMA and SARIMA models sit
almost on top of the observed data, meaning that the predictions are very close to the
observed data.

Zoom in on 
the test set

Figure 8.13 Forecasts of the number of monthly air passengers. The shaded area designates 
the test set. You can see that the curves coming from the ARIMA and SARIMA models 
almost obscure the observed data, which is indicative of good predictions.
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We can measure the MAPE of each model and display it in a bar plot, as shown in fig-
ure 8.14.

def mape(y_true, y_pred):   
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

mape_naive_seasonal = mape(test['Passengers'], test['naive_seasonal'])   
mape_ARIMA = mape(test['Passengers'], test['ARIMA_pred'])
mape_SARIMA = mape(test['Passengers'], test['SARIMA_pred'])

fig, ax = plt.subplots()    

x = ['naive seasonal', 'ARIMA(11,2,3)', 'SARIMA(2,1,1)(1,1,2,12)']
y = [mape_naive_seasonal, mape_ARIMA, mape_SARIMA]

ax.bar(x, y, width=0.4)
ax.set_xlabel('Models')
ax.set_ylabel('MAPE (%)')
ax.set_ylim(0, 15)

for index, value in enumerate(y):    
    plt.text(x=index, y=value + 1, s=str(round(value,2)), ha='center')

plt.tight_layout()

In figure 8.14 you can see that our baseline achieves a MAPE of 9.99%. The ARIMA
model produced forecasts with a MAPE of 3.85%, and the SARIMA model scored a
MAPE of 2.85%. A MAPE closer to 0 is indicative of better predictions, so the SARIMA

Define a function to 
compute the MAPE. Compute the MAPE

for each forecasting
method.

Plot the MAPE 
on a bar plot.

Display the MAPE as 
text in the bar plot.

Figure 8.14 The MAPE of all forecasting methods. You can see that the best-performing 
model is the SARIMA model, since it has the lowest MAPE of all methods.
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model is the best-performing method for this situation. This makes sense, since our
dataset had clear seasonality, and the SARIMA model is built to use the seasonal prop-
erties of time series to make forecasts.

8.4 Next steps
In this chapter, we covered the SARIMA(p,d,q)(P,D,Q)m model, which allows us to
model non-stationary seasonal time series.

 The addition of the parameters P, D, Q, and m allows us to include the seasonal
properties of a time series in a model and use them to produce forecasts. Here, P is
the order of the seasonal autoregressive process, D is the order of seasonal integra-
tion, Q is the order of the seasonal moving average process, and m is the frequency of
the data.

 We looked at how to first detect seasonal patterns using time series decomposition,
and we adapted our general modeling procedure to also test values for P and Q.

 In chapters 4 through 8, we have slowly built a more general and complex model,
starting with the MA(q) and AR(p) models, combining them into the ARMA(p,q) model,
which led us to the ARIMA(p,d,q) model, and finally to the SARIMA(p,d,q)(P,D,Q)m
model. These models only consider the values of the time series itself. However, it
would make sense that external variables are also predictive of our time series. For
example, if we wish to model a country’s total spending over time, looking at interest
rates or the debt level could likely be predictive. How can we include those external
variables in a model?

 This leads us to the SARIMAX model. Notice the addition of X, which stands for
exogenous variables. This model will combine everything that we have learned so far and
further expand on it by adding the effect of external variables to predict our target.
This will be the subject of the next chapter.

8.5 Exercises
Take the time to experiment with the SARIMA model using this exercise. The full
solution is on GitHub: https://github.com/marcopeix/TimeSeriesForecastingInPython/
tree/master/CH08.

8.5.1 Apply the SARIMA(p,d,q)(P,D,Q)m model on the Johnson & 
Johnson dataset

In chapter 7 we applied an ARIMA(p,d,q) model to the Johnson & Johnson dataset to
forecast the quarterly EPS over a year. Now use the SARIMA(p,d,q)(P,D,Q)m model on
the same dataset, and compare its performance to the ARIMA model.

1 Use time series decomposition to identify the presence of a periodic pattern.
2 Use the optimize_SARIMA function and select the model with the lowest AIC.
3 Perform residual analysis.
4 Forecast the EPS for the last year, and measure the performance against the

ARIMA model. Use the MAPE. Is it better?

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH08
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH08
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH08
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Summary
 The seasonal autoregressive integrated moving average model, denoted as

SARIMA(p,d,q)(P,D,Q)m, adds seasonal properties to the ARIMA(p,d,q) model.
 P is the order of the seasonal autoregressive process, D is the order of seasonal

integration, Q is the order of the seasonal moving average process, and m is the
frequency of the data.

 The frequency m corresponds to the number of observations in a cycle. If the
data is collected every month, then m = 12. If data is collected every quarter,
then m = 4.

 Time series decomposition can be used to identify seasonal patterns in a time
series.



Adding external
variables to our model
In chapters 4 through 8, we have increasingly built a general model that allows us
to consider more complex patterns in time series. We started our journey with the
autoregressive and moving average processes before combining them into the
ARMA model. Then we added a layer of complexity to model non-stationary time
series, leading us to the ARIMA model. Finally, in chapter 8 we added yet another
layer to ARIMA that allows us to consider seasonal patterns in our forecasts, which
resulted in the SARIMA model.

 So far, each model that we have explored and used to produce forecasts has
considered only the time series itself. In other words, past values of the time series
were used as predictors of future values. However, it is possible that external vari-
ables also have an impact on our time series and can therefore be good predictors
of future values.

 This brings us to the SARIMAX model. You’ll notice the addition of the X term,
which denotes exogenous variables. In statistics the term exogenous is used to describe

This chapter covers
 Examining the SARIMAX model

 Exploring the use of external variables for 
forecasting

 Forecasting using the SARIMAX model
180
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predictors or input variables, while endogenous is used to define the target variable—
what we are trying to predict. With the SARIMAX model, we can now consider exter-
nal variables, or exogenous variables, when forecasting a time series.

 As a guiding example, we’ll use a macroeconomics dataset from the United States,
collected quarterly from 1959 to 2009, to forecast the real gross domestic product
(GDP), as shown in figure 9.1.

The GDP is the total market value of all the finished goods and services produced
within a country. The real GDP is an inflation-adjusted measure that removes the impact
of inflation on the market value of goods. Inflation or deflation can respectively increase
or decrease the monetary value of goods and services, hence increasing or decreasing
the GDP. By removing the effect of inflation, we can better determine whether an
economy saw an expansion of production.

 Without diving into the technicalities of measuring the GDP, we’ll define the GDP
as the sum of consumption C, government spending G, investments I, and net exports
NX, as shown in equation 9.1.

                    GDP = C + G + I + NX Equation 9.1

Each element of equation 9.1 is likely affected by some external variable. For exam-
ple, consumption is likely impacted by the unemployment rate, because if fewer

Figure 9.1 Real gross domestic product (GDP) of the United States from 1959 to 2009. 
The data was collected quarterly and is expressed in thousands of US dollars. Notice the 
clear positive trend over the years with no cyclical pattern, suggesting that seasonality 
is not present in the series.
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people are employed, consumption is likely to decrease. Interest rates can also have
an impact, because if they go up, it is harder to borrow money, and spending decreases
as a result. We can also think of currency exchange rates as having an impact on net
exports. A weaker local currency will generally stimulate exports and make imports
more expensive. Thus, we can see how many exogenous variables can likely impact
the real GDP of the United States.

 In this chapter, we’ll first examine the SARIMAX model and explore an important
caveat when using it to produce forecasts. Then we’ll apply the model to forecast the
real GDP of the United States.

9.1 Examining the SARIMAX model
The SARIMAX model further extends the SARIMA(p,d,q)(P,D,Q)m model by adding
the effect of exogenous variables. Therefore, we can express the present value yt sim-
ply as a SARIMA(p,d,q)(P,D,Q)m model to which we add any number of exogenous
variables Xt as shown in equation 9.2.

Equation 9.2

The SARIMA model is a linear model, as it is a linear combination of past values of the
series and error terms. Here we add another linear combination of different exoge-
nous variables, resulting in SARIMAX being a linear model as well. Note that in SARI-
MAX you can include categorical variables as exogenous variables, but make sure you
encode them (give them numerical values or binary flags) just like you would do for
traditional regression tasks.

 We have been using the SARIMAX function from statsmodels since chapter 4 to
implement different models. This is because SARIMAX is the most general function for
forecasting a time series. You now understand how a SARIMAX model without exoge-
nous variables is a SARIMA model. Similarly, a model with no seasonality but with exog-
enous variables can be denoted as an ARIMAX model, and a model with no seasonality
and no exogenous variables becomes an ARIMA model. Depending on the problem,
different combinations of each portion of the general SARIMAX model will be used.

SARIMAX model
The SARIMAX model simply adds a linear combination of exogenous variables to the
SARIMA model. This allows us to model the impact of external variables on the future
value of a time series. 

We can loosely define the SARIMAX model as follows:
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Theoretically, this sums up the SARIMAX model. Chapters 4 through 8 were pur-
posely ordered in such a way that we incrementally developed the SARIMAX model,
making the addition of exogenous variables easy to understand. To reinforce your
learning, let’s explore the exogenous variables of our dataset.

9.1.1 Exploring the exogenous variables of the US macroeconomics 
dataset

Let’s load the US macroeconomics dataset and explore the different exogenous vari-
ables available to us to forecast the real GDP. This dataset is available with the stats-
models library, meaning that you do not need to download and read an external file.
You can load the dataset using the datasets module of statsmodels. 

NOTE The full source code for this chapter is available on GitHub: https://
github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH09.

import statsmodels.api as sm

macro_econ_data = sm.datasets.macrodata.load_pandas().data    
macro_econ_data    

This displays the entire DataFrame containing the US macroeconomics dataset.
Table 9.1 describes the meaning of each variable. We have our target variable, or
endogenous variable, which is the real GDP. Then we have 11 exogenous variables
that can be used for forecasting, such as personal and federal consumption expendi-
tures, interest rate, inflation rate, population, and others.

The SARIMAX model is the most general model for forecasting time series. You can
see that if you have no seasonal patterns, it becomes an ARIMAX model. With no
exogenous variables, it is a SARIMA model. With no seasonality or exogenous vari-
ables, it becomes an ARIMA model.

Table 9.1 Description of all variables in the US macroeconomics dataset

Variable Description

realgdp Real gross domestic product (the target variable or endogenous variable)

realcons Real personal consumption expenditure

realinv Real gross private domestic investment

realgovt Real federal consumption expenditure and investment

realdpi Real private disposable income

cpi Consumer price index for the end of the quarter

Load the US
macroeconomics dataset.

Display the 
DataFrame.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH09
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH09
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH09
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Of course, each of these variables may or may not be a good predictor of the real
GDP. We do not have to perform feature selection because the linear model will
attribute a coefficient close to 0 for exogenous variables that are not significant in
predicting the target.

 For the sake of simplicity and clarity, we will only work with six variables in this
chapter: the real GDP, which is our target, and the next five variables listed in table 9.1
(realcons to cpi) as our exogenous variables. 

 We can visualize how each variable behaves through time to see if we can discern
any distinctive patterns. The result is shown in figure 9.2.

fig, axes = plt.subplots(nrows=3, ncols=2, dpi=300, figsize=(11,6))

for i, ax in enumerate(axes.flatten()[:6]):    
    data = macro_econ_data[macro_econ_data.columns[i+2]]    
    

    ax.plot(data, color='black', linewidth=1)
    ax.set_title(macro_econ_data.columns[i+2])   
    ax.xaxis.set_ticks_position('none')
    ax.yaxis.set_ticks_position('none')
    ax.spines['top'].set_alpha(0)
    ax.tick_params(labelsize=6)

plt.setp(axes, xticks=np.arange(0, 208, 8), xticklabels=np.arange(1959, 

➥ 2010, 2))
fig.autofmt_xdate()
plt.tight_layout()

There are two ways to work with exogenous variables for time series forecasting. First,
we could train multiple models with various combinations of exogenous variables, and
see which model generates the best forecasts. Alternatively, we can simply include all
exogenous variables and stick to model selection using the AIC, as we know this yields
a good-fitting model that does not overfit. 

m1 M1 nominal money stock

tbilrate Quarterly monthly average of the monthly 3-month treasury bill

unemp Unemployment rate

pop Total population at the end of the quarter

infl Inflation rate

realint Real interest rate

Table 9.1 Description of all variables in the US macroeconomics dataset (continued)

Variable Description

Iterate for six variables.

Skip the year and 
quarter columns. 
That way, we can 
start at realgdp.

Display the variable’s 
name at the top of 
the plot.
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9.1.2 Caveat for using SARIMAX

There is an important caveat that comes with the use of the SARIMAX model. Includ-
ing external variables can potentially be beneficial, as you may find strong predictors

Why disregard the p-value in regression analysis?
The SARIMAX implementation in statsmodels comes with a regression analysis
using the summary method. This is shown later in the chapter.

In that analysis, we can see the p-value associated with each coefficient of each pre-
dictor of the SARIMAX model. Often the p-value is misused as a way to perform fea-
ture selection. Many incorrectly interpret the p-value as a way to determine if a
predictor is correlated with the target.

In fact, the p-value tests whether the coefficient is significantly different from 0 or not.
If the p-value is less than 0.05, then we reject the null hypothesis and conclude that
the coefficient is significantly different from 0. It does not determine whether a pre-
dictor is useful for forecasting.

Therefore, you should not remove predictors based on their p-values. Selecting the
model by minimizing the AIC takes care of that step.

To learn more, I recommend reading Rob Hyndman’s “Statistical tests for variable
selection” blog post: https://robjhyndman.com/hyndsight/tests2/.
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Figure 9.2 Evolution of the real GDP and five exogenous variables from 1959 to 2009. You’ll notice that 
realgdp, realcons, realdpi, and cpi all have a similar shape, which means that realcons, realdpi, 
and cpi are potentially good predictors, although a graphical analysis is not sufficient to confirm that idea. On 
the other hand, realgovt has peaks and troughs that do not appear in realgdp, so we can hypothesize that 
realgovt is a weaker predictor.

https://robjhyndman.com/hyndsight/tests2/
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for your target. However, you might encounter issues when forecasting multiple time-
steps into the future.

 Recall that the SARIMAX model uses the SARIMA(p,d,q)(P,D,Q)m model and a linear
combination of exogenous variables to predict one timestep into the future. But what if
you wish to predict two timesteps into the future? While this is possible with a SARIMA
model, the SARIMAX model requires us to forecast the exogenous variables too.

 To illustrate this idea, let’s assume that realcons is a predictor of realgdp (this will
be verified later in the chapter). Assume also that we have a SARIMAX model where
realcons is used as an input feature to predict realgdp. Now suppose that we are at
the end of 2009 and must predict the real GDP for 2010 and 2011. The SARIMAX
model allows us to use the realcons of 2009 to predict the real GDP for 2010. How-
ever, predicting the real GDP for 2011 will require us to predict realcons for 2010,
unless we wait to observe the value at the end of 2010.

 Because the realcons variable is a time series itself, it can be forecast using a ver-
sion of the SARIMA model. Nevertheless, we know that our forecast always has some
error associated with it. Therefore, having to forecast an exogenous variable to fore-
cast our target variable can magnify the prediction error of our target, meaning that
our predictions can quickly degrade as we predict more timesteps into the future.

 The only way to avoid that situation is to predict only one timestep into the future
and wait to observe the exogenous variable before predicting the target for another
timestep into the future.

 On the other hand, if your exogenous variable is easy to predict, meaning that it
follows a known function that can be accurately predicted, there is no harm in fore-
casting the exogenous variable and using these forecasts to predict the target.

 In the end, there is no clear recommendation to predict only one timestep. It is
dependent on the situation and the exogenous variables available. This is where your
expertise as a data scientist and rigorous experimenting come into play. If you deter-
mine that your exogenous variable can be accurately predicted, you can recom-
mend forecasting many timesteps into the future. Otherwise, your recommendation
must be to predict one timestep at a time and justify your decision by explaining that
errors will accumulate as more predictions are made, meaning that the forecasts will
lose accuracy.

 Now that we have explored the SARIMAX model in depth, let’s apply it to forecast
the real GDP.

9.2 Forecasting the real GDP using the SARIMAX model
We are now ready to use the SARIMAX model to forecast the real GDP. Having
explored the exogenous variables of the dataset, we will incorporate them into our
forecasting model.

 Before diving in, we must reintroduce the general modeling procedure. There are
no major changes to the procedure. The only modification is that we will now fit a
SARIMAX model. All the other steps remain the same, as shown in figure 9.3.
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Figure 9.3 General modeling procedure for the 
SARIMAX model. This procedure can be applied 
to any problems, as the SARIMAX model is the 
most general forecasting model and can 
accommodate all the different processes and 
properties of time series that we have explored. 
Notice that the only change here is that we are 
fitting a SARIMAX model instead of a SARIMA 
model as we did in chapter 8. The rest of the 
procedure remains the same.
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Following the modeling procedure of figure 9.3, we’ll first check for the stationarity of
our target using the augmented Dickey-Fuller (ADF) test.

target = macro_econ_data['realgdp']    
exog = macro_econ_data[['realcons', 'realinv', 'realgovt', 'realdpi', 

➥ 'cpi']]    

ad_fuller_result = adfuller(target)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

This returns an ADF statistic of 1.75 and a p-value of 1.00. Since the ADF statistic is not
a large negative number, and the p-value is larger than 0.05, we cannot reject the null
hypothesis and conclude that the series is not stationary.

 Therefore, we must apply a transformation and test for stationarity again. Here we
will difference the series once:

target_diff = target.diff()    

ad_fuller_result = adfuller(target_diff[1:])

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

This now returns an ADF statistic of –6.31 and p-value of 3.32 × 10–8. With a large neg-
ative ADF statistic and a p-value smaller than 0.05, we can reject the null hypothesis
and conclude that the series is now stationary. Therefore, we know that d = 1. Since we
did not need to take a seasonal difference to make the series stationary, D = 0.

 We will now define the optimize_SARIMAX function, which will fit all unique com-
binations of the model and return a DataFrame in ascending order of AIC.

from typing import Union
from tqdm import tqdm_notebook
from statsmodels.tsa.statespace.sarimax import SARIMAX

def optimize_SARIMAX(endog: Union[pd.Series, list], exog: Union[pd.Series, 

➥ list], order_list: list, d: int, D: int, s: int) -> pd.DataFrame:

    

    results = []

    

    for order in tqdm_notebook(order_list):
        try: 
            model = SARIMAX(
                endog,

Listing 9.1 Function to fit all unique SARIMAX models

Define the target variable. In 
this case, it is the real GDP.

Define the exogenous 
variables. Here we limit it to 
five variables for simplicity.

Difference 
the series.
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                exog,     
                order=(order[0], d, order[1]),
                seasonal_order=(order[2], D, order[3], s),
                simple_differencing=False).fit(disp=False)
        except:
            continue
            

        aic = model.aic
        results.append([order, aic])
        

    result_df = pd.DataFrame(results)
    result_df.columns = ['(p,q,P,Q)', 'AIC']
    

    #Sort in ascending order, lower AIC is better
    result_df = result_df.sort_values(by='AIC', 

➥ ascending=True).reset_index(drop=True)
    

    return result_df

Next we’ll define the range of possible values for the orders p, q, P, and Q. We’ll try val-
ues from 0 to 3, but feel free to try a different set of values. Also, since the data is col-
lected quarterly, m = 4.

p = range(0, 4, 1)
d = 1
q = range(0, 4, 1)
P = range(0, 4, 1)
D = 0
Q = range(0, 4, 1)
s = 4    

parameters = product(p, q, P, Q)
parameters_list = list(parameters) 

To train the model, we will use the first 200 instances of both the target and exoge-
nous variables. We’ll then run the optimize_SARIMAX function and select the model
with the lowest AIC.

target_train = target[:200]
exog_train = exog[:200]

result_df = optimize_SARIMAX(target_train, exog_train, parameters_list, d, 

➥ D, s)
result_df

Once it’s completed, the function returns the verdict that the SARIMAX(3,1,3)(0,0,0)4
model is the model with the lowest AIC. Notice that the seasonal component of the
model has only orders of 0. This makes sense, as there is no visible seasonal pattern in

Notice the addition of
the exogenous variables
when fitting the model.

Remember that s in the 
implementation of SARIMAX from 
statsmodels is equivalent to m.
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the plot of real GDP, as shown in figure 9.4. Therefore, the seasonal component is
null, and we have an ARIMAX(3,1,3) model.

Now we can fit the selected model and display a summary table to see the coefficients
associated with our exogenous variables. The result is shown in figure 9.5.

best_model = SARIMAX(target_train, exog_train, order=(3,1,3), 

➥ seasonal_order=(0,0,0,4), simple_differencing=False)
best_model_fit = best_model.fit(disp=False)

print(best_model_fit.summary())   

In figure 9.5 you’ll notice that all exogenous variables have a p-value smaller than
0.05, except for realdpi, which has a p-value of 0.712. This means that the coefficient
of realdpi is not significantly different from 0. You’ll also notice that its coefficient is
0.0091. However, the coefficient is kept in the model, as the p-value does not deter-
mine the relevance of this predictor in forecasting our target.

 
 

Figure 9.4 Real gross domestic product (GDP) of the United States between 1959 and 
2009. The data is collected quarterly and is expressed in thousands of US dollars. Notice 
the clear positive trend over the years with no cyclical pattern, suggesting that 
seasonality is not present in the series.

Display the summary 
table of the model.
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Moving on with the modeling procedure, we’ll now study the residuals of the model,
which are shown in figure 9.6. Everything points to the residuals being completely
random, just like white noise. Our model passes the visual check.

best_model_fit.plot_diagnostics(figsize=(10,8));

Now we’ll apply the Ljung-Box test to make sure the residuals are not correlated. We
therefore want to see p-values that are greater than 0.05, since the null hypothesis of
the Ljung-Box test is that residuals are independent and uncorrelated.

residuals = best_model_fit.resid

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1))

print(pvalue)

Figure 9.5 Summary table of the selected model. You can see that our exogenous variables were 
assigned coefficients. You can also see their p-values under the column P>|z|. 
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All the p-values are greater than 0.05. Therefore, we do not reject the null hypothesis,
and we conclude that the residuals are independent and uncorrelated. Having passed
both residual checks, our model can be used for forecasting.

 As mentioned before, the caveat of using a SARIMAX model is that it is reasonable
to predict only the next timestep, to avoid predicting the exogenous variables as well,
which would lead us to accumulate prediction errors in the final forecast.

 Instead, to test our model, we predict the next timestep multiple times and average
the errors of each prediction. This is done using the rolling_forecast function,
which we defined and worked with in chapters 4–6. As a baseline model, we will use
the last known value method.

 

Figure 9.6 Residual analysis of the selected model. You can see that the residuals have no trend and 
a fairly constant variance over time, just like white noise. In the top-right plot, the distribution of 
residuals is very close to a normal distribution. This is further supported by the Q-Q plot at the bottom 
left, which shows a fairly straight line that lies on y = x. Finally, the correlogram shows no significant 
coefficients after lag 0, just like white noise. Therefore, from a graphical analysis, the residuals of this 
model resemble white noise.
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def rolling_forecast(endog: Union[pd.Series, list], exog: 

➥ Union[pd.Series, list], train_len: int, horizon: int, window: int, 

➥ method: str) -> list:
    
    total_len = train_len + horizon

    if method == 'last':
        pred_last_value = []
        
        for i in range(train_len, total_len, window):
            last_value = endog[:i].iloc[-1]
            pred_last_value.extend(last_value for _ in range(window))
            
        return pred_last_value
    
    elif method == 'SARIMAX':
        pred_SARIMAX = []
        
        for i in range(train_len, total_len, window):
            model = SARIMAX(endog[:i], exog[:i], order=(3,1,3), 

➥ seasonal_order=(0,0,0,4), simple_differencing=False)
            res = model.fit(disp=False)
            predictions = res.get_prediction(exog=exog)
            oos_pred = predictions.predicted_mean.iloc[-window:]
            pred_SARIMAX.extend(oos_pred)
            
        return pred_SARIMAX

The recursive_forecast function allows us to predict the next timestep over a cer-
tain period of time. Specifically, we will use it to forecast the next timestep starting in
2008 and going to the third quarter of 2009.

target_train = target[:196]     
target_test = target[196:]     

pred_df = pd.DataFrame({'actual': target_test})

TRAIN_LEN = len(target_train)
HORIZON = len(target_test)
WINDOW = 1    

pred_last_value = recursive_forecast(target, exog, TRAIN_LEN, HORIZON, 

➥ WINDOW, 'last')
pred_SARIMAX = recursive_forecast(target, exog, TRAIN_LEN, HORIZON, WINDOW, 

➥ 'SARIMAX')

pred_df['pred_last_value'] = pred_last_value
pred_df['pred_SARIMAX'] = pred_SARIMAX

pred_df

Listing 9.2 Function to forecast the next timestep multiple times

We fit the model on the data 
from 1959 to the end of 2007.

The test set contains the values 
starting in 2008 to the third 
quarter of 2009. There is a total 
of seven values to predict.

This specifies that we predict 
the next timestep only.
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With the predictions done, we can visualize which model has the lowest mean abso-
lute percentage error (MAPE). The result is shown in figure 9.7.

def mape(y_true, y_pred):
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

mape_last = mape(pred_df.actual, pred_df.pred_last_value)
mape_SARIMAX = mape(pred_df.actual, pred_df.pred_SARIMAX)

fig, ax = plt.subplots()

x = ['naive last value', 'SARIMAX']
y = [mape_last, mape_SARIMAX]

ax.bar(x, y, width=0.4)
ax.set_xlabel('Models')
ax.set_ylabel('MAPE (%)')
ax.set_ylim(0, 1)

for index, value in enumerate(y):
    plt.text(x=index, y=value + 0.05, s=str(round(value,2)), ha='center')

plt.tight_layout()

In figure 9.7 you’ll see that the SARIMAX model is the winning model by only 0.04%.
You’ll appreciate the importance of a baseline here, as both methods achieve an

Figure 9.7 The mean absolute percentage error (MAPE) of the forecasts of each 
method. You can see that the SARIMAX model only has a slightly smaller MAPE than 
the baseline. This highlights the importance of using a baseline, as a MAPE of 0.70% 
is extremely good, but a naive forecast achieves a MAPE of 0.74%, meaning that the 
SARIMAX model only has a small advantage.
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extremely low MAPE, showing that the SARIMAX model is only slightly better than
simply predicting the last value. This is where the business context comes into play. In
our case, since we are predicting the real GDP of the United States, a difference of
0.04% represents thousands of dollars. This difference might be relevant in this par-
ticular context, justifying the use of the SARIMAX model, even though it is only
slightly better than the baseline.

9.3 Next steps
In this chapter, we covered the SARIMAX model, which allows us to include external
variables when forecasting our target time series.

 The addition of exogenous variables comes with a caveat: if we need to predict
many timesteps into the future, we must also predict the exogenous variables, which
can magnify the prediction error on the target. To avoid that, we must only predict
the next timestep.

 In considering exogenous variables for predicting real GDP, we can also hypothe-
size that real GDP can be a predictor for other variables. For example, the variable cpi
was a predictor for realgdp, but we could also show that realgdp can predict cpi.

 In a situation where we wish to show that two variables varying in time can impact
one another, we must use the vector autoregression (VAR) model. This model allows for
multivariate time series forecasting, unlike the SARIMAX model, which is for univari-
ate time series forecasting. In the next chapter we will explore the VAR model in
detail, and you’ll see that it can also be extended to become a VARMA model and a
VARMAX model.

9.4 Exercises
Take the time to test your knowledge with this exercise. The full solution is on GitHub:
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH09.

9.4.1 Use all exogenous variables in a SARIMAX model to predict 
the real GDP

In this chapter we limited the number of exogenous variables when forecasting for
the real GDP. This exercise is an occasion to fit a SARIMAX model using all exoge-
nous variables and to verify if you can achieve better performance.

1 Use all exogenous variables in the SARIMAX model.
2 Perform residual analysis.
3 Produce forecasts for the last seven timesteps in the dataset.
4 Measure the MAPE. Is it better, worse, or identical to what was achieved with a

limited number of exogenous variables?

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH09
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Summary
 The SARIMAX model allows you to include external variables, also termed

exogenous variables, to forecast your target.
 Transformations are applied only on the target variable, not on the exogenous

variables.
 If you wish to forecast multiple timesteps into the future, the exogenous vari-

ables must also be forecast. This can magnify the errors on the final forecast. To
avoid that, you must predict only the next timestep.



Forecasting
multiple time series
In the last chapter, you saw how the SARIMAX model can be used to include the
impact of exogenous variables on a time series. With the SARIMAX model, the rela-
tionship is unidirectional: we assume that the exogenous variable has an impact on
the target only.

 However, it is possible that two time series have a bidirectional relationship,
meaning that time series t1 is a predictor of time series t2, and time series t2 is also
a predictor for time series t1. In such a case, it would be useful to have a model that
can take this bidirectional relationship into account and output predictions for both
time series simultaneously. 

This chapter covers
 Examining the VAR model

 Exploring Granger causality to validate the use 
of the VAR model

 Forecasting multiple time series using the VAR 
model
197
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 This brings us to the vector autoregression (VAR) model. This particular model allows
us to capture the relationship between multiple time series as they change over time.
That, in turn, allows us to produce forecasts for many time series simultaneously,
therefore performing multivariate forecasting.

 Throughout this chapter, we will use the same US macroeconomics dataset as in
chapter 9. This time we’ll explore the relationship between real disposable income
and real consumption, as shown in figure 10.1.

Real consumption expresses how much money people spend, while real disposable
income represents how much money is available to spend. Therefore, it is a reason-
able hypothesis that a higher amount of disposable income could signal higher con-
sumption. The opposite can also be true, with higher consumption meaning that more

Figure 10.1 Real disposable income (realdpi) and real consumption (realcons) in the United States from 
1959 to 2009. The data is collected quarterly and is expressed in thousands of US dollars. Both series have a 
similar shape and trend over time. 
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income is available for spending. This bidirectional relationship can be captured by a
VAR model.

 In this chapter, we’ll first explore the VAR model in detail. Then, we’ll introduce
the Granger-causality test, which will help us validate the hypothesis that two time
series have an impact on one another. Finally, we’ll apply the VAR model to produce
forecasts for both real consumption and real disposable income.

10.1 Examining the VAR model
The vector autoregression (VAR) model captures the relationship between multiple
series as they change over time. In this model, each series has an impact on the other,
unlike the SARIMAX model where the exogenous variable had an impact on the tar-
get, but not the other way around. Recall in chapter 9 that we used the variables real-
cons, realinv, realgovt, realdpi, cpi, m1, and tbilrate as predictors for realgdp,
but we did not consider how realgdp can affect any of those variables. That is why we
used the SARIMAX model in that case.

 You might have noticed the return of autoregression, which brings us back to the
AR(p) model of chapter 5. This is a good intuition, as the VAR model can be seen as a
generalization of the AR(p) model to allow for the forecast of multiple time series.
Therefore, we can also denote the VAR model as VAR(p), where p is the order and has
the same meaning as in the AR(p) model.

 Recall that AR(p) expressed the value of a time series as a linear combination of a
constant C, the present error term ϵt, which is also white noise, and the past values of
the series yt –p. The magnitude of the influence of the past values on the present value
is denoted as φp, which represents the coefficients of the AR(p) model, as shown in
equation 10.1.

                 yt = C + φ1yt –1 + φ2yt –2 +⋅⋅⋅+ φpyt–p + ϵt Equation 10.1

We can simply extend equation 10.1 to allow for multiple time series to be modeled,
where each has an impact on the others.

 For simplicity, let’s consider a system with two time series, denoted as y1,t and y2,t,
and an order of 1, meaning that p = 1. Then, using matrix notation, the VAR(1)
model can be expressed as equation 10.2.

Equation 10.2

Carrying out the matrix multiplication, the mathematical expression for y1,t is shown
in equation 10.3, and that for y2,t is shown in equation 10.4.

               y1,t = C1 + φ1,1y1,t –1 + φ1,2y2,t –1 + ϵ1,t Equation 10.3

              y2,t = C2 + φ2,1y1,t –1 + φ2,2y2,t –1 + ϵ2,t Equation 10.4

C

C
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In equation 10.3 you’ll notice that the expression for y1,t includes the past value of y2,t.
Similarly, in equation 10.4, the expression for y2,t includes the past value of y1,t. Hence,
you can see how the VAR model captures the impact of each series on the other.

 We can extend equation 10.3 to express a general VAR(p) model that considers p
lagged values, resulting in equation 10.5. Note that the superscript does not represent
an exponent but is used for indexing. For simplicity, we’ll again consider only two
time series.

Equation 10.5

Just like with the AR(p) model, the VAR(p) model requires each time series to be
stationary.

You have seen how the VAR(p) model is expressed mathematically, with their lagged
values included in each expression, as shown in equations 10.3 and 10.4. This should
give you a sense of how each series has an impact on the others. The VAR(p) model is

Vector autoregression model
The vector autoregression model VAR(p) models the relationship of two or more time
series. In this model, each time series has an impact on the others. This means that
past values of one time series affect the other time series, and vice versa.

The VAR(p) model can be seen as a generalization of the AR(p) model that allows for
multiple time series. Just like in the AR(p) model, the order p of the VAR(p) model
determines how many lagged values impact the present value of a series. In this
model, however, we also include lagged values of other time series.

For two time series, the general equation for the VAR(p) model is a linear combination
of a vector of constants, past values of both time series, and a vector of error terms:

Note that the time series must be stationary to apply the VAR model.
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only valid if both series are useful in predicting one another. Looking at the general
shape of the series over time is not sufficient to support that hypothesis. Instead, we
must apply the Granger causality test, which is a statistical hypothesis test to determine
whether one time series is predictive of another. Only upon the success of this test can
we apply the VAR model to make predictions. This is an important step in our model-
ing procedure when using a VAR model.

10.2 Designing a modeling procedure for the VAR(p) model
The VAR(p) model requires a slightly modified version of the modeling procedure we
have been using. The most notable modification is the addition of the Granger causal-
ity test, since the VAR model assumes that past values of both time series are signifi-
cantly predictive of the other time series. 

 The complete modeling procedure for the VAR(p) model is shown in figure 10.2.
As you can see, the modeling procedure for the VAR(p) model is very similar to the
modeling procedures we have been using since the introduction of the ARMA(p,q)
model.

 The main difference here is that we list values only for the order p, since we are fit-
ting different VAR(p) models on the data. Then, once the model with the lowest AIC
has been selected, we perform the Granger causality test. This test determines
whether past values of a time series are statistically significant in forecasting another
time series. It is important to test for this relationship because the VAR(p) model uses
past values of one time series to forecast another. 

 If the Granger causality test fails, we cannot say that past values of one time series
are predictive of the other time series. In that case, the VAR(p) model becomes
invalid, and we must revert to using a variation of the SARIMAX model to forecast the
time series. On the other hand, if the Granger causality test passes, we can resume the
procedure with residual analysis. As before, if the residuals are close to white noise, we
can use the selected VAR(p) model to make forecasts.

 Before we move on to applying this modeling procedure, it is worth spending
some time exploring the Granger causality test in more detail.

10.2.1 Exploring the Granger causality test

As shown in the previous section, the VAR(p) model assumes that each time series has
an impact on another. Therefore, it is important to test if this relationship actually
exists. Otherwise, we would be assuming a relationship that does not exist, which would
introduce mistakes in the model and make our predictions invalid and unreliable.

 Hence, we use the Granger causality test. This is a statistical test that helps us deter-
mine if past values of a time series y2,t can help forecast time series y1,t. If that is the
case, then we say that y2,t Granger-causes y1,t.

 Note that the Granger causality test is restricted to predictive causality, as we are
only determining whether past values of a time series are statistically significant in
predicting another time series. Furthermore, the test requires both time series to be
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Figure 10.2 Modeling procedure for the 
VAR(p) model. It is very similar to the modeling 
procedures we have been using since the 
introduction of the ARMA(p,q) model, but this 
time we are fitting different VAR(p) models and 
selecting the one with the lowest AIC. Then we 
run the Granger causality test. If it fails, the 
VAR(p) model is invalid, and we will not go 
forward with the procedure. On the other hand, 
if the test passes, we perform residual analysis. 
If the residuals are similar to white noise, the 
VAR(p) model can be used for forecasting.
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stationary in order for the results to be valid. Also, the Granger causality test tests cau-
sality only in one direction; we must repeat the test to verify that y1,t also Granger-
causes y2,t in order for the VAR model to be valid. Otherwise, we must resort to the
SARIMAX model and predict each time series separately.

 The null hypothesis for this test states that y2,t does not Granger-cause y1,t. Again,
we will use the p-value with a critical value of 0.05 to determine whether we will reject
the null hypothesis or not. In the case where the returned p-value of the Granger cau-
sality test is less than 0.05, we can reject the null hypothesis and say that y2,t Granger-
causes y1,t.

 You saw that the Granger causality test is performed after the VAR(p) model is
selected. This is because the test requires us to specify the number of lags to include in
the test, which is equivalent to the order of the model. For example, if the selected
VAR(p) model is of order 3, the Granger causality test will determine if the past three
values of a time series are statistically significant in forecasting the other time series.

 The statsmodels library conveniently includes the Granger causality test, which
we will apply in the next section when we forecast both real consumption and real dis-
posable income.

10.3 Forecasting real disposable income and real 
consumption
Having examined the VAR(p) model and designed a modeling procedure for it, we
are now ready to apply it to forecasting both the real disposable income and real con-
sumption in the United States. We will use the same dataset as in the previous chapter,
which contains the macroeconomics data between 1959 and 2009. 

NOTE The source code for this chapter is available on GitHub: https://github
.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH10.

macro_econ_data = sm.datasets.macrodata.load_pandas().data
macro_econ_data

We can now plot our two variables of interest, which are real disposable income,
denoted as realdpi in the dataset, and real consumption, denoted as realcons. The
result is shown in figure 10.3.

fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(10,8))

ax1.plot(macro_econ_data['realdpi'])
ax1.set_xlabel('Date')
ax1.set_ylabel('Real disposable income (k$)')
ax1.set_title('realdpi')
ax1.spines['top'].set_alpha(0)

ax2.plot(macro_econ_data['realcons'])
ax2.set_xlabel('Date')
ax2.set_ylabel('Real consumption (k$)')

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH10
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH10
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH10
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ax2.set_title('realcons')
ax2.spines['top'].set_alpha(0)

plt.xticks(np.arange(0, 208, 16), np.arange(1959, 2010, 4))

fig.autofmt_xdate()
plt.tight_layout()

In figure 10.3 you can see that both curves have a very similar shape through time, which
intuitively makes them good candidates for a VAR(p) model. It is reasonable to think that
with a higher disposable income, consumption is likely to be high, just as higher con-
sumption can be a sign of higher disposable income. Of course, this hypothesis will have
to be tested using the Granger causality test later in the modeling procedure.

Figure 10.3 Real disposable income and real consumption in the United States, between 1959 and 2009. The 
data was collected quarterly and is expressed in thousands of US dollars. You can see that both curves have a 
similar shape through time. 
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 We have gathered the data, so now we must determine if the time series are station-
ary. In figure 10.3 both of them exhibit a positive trend through time, meaning that
they are non-stationary. Nevertheless, we’ll apply the augmented Dickey-Fuller (ADF)
test to make sure.

ad_fuller_result_1 = adfuller(macro_econ_data['realdpi'])
print('realdpi')         
print(f'ADF Statistic: {ad_fuller_result_1[0]}')
print(f'p-value: {ad_fuller_result_1[1]}')

print('\n---------------------\n')

ad_fuller_result_2 = adfuller(macro_econ_data['realcons'])

print('realcons')              
print(f'ADF Statistic: {ad_fuller_result_2[0]}')
print(f'p-value: {ad_fuller_result_2[1]}')

For both variables, the ADF test outputs a p-value of 1.0. Therefore, we cannot reject
the null hypothesis, and we conclude that both time series are not stationary, as
expected.

 We’ll apply a transformation to make them stationary. Specifically, we’ll difference
both series and test for stationarity again.

ad_fuller_result_1 = adfuller(macro_econ_data['realdpi'].diff()[1:])  

print('realdpi')
print(f'ADF Statistic: {ad_fuller_result_1[0]}')
print(f'p-value: {ad_fuller_result_1[1]}')

print('\n---------------------\n')

ad_fuller_result_2 = adfuller(macro_econ_data['realcons'].diff()[1:])  

print('realcons')
print(f'ADF Statistic: {ad_fuller_result_2[0]}')
print(f'p-value: {ad_fuller_result_2[1]}')

The ADF test for realdpi returns a p-value of 1.45 × 10–14, while the ADF test for
realcons returns a p-value of 0.0006. In both cases, the p-value is smaller than 0.05.
Therefore, we reject the null hypothesis and conclude that both time series are station-
ary. As mentioned before, the VAR(p) model requires the time series to be stationary.
We can thus use the transformed series for modeling, and we will need to integrate the
forecasts to bring them back to their original scales.

 We are now at the step of fitting many VAR(p) models to select the one with the
smallest Akaike information criterion (AIC). We’ll write a function, optimize_VAR,
to fit many VAR(p) models while varying the order p. This function will return an
ordered DataFrame in ascending order of AIC. This function is shown in the follow-
ing listing.

ADF test 
for realdpi

ADF test for realcons. Note 
that both time series must 
be stationary before they are 
used in the VAR(p) model.

First-order
differencing
for realdpi

First-order
differencing
for realcons
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from typing import Union
from tqdm import tqdm_notebook
from statsmodels.tsa.statespace.varmax import VARMAX

def optimize_VAR(endog: Union[pd.Series, list]) -> pd.DataFrame:
    
    results = []
    
    for i in tqdm_notebook(range(15)):    
        try:
            model = VARMAX(endog, order=(i, 0)).fit(dips=False)
        except:
            continue
            
        aic = model.aic
        results.append([i, aic])
        
    result_df = pd.DataFrame(results)
    result_df.columns = ['p', 'AIC']
    
    result_df = result_df.sort_values(by='AIC', 

➥ ascending=True).reset_index(drop=True)
    
    return result_df

We can now use this function to select the order p that minimizes the AIC. 
 First, though, we must define the train and test sets. In this case, we’ll use 80% of

the data for training and 20% for testing. This means that the last 40 data points will
be used for testing, and the rest is used for training. Remember that the VAR(p)
model requires both series to be stationary. Therefore, we’ll split on the differenced
dataset and feed the differenced training set to the optimize_VAR function.

endog = macro_econ_data[['realdpi', 'realcons']]    

endog_diff = macro_econ_data[['realdpi', 'realcons']].diff()[1:]    

train = endog_diff[:162]  
test = endog_diff[162:]     

result_df = optimize_VAR(train)    
result_df

Running the function returns a DataFrame in which we see that p = 3 has the lowest
AIC value of all. Therefore, the selected model is a VAR(3) model, meaning that the
past three values of each time series are used to forecast the other time series.

Listing 10.1 Function to fit many VAR(p) models and select the one with the lowest AIC

Vary the order 
p from 0 to 14.

Select only realdpi and realcons, as they are 
the only two variables of interest in this case.

Difference both series,
as the ADF test shows that

a first-order differencing
makes them stationary.

The first 162 data points go 
for training. This is roughly 
80% of the dataset.

The last 40 data points go for the test 
set. This is roughly 20% of the dataset.

Run the optimize_VAR function using 
the differenced data stored in train. 
This is required for the VAR(p) model.
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 Following the modeling procedure, we must now use the Granger causality test
Recall that the VAR model assumes that past values of realcons are useful in predict-
ing realdpi and that past values of realdpi are useful in predicting realcons. This
relationship must be tested. If the Granger causality test returns a p-value greater than
0.05, we cannot reject the null hypothesis, meaning that the variables do not Granger-
cause each other, and the model is invalid. On the other hand, a p-value smaller than
0.05 will allow us to reject the null hypothesis, thus validating the VAR(3) model,
meaning that we can move on with the modeling procedure. 

 We’ll run the Granger causality test for both variables, using the grangercausali-
tytests function from the statsmodels library. Remember that the series must be
stationary for the Granger causality test, which is why they are differenced when
passed in to the function. Also, we specify the number of lags for the test, which in this
case is 3, since the model selection step returned p = 3.

print('realcons Granger-causes realdpi?\n')
print('------------------')
granger_1 = grangercausalitytests(macro_econ_data[['realdpi', 

➥ 'realcons']].diff()[1:], [3])  

print('\nrealdpi Granger-causes realcons?\n')
print('------------------')
granger_2 = grangercausalitytests(macro_econ_data[['realcons', 

➥ 'realdpi']].diff()[1:], [3])    

Running the Granger causality test for both variables returns a p-value smaller than
0.05 in both cases. Therefore, we can reject the null hypothesis and conclude that
realdpi Granger-causes realcons, and realcons Granger-causes realdpi. Our
VAR(3) model is thus valid. In the event that one variable does not Granger-cause the
other, the VAR(p) model becomes invalid, and it cannot be used. In that case, we must
use the SARIMAX model and predict each time series individually. 

 We can now move on to residual analysis. For this step, we first fit the VAR(3)
model on our train set.

best_model = VARMAX(train, order=(3,0))
best_model_fit = best_model.fit(disp=False)

Then we can use the plot_diagnostics function to plot a histogram of the residuals,
the Q-Q plot, and the correlogram. However, we must study the residuals of two vari-
ables here, since we are modeling both realdpi and realcons. 

 Let’s focus on the residuals for realdpi first. 

best_model_fit.plot_diagnostics(figsize=(10,8), variable=0);  

The function tests if the second variable Granger-causes the first one. Here we thus test 
if realcons Granger-causes realdpi. We then pass the number of lags in a list, which in 
our case is 3. Note that the series are differenced to make them stationary.

Here we test if realdpi 
Granger-causes realcons.

Passing variable=0 specifies that we want plots for the residuals of
realdpi, since it is the first variable that was passed to the VAR model.
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The output in figure 10.4 shows that the residuals are close to white noise.

Now we can move on to analyzing the residuals of realcons. 

best_model_fit.plot_diagnostics(figsize=(10,8), variable=1);    

The output in figure 10.5 shows that the residuals of realcons closely resemble
white noise.

 Once the qualitative analysis is done, we can move on to the quantitative analysis
using the Ljung-Box test. Recall that the null hypothesis of the Ljung-Box test states

Figure 10.4 Residuals analysis of realdpi. The standardized residuals seem to have no trend and 
constant variance, which is in line with white noise. The histogram also closely resembles the shape of 
a normal distribution. This is further supported by the Q-Q plot, which shows a fairly straight line that lies 
on y = x, although we can see some curvature at the extremities. Finally, the correlogram shows no 
significant coefficients except at lag 5. However, this is likely due to chance, since there are no 
preceding significant coefficients. Thus, we can conclude that the residuals are close to white noise.

Passing variable=1 specifies that we want the plots of the residuals
for realcons, since it was the second variable passed in the model.
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that the residuals are independent and uncorrelated. Therefore, for the residuals to
behave like white noise, the test must return p-values that are larger than 0.05, in
which case we do not reject the null hypothesis.

 The test must be applied on both realdpi and realcons:

realgdp_residuals = best_model_fit.resid['realdpi']

lbvalue, pvalue = acorr_ljungbox(realgdp_residuals, np.arange(1, 11, 1))

print(pvalue)

Running the Ljung-Box test on the residuals of realdpi returns p-values that are all
larger than 0.05. Thus, we do not reject the null hypothesis, meaning that the residu-
als are uncorrelated and independent, just like white noise.

Figure 10.5 Residuals analysis of realcons. The top-left plot shows the residuals over time, and you 
can see that there is no trend and constant variance, which is in line with the behavior of white noise. 
At the top right, the distribution is very close to a normal distribution. This is further supported by the 
Q-Q plot at the bottom left, which displays a fairly straight line that lies on y = x. Finally, the correlogram 
at the bottom right shows that there are no significant autocorrelation coefficients after lag 0. 
Therefore, the residuals are close to white noise.
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realcons_residuals = best_model_fit.resid['realcons']

lbvalue, pvalue = acorr_ljungbox(realcons_residuals, np.arange(1, 11, 1))

print(pvalue)

Next, we’ll run the test on the residuals of realcons. This test returns p-values that are
all greater than 0.05. Again, we do not reject the null hypothesis, meaning that the
residuals are not correlated and independent, just like white noise.

 Since the model passed both the qualitative and quantitative aspects of residual
analysis, we can move on to forecasting realcons and realdpi using a VAR(3) model.
We will compare the VAR(3) model to a baseline that simply predicts the last observed
value. We’ll forecast four steps into the future, which is equivalent to forecasting one
full year as the data is sampled quarterly. We’ll thus perform a rolling forecast four
steps into the future over the entire length of the test set.

 To do so, we’ll use the rolling_forecast function that we have defined many
times over the last several chapters. This time, we’ll apply some slight modifications to
accommodate the VAR(3) model. It will need to output predictions for both realdpi
and realcons, so we must return two lists containing forecasts. The following listing
shows the code for the rolling_forecast function.

def rolling_forecast(df: pd.DataFrame, train_len: int, horizon: int, 

➥ window: int, method: str) -> list:
    
    total_len = train_len + horizon
    end_idx = train_len
    
    if method == 'VAR':

        realdpi_pred_VAR = []   
        realcons_pred_VAR = []
        
        for i in range(train_len, total_len, window):
            model = VARMAX(df[:i], order=(3,0))
            res = model.fit(disp=False)
            predictions = res.get_prediction(0, i + window - 1)
            
            oos_pred_realdpi = predictions.predicted_mean.iloc[-

➥ window:]['realdpi']  
            oos_pred_realcons = predictions.predicted_mean.iloc[-

➥ window:]['realcons']   
            
            realdpi_pred_VAR.extend(oos_pred_realdpi)   
            realcons_pred_VAR.extend(oos_pred_realcons)
        
        return realdpi_pred_VAR, realcons_pred_VAR   
    

Listing 10.2 Function for rolling forecasts over a test set

Initialize two empty lists 
to hold the predictions for 
realdpi and realcons.

Extract the 
predictions 
for realdpi.

Extract the 
predictions 
for realcons.

Extend the lists with 
the new predictions 
for each variable.

Return both lists of predictions
for realdpi and realcons.
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    elif method == 'last':  
        realdpi_pred_last = []
        realcons_pred_last = []
        
        for i in range(train_len, total_len, window):
            
            realdpi_last = df[:i].iloc[-1]['realdpi']
            realcons_last = df[:i].iloc[-1]['realcons']
            
            realdpi_pred_last.extend(realdpi_last for _ in range(window))
            realcons_pred_last.extend(realcons_last for _ in range(window))
            
        return realdpi_pred_last, realcons_pred_last

We can now use this function to produce the forecasts for realdpi and realcons
using the VAR(3) model.

TRAIN_LEN = len(train)
HORIZON = len(test)
WINDOW = 4   

realdpi_pred_VAR, realcons_pred_VAR = rolling_forecast(endog_diff, 

➥ TRAIN_LEN, HORIZON, WINDOW, 'VAR')

Recall that the VAR(3) model requires the series to be stationary, meaning that we
have transformed forecasts. We must then integrate them using the cumulative sum to
bring them back to the original scale of the data.

test = endog[163:]

test['realdpi_pred_VAR'] = pd.Series()
test['realdpi_pred_VAR'] = endog.iloc[162]['realdpi'] + 

➥ np.cumsum(realdpi_pred_VAR)  

test['realcons_pred_VAR'] = pd.Series()
test['realcons_pred_VAR'] = endog.iloc[162]['realcons'] + 

➥ np.cumsum(realcons_pred_VAR)

test     

At this point, test contains the actual values of the test set and the predictions from
the VAR(3) model. We can now add the forecasts from our baseline method, which
simply predicts the last known value for the next four timesteps.

realdpi_pred_last, realcons_pred_last = rolling_forecast(endog, 

➥ TRAIN_LEN, HORIZON, WINDOW, 'last')   

test['realdpi_pred_last'] = realdpi_pred_last
test['realcons_pred_last'] = realcons_pred_last

test     

For the baseline, we’ll 
also use two lists to hold 
the predictions for each 
variable and return them 
at the end.

The window is 4, since we want to forecast 
four time steps into the future at a time, 
which is equivalent to 1 year.

Integrate the 
forecasts using the 
cumulative sum.

Display the test 
DataFrame.

Use rolling_forecast 
to obtain the baseline 
predictions using the 
last known value 
method.Display the test 

DataFrame.
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Now test holds the actual values of the test set, the predictions from the VAR(3)
model, and the predictions from the baseline method. Everything is set for us to visu-
alize the forecasts and evaluate the forecasting methods using the mean absolute per-
centage error (MAPE). The forecasts are shown in figure 10.6.

In figure 10.6 the dashed line represents the forecasts from the VAR(3) model, and
the dotted line shows the predictions from the last known value method. You can see
that both lines are very close to the actual values of the test set, making it hard for us
to visually determine which method is better.

 We will now calculate the MAPE. The result is shown in figure 10.7.

Figure 10.6 Forecasts of realdpi and realcons. You can see that the predictions from the VAR(3) model, 
shown as a dashed line, closely follow the actual values of the test set. You’ll also notice that the dotted curve 
from the baseline method shows little steps, which makes sense since we are forecasting a constant value over 
four timesteps.
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def mape(y_true, y_pred):
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

mape_realdpi_VAR = mape(test['realdpi'], test['realdpi_pred_VAR'])
mape_realdpi_last = mape(test['realdpi'], test['realdpi_pred_last'])

mape_realcons_VAR = mape(test['realcons'], test['realcons_pred_VAR'])
mape_realcons_last = mape(test['realcons'], test['realcons_pred_last'])

In figure 10.7 you can see that the VAR(3) model performs worse than the baseline in
the case of realdpi but better than the baseline for realcons. This is an ambiguous
situation. There is no clear result, since the model does not outperform the baseline
in both situations.

 We can hypothesize that in the case of realdpi, realcons is not predictive enough
to make more accurate forecasts than the baseline, even though the Granger causality
test passed. Therefore, we should resort to using a variation of the SARIMAX model to
predict realdpi. Thus, I would conclude that the VAR(3) model is not sufficient to
accurately forecast realdpi and realcons. I would suggest using two separate models,
which could include realdpi and realcons as exogenous variables, while also poten-
tially including moving average terms.

Figure 10.7 The MAPE of the forecast for realdpi and realcons. You can see that the VAR(3) model 
performs worse than the baseline in the case of realdpi. However, the VAR(3) model performs better than the 
baseline for realcons.
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10.4 Next steps
In this chapter, we covered the VAR(p) model, which allows us to forecast multiple
time series at once. 

 The VAR(p) model stands for vector autoregression, and it assumes that the past
values of some time series are predictive of the future values of other time series. This
bidirectional relationship is tested using the Granger causality test. If the test fails,
meaning that the returned p-values are larger than 0.05, the VAR(p) model is invalid,
and it cannot be used.

 Congratulations on making it this far—we have covered a wide array of statistical
methods for forecasting time series! These statistical methods are great for smaller
datasets with low dimensionality. However, when datasets start getting large, starting at
10,000 data points or more, and they have many features, deep learning can be a great
tool for obtaining accurate forecasts and leveraging all the available data.

 In the next chapter, we’ll go through a capstone project to consolidate our knowl-
edge of statistical methods. Then we’ll start a new section and apply deep learning
forecasting models on large datasets.

10.5 Exercises
Go above and beyond the VAR(p) model with these exercises. The full solutions are
available on GitHub: https://github.com/marcopeix/TimeSeriesForecastingInPython/
tree/master/CH10.

10.5.1 Use a VARMA model to predict realdpi and realcons

In this chapter, we used a VAR(p) model. However, we used the VARMAX function from
statsmodels to do so, meaning that we can easily extend the VAR(p) model to a
VARMA(p,q) model. In this exercise, use a VARMA(p,q) model to forecast realdpi
and realcons.

1 Use the same train and test sets as in this chapter.
2 Generate a list of unique (p,q) combinations.
3 Rename the optimize_VAR function to optimize_VARMA, and adapt it to loop

over all unique (p,q) combinations.
4 Select the model with the lowest AIC, and perform the Granger causality test.

Pass in the largest order among (p,q). Is the VARMA(p,q) model valid?
5 Perform residual analysis.
6 Make forecasts on a four-step window over the test set. Use the last known value

method as a baseline.
7 Calculate the MAPE. Is it lower or higher than that of our VAR(3) model?

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH10
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH10
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH10
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10.5.2 Use a VARMAX model to predict realdpi and realcons

Again, since we used the VARMAX function from statsmodels, we know that we can
also add exogenous variables to the model, just like in SARIMAX. In this exercise, use
the VARMAX model to forecast realdpi and realcons.

1 Use the same train and test sets as in this chapter.
2 Generate a list of unique (p,q) combinations.
3 Rename the optimize_VAR function to optimize_VARMAX, and adapt it to loop

over all the unique (p,q) combinations and exogenous variables.
4 Select the model with the lowest AIC, and perform the Granger causality test.

Pass in the largest order among (p,q). Is the VARMAX(p,q) model valid?
5 Perform residual analysis.
6 Make forecasts on a one-step window over the test set. Use the last known value

method as a baseline.
7 Calculate the MAPE. Did the model perform better than the baseline?

Summary
 The vector autoregression model, VAR(p), captures the relationship between

multiple series as they change over time. In this model, each series has an impact
on the others.

 A VAR(p) model is valid only if each time series Granger-causes the others. This
is determined using the Granger causality test.

 The null hypothesis of the Granger causality test states that one time series does
not Granger-cause the other. If the p-value is less than 0.05, we reject the null
hypothesis and conclude that the first time series Granger-causes the other.



Capstone: Forecasting the
number of antidiabetic drug

prescriptions in Australia
We have covered a lot of statistical models for time series forecasting. Back in chap-
ters 4 and 5, you learned how to model moving average processes and autoregres-
sive processes. We then combined these models to form the ARMA model and
added a parameter to forecast non-stationary time series, leading us to the ARIMA
model. We then added a seasonal component with the SARIMA model. Adding the
effect of exogenous variables culminated in the SARIMAX model. Finally, we cov-
ered multivariate time series forecasting using the VAR model. Thus, you now have
access to many statistical models that allow you to forecast a wide variety of time
series, from simple to more complex. This is a good time to consolidate your learn-
ing and put your knowledge into practice with a capstone project.

This chapter covers
 Developing a forecasting model to predict the 

number of antidiabetic drug prescriptions in 
Australia

 Applying the modeling procedure with a SARIMA 
model

 Evaluating our model against a baseline

 Determining the champion model
216
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 The objective of the project in this chapter is forecasting the number of antidia-
betic drug prescriptions in Australia, from 1991 to 2008. In a professional setting, solv-
ing this problem would allow us to gauge the production of antidiabetic drugs, such as
to produce enough to meet the demand and but also avoid overproduction. The data
we’ll use was recorded by the Australian Health Insurance Commission. We can visual-
ize the time series in figure 11.1.

In figure 11.1 you’ll see a clear trend in the time series, as the number of prescriptions
increases over time. Furthermore, you’ll observe strong seasonality, as each year seems
to start at a low value and end at a high value. By now, you should intuitively know
which model is potentially the most suitable for solving this problem.

 To solve this problem, refer to the following steps:

1 The objective is to forecast 12 months of antidiabetic drug prescriptions. Use
the last 36 months of the dataset as a test set to allow for rolling forecasts.

2 Visualize the time series.
3 Use time series decomposition to extract the trend and seasonal components.
4 Based on your exploration, determine the most suitable model. 
5 Model the series with the usual steps:

a Apply transformations to make it stationary
b Set the values of d and D. Set the value of m.

Figure 11.1 Monthly number of antidiabetic drug prescriptions in Australia between 
1991 and 2008. 
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c Find the optimal (p,d,q)(P,D,Q)m parameters.
d Perform residual analysis to validate your model.

6 Perform rolling forecasts of 12 months on the test set.
7 Visualize your forecasts.
8 Compare the model’s performance to a baseline. Select an appropriate base-

line and error metric.
9 Conclude whether the model should be used or not.

To get the most out of this capstone project, you are highly encouraged to complete it
on your own by referring to the preceding steps. This will help you assess your auton-
omy in the modeling process and your understanding. 

 If you ever feel stuck or want to validate your reasoning, the rest of this chapter
walks through the completion of this project. Also, the full solution is available on
GitHub if you wish to refer to the code directly: https://github.com/marcopeix/
TimeSeriesForecastingInPython/tree/master/CH11.

 I wish you luck on this project!

11.1 Importing the required libraries and loading the data
The natural first step is to import the libraries that will be needed to complete the
project. We can then load the data and store it in a DataFrame to be used through-
out the project.

 Thus, we’ll import the following libraries and specify the magic function %matplotlib
inline to display the plots in the notebook:

from sklearn.metrics import mean_squared_error, mean_absolute_error
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.seasonal import seasonal_decompose, STL
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.arima_process import ArmaProcess
from statsmodels.graphics.gofplots import qqplot
from statsmodels.tsa.stattools import adfuller
from tqdm import tqdm_notebook
from itertools import product
from typing import Union

import matplotlib.pyplot as plt
import statsmodels.api as sm
import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings('ignore')

%matplotlib inline

Once the libraries are imported, we can read the data and store it in a DataFrame. We
can also display the shape of the DataFrame to determine the number of data points.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH11
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH11
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH11
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df = pd.read_csv('data/AusAnti-diabeticDrug.csv')
print(df.shape)    

The data is now ready to be used throughout the project.

11.2 Visualizing the series and its components
With the data loaded, we can now easily visualize the series. This essentially recreates
figure 11.1.

fig, ax = plt.subplots()

ax.plot(df.y)
ax.set_xlabel('Date')
ax.set_ylabel('Number of anti-diabetic drug prescriptions')

plt.xticks(np.arange(6, 203, 12), np.arange(1992, 2009, 1))

fig.autofmt_xdate()
plt.tight_layout()

Next we can perform decomposition to visualize the different components of the time
series. Remember that time series decomposition allows us to visualize the trend com-
ponent, seasonal component, and the residuals. 

decomposition = STL(df.y, period=12).fit()    

fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=4, ncols=1, sharex=True, 

➥ figsize=(10,8))

ax1.plot(decomposition.observed)
ax1.set_ylabel('Observed')

ax2.plot(decomposition.trend)
ax2.set_ylabel('Trend')

ax3.plot(decomposition.seasonal)
ax3.set_ylabel('Seasonal')

ax4.plot(decomposition.resid)
ax4.set_ylabel('Residuals')

plt.xticks(np.arange(6, 203, 12), np.arange(1992, 2009, 1))

fig.autofmt_xdate()
plt.tight_layout()

The result is shown in figure 11.2. Everything seems to suggest that a SARIMA(p,d,q)
(P,D,Q)m model would be the optimal solution for forecasting this time series. We have a

Displays the shape of a DataFrame. The first 
value is the number of rows, and the second 
value is the number of columns.

Column y holds the number of monthly
antidiabetic prescriptions. Also, the period

is set to 12, since we have monthly data.
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trend as well as clear seasonality. Plus, we do not have any exogenous variables to work
with, so the SARIMAX model cannot be applied. Finally, we wish to predict only one tar-
get, meaning that a VAR model is also not relevant in this case.

11.3 Modeling the data
We’ve decided that a SARIMA(p,d,q)(P,D,Q)m model is the most suitable for modeling
and forecasting this time series. Therefore, we’ll follow the general modeling proce-
dure for a SARIMAX model, as a SARIMA model is a special case of the SARIMAX
model. The modeling procedure is shown in figure 11.3.

 

Figure 11.2 Time series decomposition on the antidiabetic drug prescriptions dataset. The first plot shows the 
observed data. The second plot shows the trend component, which tells us that the number of antidiabetic drug 
prescriptions is increasing over time. The third plot shows the seasonal component, where we can see a repeating 
pattern over time, indicating the presence of seasonality. The last plot shows the residuals, which are variations 
that are not explained by the trend of the seasonal component.
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Figure 11.3 The SARIMA modeling 
procedure. This procedure is the most general 
modeling procedure, and it can be used for a 
SARIMA, ARIMA, or ARMA model, as they are 
simply special cases of the SARIMAX model.
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Following the modeling procedure outlined in figure 11.3, we’ll first determine
whether the series is stationary using the augmented Dickey-Fuller (ADF) test.

ad_fuller_result = adfuller(df.y)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

This returns a p-value of 1.0, meaning that we cannot reject the null hypothesis, and
we conclude that the series is not stationary. Thus, we must apply transformations to
make it stationary.

 We’ll first apply a first-order differencing on the data and test for stationarity again.

y_diff = np.diff(df.y, n=1)

ad_fuller_result = adfuller(y_diff)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

This returns a p-value of 0.12. Again, the p-value is greater than 0.05, meaning that the
series is not stationary. Let’s try applying a seasonal difference, since we noticed a
strong seasonal pattern in the data. Recall that we have monthly data, meaning that
m = 12. Thus, a seasonal difference subtracts values that are 12 timesteps apart.

y_diff_seasonal_diff = np.diff(y_diff, n=12)    

ad_fuller_result = adfuller(y_diff_seasonal_diff)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

The returned p-value is 0.0. Thus, we can reject the null hypothesis and conclude that
our time series is stationary. 

 Since we differenced the series once and took one seasonal difference, d = 1 and
D = 1. Also, since we have monthly data, we know that m = 12. Therefore, we know that
our final model will be a SARIMA(p,1,q)(P,1,Q)12 model. 

11.3.1 Performing model selection

We have established that our model will be a SARIMA(p,1,q)(P,1,Q)12 model. Now we
need to find the optimal values of p, q, P, and Q. This is the model selection step where
we choose the parameters that minimize the Akaike information criterion (AIC).

 To do so, we’ll first split the data into train and test sets. As specified in the steps in
the chapter introduction, the test set will consist of the last 36 months of data.

train = df.y[:168]
test = df.y[168:]

print(len(test))    

We have monthly 
data, so n = 12. 

Print out the length of the 
test set to make sure that it 
contains the last 36 months. 
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With our split done, we can now use the optimize_SARIMAX function to find the val-
ues of p, q, P, and Q that minimize the AIC. Note that we can use optimize_SARIMAX
here because SARIMA is a special case of the more general SARIMAX model. The
function is shown in the following listing.

from typing import Union
from tqdm import tqdm_notebook
from statsmodels.tsa.statespace.sarimax import SARIMAX

def optimize_SARIMAX(endog: Union[pd.Series, list], exog: Union[pd.Series, 

➥ list], order_list: list, d: int, D: int, s: int) -> pd.DataFrame:

    

    results = []

    

    for order in tqdm_notebook(order_list):
        try: 
            model = SARIMAX(
                endog,
                exog,
                order=(order[0], d, order[1]),
                seasonal_order=(order[2], D, order[3], s),
                simple_differencing=False).fit(disp=False)
        except:
            continue
            

        aic = model.aic
        results.append([order, model.aic])
        

    result_df = pd.DataFrame(results)
    result_df.columns = ['(p,q,P,Q)', 'AIC']
    

    #Sort in ascending order, lower AIC is better
    result_df = result_df.sort_values(by='AIC', 

➥ ascending=True).reset_index(drop=True)
    
    return result_df

With the function defined, we can now decide on the range of values to try for p, q, P,
and Q. Then we’ll generate a list of unique combinations of parameters. Feel free to
test a different range of values than I’ve used here. Simply note that the larger the
range, the longer it will take to run the optimize_SARIMAX function.

ps = range(0, 5, 1)
qs = range(0, 5, 1)
Ps = range(0, 5, 1)
Qs = range(0, 5, 1)

order_list = list(product(ps, qs, Ps, Qs))

Listing 11.1 Function to find the values of p, q, P, and Q that minimize the AIC



224 CHAPTER 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia
d = 1
D = 1
s = 12

We can now run the optimize_SARIMAX function. In this example, 625 unique combi-
nations are tested, since we have 5 possible values for 4 parameters.

SARIMA_result_df = optimize_SARIMAX(train, None, order_list, d, D, s)
SARIMA_result_df

Once the function is finished, the result shows that the minimum AIC is achieved with
p = 2, q = 3, P = 1, and Q = 3. Therefore, the optimal model is a SARIMA(2,1,3)(1,1,3)12
model.

11.3.2 Conducting residual analysis

Now that we have the optimal model, we must analyze its residuals to determine
whether the model can be used or not. This will depend on the residuals, which should
behave like white noise. If that is the case, the model can be used for forecasting.

 We can fit the model and use the plot_diagnostics method to qualitatively ana-
lyze its residuals. 

SARIMA_model = SARIMAX(train, order=(2,1,3), 

➥ seasonal_order=(1,1,3,12), simple_differencing=False)
SARIMA_model_fit = SARIMA_model.fit(disp=False)

SARIMA_model_fit.plot_diagnostics(figsize=(10,8));

The result is shown in figure 11.4, and we can conclude from this qualitative analysis
that the residuals closely resemble white noise.

 The next step is to perform the Ljung-Box test, which determines whether the
residuals are independent and uncorrelated. The null hypothesis of the Ljung-Box
test states that the residuals are uncorrelated, just like white noise. Thus, we want
the test to return p-values larger than 0.05. In that case, we cannot reject the null
hypothesis and conclude that our residuals are independent, and therefore behave
like white noise.

residuals = SARIMA_model_fit.resid

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1))

print(pvalue)

In this case, all the p-values are above 0.05, so we do not reject the null hypothesis, and
we conclude that the residuals are independent and uncorrelated. We can conclude
that the model can used for forecasting.
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11.4 Forecasting and evaluating the model’s performance
We have a model that can be used for forecasting, so we’ll now perform rolling fore-
casts of 12 months over the test set of 36 months. That way we’ll have a better evalua-
tion of our model’s performance, as testing on fewer data points might lead to skewed
results. We’ll use the naive seasonal forecast as a baseline; it will simply take the last 12
months of data and use them as forecasts for the next 12 months.

 We’ll first define the rolling_forecast function to generate the predictions over the
entire test set with a window of 12 months. The function is shown in the following listing.

def rolling_forecast(df: pd.DataFrame, train_len: int, horizon: int, 

➥ window: int, method: str) -> list:

Listing 11.2 Function to perform a rolling forecast over a horizon

Figure 11.4 Visual diagnostics of the residuals. In the top-left plot, the residuals have no trend over time, 
and the variance seems constant. At the top right, the distribution of the residuals is very close to a 
normal distribution. This is further supported by the Q-Q plot at the bottom left, which displays a fairly 
straight line that sits on y = x. Finally, the correlogram at the bottom right shows no significant 
coefficients after lag 0, just like white noise.
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    total_len = train_len + horizon
    end_idx = train_len

    if method == 'last_season':
        pred_last_season = []
        
        for i in range(train_len, total_len, window):
            last_season = df['y'][i-window:i].values
            pred_last_season.extend(last_season)
            
        return pred_last_season
    
    elif method == 'SARIMA':
        pred_SARIMA = []
        
        for i in range(train_len, total_len, window):
            model = SARIMAX(df['y'][:i], order=(2,1,3), 

➥ seasonal_order=(1,1,3,12), simple_differencing=False)
            res = model.fit(disp=False)
            predictions = res.get_prediction(0, i + window - 1)
            oos_pred = predictions.predicted_mean.iloc[-window:]
            pred_SARIMA.extend(oos_pred)
            
        return pred_SARIMA

Next, we’ll create a DataFrame to hold the predictions as well as the actual values. This
is simply a copy of the test set.

pred_df = df[168:]

Now we can define the parameters to be used for the rolling_forecast function.
The dataset contains 204 rows, and the test set contains 36 data points, which means
the length of the training set is 204 – 36 = 168. The horizon is 36, since our test set
contains 36 months of data. Finally, the window is 12 months, as we are forecasting 12
months at a time. 

 With those values set, we can record the predictions coming from our baseline,
which is a naive seasonal forecast. It simply takes the last 12 months of observed data
and uses them as forecasts for the next 12 months.

TRAIN_LEN = 168
HORIZON = 36
WINDOW = 12

pred_df['last_season'] = rolling_forecast(df, TRAIN_LEN, HORIZON, WINDOW, 

➥ 'last_season')

Next, we’ll compute the forecasts from the SARIMA model.

pred_df['SARIMA'] = rolling_forecast(df, TRAIN_LEN, HORIZON, WINDOW, 

➥ 'SARIMA')

At this point, pred_df contains the actual values, the forecasts from the naive seasonal
method, and the forecasts from the SARIMA model. We can use this to visualize our
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forecasts against the actual values. For clarity, we’ll limit the x-axis to zoom in on the
test period. The resulting plot is shown in figure 11.5.

fig, ax = plt.subplots()

ax.plot(df.y)
ax.plot(pred_df.y, 'b-', label='actual')
ax.plot(pred_df.last_season, 'r:', label='naive seasonal')
ax.plot(pred_df.SARIMA, 'k--', label='SARIMA')
ax.set_xlabel('Date')
ax.set_ylabel('Number of anti-diabetic drug prescriptions')
ax.axvspan(168, 204, color='#808080', alpha=0.2)

ax.legend(loc=2)

plt.xticks(np.arange(6, 203, 12), np.arange(1992, 2009, 1))
plt.xlim(120, 204)

fig.autofmt_xdate()
plt.tight_layout()

In figure 11.5 you can see that the predictions from the SARIMA model (the dashed
line) follow the actual values more closely than the naive seasonal forecasts (the dot-
ted line). We can therefore intuitively expect the SARIMA model to have performed
better than the baseline method.

 To evaluate the performance quantitatively, we’ll use the mean absolute percent-
age error (MAPE). The MAPE is easy to interpret, as it returns a percentage error.

Figure 11.5 Forecasts of the number of antidiabetic drug prescriptions in Australia. 
The predictions from the baseline are shown as a dotted line, while the predictions from 
the SARIMA model are shown as a dashed line. 
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def mape(y_true, y_pred):
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

mape_naive_seasonal = mape(pred_df.y, pred_df.last_season)
mape_SARIMA = mape(pred_df.y, pred_df.SARIMA)

print(mape_naive_seasonal, mape_SARIMA)

This prints out a MAPE of 12.69% for the baseline and 7.90% for the SARIMA model.
We can optionally plot the MAPE of each model in a bar chart for a nice visualization,
as shown in figure 11.6.

fig, ax = plt.subplots()

x = ['naive seasonal', 'SARIMA(2,1,3)(1,1,3,12)']
y = [mape_naive_seasonal, mape_SARIMA]

ax.bar(x, y, width=0.4)
ax.set_xlabel('Models')
ax.set_ylabel('MAPE (%)')
ax.set_ylim(0, 15)

for index, value in enumerate(y):
    plt.text(x=index, y=value + 1, s=str(round(value,2)), ha='center')

plt.tight_layout()

Figure 11.6 The MAPE for the naive seasonal forecast and the SARIMA model. Since 
the MAPE of the SARIMA model is lower than the MAPE of the baseline, we can 
conclude that the SARIMA model should be used to forecast the number of antidiabetic 
drug prescriptions.



229Next steps
Since the SARIMA model achieves the lowest MAPE, we can conclude that the
SARIMA(2,1,3)(1,1,3)12 model should be used to forecast the monthly number of
antidiabetic drug prescriptions in Australia.

Next steps
Congratulations on completing this capstone project. I hope that you were able to
complete it on your own and that you now feel confident in your skills and knowledge
of time series forecasting using statistical models.

 Of course, practice makes perfect, so I highly encourage you to find other time
series datasets and practice modeling and forecasting them. This will help you build
your intuition and hone your skills.

 In the next chapter, we’ll start a new section where we’ll use deep learning models
to model and forecast complex time series with high dimensionality. 



 



Part 3

Large-scale forecasting
with deep learning

Statistical models have their limitations, especially when a dataset is large
and has many features and nonlinear relationships. In such cases, deep learning
is the perfect tool for time series forecasting. In this part of the book, we’ll work
with a massive dataset and apply different deep learning architectures, such as
long short-term memory (LSTM), a convolutional neural network (CNN), and
an autoregressive deep neural network, to predict the future of our series.
Again, we’ll conclude this part with a capstone project to test your skills.

 Deep learning is a subset of machine learning, and it is therefore possible to
use more traditional machine learning algorithms for time series forecasting,
such as gradient-boosted trees. To keep this section reasonable, we won’t cover
those techniques specifically, although data windowing is required to forecast
time series with machine learning, and we’ll apply this concept numerous times.



 



Introducing deep learning
for time series forecasting
In the last chapter, we concluded the part of the book on time series forecasting
using statistical models. Those models work particularly well when you have small
datasets (usually less than 10,000 data points), and when the seasonal period is
monthly, quarterly, or yearly. In situations where you have daily seasonality or where
the dataset is very large (more than 10,000 data points), those statistical models
become very slow, and their performance degrades.

 Thus, we turn to deep learning. Deep learning is a subset of machine learning
that focuses on building models on the neural network architecture. Deep learning
has the advantage that it tends to perform better as more data is available, making
it a great choice for forecasting high-dimensional time series.

 In this part of the book, we’ll explore various model architectures so you’ll have
a set of tools for tackling virtually any time series forecasting problem. Note that I’ll
assume you have some familiarity with deep learning, so topics such as activation
functions, loss functions, batches, layers, and epochs should be known. This part of

This chapter covers
 Using deep learning for forecasting

 Exploring different types of deep learning models

 Getting ready to apply deep learning to time 
series forecasting
233
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the book will not serve as an introduction to deep learning, but rather focuses on
applying deep learning to time series forecasting. Of course, each model architecture
will be thoroughly explained, and you will gain an intuition as to why a particular
architecture might work better than another in particular situations. Throughout
these chapters, we will use TensorFlow, or more specifically Keras, to build different
deep learning models.

  In this chapter specifically, we identify the conditions that justify the use of deep
learning and explore the different types of models that can be built, such as single-
step, multi-step, and multi-output models. We’ll conclude the chapter with the initial
setup that will get us ready to apply deep learning models in the following chapters.
Finally, we’ll explore the data, perform feature engineering, and split the data into
training, validation, and testing sets.

12.1 When to use deep learning for time series forecasting
Deep learning shines when we have large complex datasets. In those situations, deep
learning can leverage all the available data to infer relationships between each feature
and the target, usually resulting in good forecasts.

 In the context of time series, a dataset is considered to be large when we have
more than 10,000 data points. Of course, this is an approximation rather than a hard-
set limit, so if you have 8,000 data points, deep learning could be a viable option.
When the size of the dataset is large, any declination of the SARIMAX model will take
a long time to fit, which is not ideal for model selection, as we usually fit many models
during that step.

 If your data has multiple seasonal periods, the SARIMAX model cannot be used.
For example, suppose you must forecast the hourly temperature. It is reasonable to
assume that there will be daily seasonality, as temperature tends to be lower at night
and higher during the day, but there is also yearly seasonality, due to temperatures
being lower in winter and higher during summer. In such a case, deep learning can be
used to leverage the information from both seasonal periods to make forecasts. In
fact, from experience, fitting a SARIMA model in such a case will usually result in
residuals that are not normally distributed and still correlated, meaning that the
model cannot be used at all.

 Ultimately, deep learning is used either when statistical models take too much time
to fit or when they result in correlated residuals that do not approximate white noise.
This can be due to the fact that there is another seasonal period that cannot be con-
sidered in the model, or simply because there is a nonlinear relationship between the
features and the target. In those cases, deep learning models can be used to capture this
nonlinear relationship, and they have the added advantage of being very fast to train. 

12.2 Exploring the different types of deep learning models
There are three main types of deep learning models that we can build for time series
forecasting: single-step models, multi-step models, and multi-output models.
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 The single-step model is the simplest of the three. Its output is a single value repre-
senting the forecast of one variable one step into the future. The model therefore sim-
ply returns a scalar, as shown in figure 12.1.

Next we can have a multi-step model, meaning that we output the value for one tar-
get, but for many timesteps into the future. For example, given hourly data, we may
want to forecast the next 24 hours. In that case, we have a multi-step model, since we
are forecasting 24 timesteps into the future. The output is a 24 × 1 matrix, as shown
in figure 12.2.

Single-step model
The single-step model outputs a single value representing the prediction for the next
timestep. The input can be of any length, but the output remains a single prediction
for the next timestep.

Single-step model

1 target

1 timestep

Figure 12.1 The single-step model outputs the 
value of one target one timestep into the future. The 
output is therefore a scalar.

Multi-step model

1 target

24 timesteps

Figure 12.2 A multi-step model outputs the 
predictions for 1 variable multiple timesteps into 
the future. This example predicts 24 timesteps, 
resulting in a 24 x 1 output matrix.
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Finally, the multi-output model generates predictions for more than one target. For
example, if we were to predict both the temperature and humidity, we would use a
multi-output model. This model can output as many timesteps as desired. In figure
12.3, a multi-output model returning predictions for two features for the next 24 time-
steps is shown. In that particular case, the output is a 24 x 2 matrix.

Multi-step model
In a multi-step model, the output of the model is a sequence of values representing
predictions for many timesteps into the future. For example, if the model predicts the
next 6 hours, 24 hours, or 12 months, it is a multi-step model.

Multi-output model
A multi-output model generates predictions for more than one target. For example, if
we forecast the temperature and wind speed, it is a multi-output model. 

Multi-output model

2 targets

24 timesteps

Figure 12.3 A multi-output model makes 
predictions for more than one target for one 
or more timesteps in the future. Here the 
model outputs predictions for two targets 
for the next 24 timesteps.



23712.3 Getting ready to apply deep learning for forecasting
Each of these models can have different architectures. For example, a convolutional
neural network can be used as a single-step model, a multi-step model, or a multi-output
model. In the following chapters, we will implement different model architectures
and apply them for all three model types.

 This brings us to the stage where we’ll do the initial setup for the different deep
learning models we’ll implement in the next five chapters.

12.3 Getting ready to apply deep learning for forecasting
From here through chapter 17, we will use the metro interstate traffic volume data-
set available on the UCI machine learning repository. The original dataset recorded
the hourly westbound traffic on I-94 between Minneapolis and St. Paul in Minne-
sota, from 2012 to 2018. For the purpose of learning how to apply deep learning for
time series forecasting, the dataset has been shortened and cleaned to get rid of
missing values. While the cleaning steps are not covered in this chapter, you can still
consult the preprocessing code in the GitHub repository for this chapter. Our main
forecasting goal is to predict the hourly traffic volume. In the case of multi-output
models, we will also forecast the hourly temperature. In this initial setup for the
next several chapters, we’ll load the data, perform feature engineering, and split it
into training, validation, and testing sets.

 We will use TensorFlow, or more specifically Keras, in this part of the book. At the
time of writing, the latest stable version of TensorFlow was 2.6.0, which is what I’ll use
in this and the following chapters.

NOTE The full source code for this chapter is available on GitHub: https://
github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH12.

12.3.1 Performing data exploration

We will first load the data using pandas.

df = 

➥ pd.read_csv('../data/metro_interstate_traffic_volume_preprocessed.csv')
df.head()

As mentioned, this dataset is a shortened and cleaned version of the original dataset
available on the UCI machine learning repository. In this case, the dataset starts on
September 29, 2016, at 5 p.m. and ends on September 30, 2018, at 11 p.m. Using
df.shape, we can see that we have a total of six features and 17,551 rows.

 The features include the date and time, the temperature, the amount of rain and
snow, the cloud coverage, as well as the traffic volume. Table 12.1 describes each col-
umn in more detail.

 
 

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH12
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH12
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH12
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Now, let’s visualize the evolution of the traffic volume over time. Since our dataset is
very large, with more than 17,000 records, we’ll plot only the first 400 data points,
which is roughly equivalent to two weeks of data. The result is shown in figure 12.4.

fig, ax = plt.subplots()

ax.plot(df['traffic_volume'])
ax.set_xlabel('Time')
ax.set_ylabel('Traffic volume')

plt.xticks(np.arange(7, 400, 24), ['Friday', 'Saturday', 'Sunday', 

➥ 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 

➥ 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 

➥ 'Saturday', 'Sunday'])
plt.xlim(0, 400)

fig.autofmt_xdate()
plt.tight_layout()

In figure 12.4 you’ll notice clear daily seasonality, since the traffic volume is lower
at the start and end of each day. You’ll also see a smaller traffic volume during the
weekends. As for the trend, two weeks of data is likely insufficient to draw a reason-
able conclusion, but it seems that the volume is neither increasing nor decreasing
over time in the figure.

 We can also plot the hourly temperature, as it will be a target for our multi-
output models. Here, we’ll expect to see both yearly and daily seasonality. The yearly
seasonality should be due to the seasons in the year, while the daily seasonality will
be due to the fact that temperatures tend to be lower at night and higher during
the day.

 
 
 

Table 12.1 The variables in the metro interstate traffic volume dataset

Feature Description

date_time Date and time of the data, recorded in the CST time zone. The format is 
YYYY-MM-DD HH:MM:SS.

temp Average temperature recorded in the hour, expressed in Kelvin.

rain_1h Amount of rain that occurred in the hour, expressed in millimeters.

snow_1h Amount of snow that occurred in the hour, expressed in millimeters.

clouds_all Percentage of cloud cover during the hour.

traffic_volume Volume of traffic reported westbound on I-94 during the hour.
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Let’s first visualize the hourly temperature over the entire dataset to see if we can iden-
tify any yearly seasonality. The result is shown in figure 12.5.

fig, ax = plt.subplots()

ax.plot(df['temp'])
ax.set_xlabel('Time')
ax.set_ylabel('Temperature (K)')

plt.xticks([2239, 10999], [2017, 2018])

fig.autofmt_xdate()
plt.tight_layout()

In figure 12.5 you’ll see a yearly seasonal pattern in the hourly temperature, since tem-
peratures are lower at the end and beginning of the year (winter in Minnesota), and

Figure 12.4 Westbound traffic volume on I-94 between Minneapolis and St. Paul in Minnesota, starting on 
September 29, 2016, at 5 p.m. You’ll notice clear daily seasonality, with traffic being lower at the start and end 
of each day. 
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higher in the middle of the year (summer). Thus, as expected, the temperature has
yearly seasonality.

 Now let’s verify whether we can observe daily seasonality in temperature. The
result is shown in figure 12.6.

fig, ax = plt.subplots()

ax.plot(df['temp'])
ax.set_xlabel('Time')
ax.set_ylabel('Temperature (K)')

plt.xticks(np.arange(7, 400, 24), ['Friday', 'Saturday', 'Sunday', 

➥ 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 

➥ 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 

➥ 'Saturday', 'Sunday'])
plt.xlim(0, 400)

Figure 12.5 Hourly temperature (in Kelvin) from September 29, 2016, to September 30, 2018. Although there is 
noise, we can see a yearly seasonal pattern.
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fig.autofmt_xdate()
plt.tight_layout()

In figure 12.6 you’ll notice that the temperature is indeed lower at the start and end
of each day and peaks toward the middle of each day. This suggests daily seasonality,
just as we observed for traffic volume in figure 12.4.

12.3.2 Feature engineering and data splitting

With our data exploration done, we’ll move on to feature engineering and data split-
ting. In this section, we will study each feature and create new ones that will help our
models forecast the traffic volume and hourly temperature. Finally, we’ll split the data
and save each set as a CSV file for later use.

 A great way to study the features of a dataset is to use the describe method from
pandas. This method returns the number of records for each feature, allowing us to

Figure 12.6 Hourly temperature (in Kelvin) starting on September 29, 2016, at 5 p.m. CST. Although it is a bit 
noisy, we can see that temperatures are indeed lower at the start and end of each day and peak during midday, 
suggesting daily seasonality.
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quickly identify missing values, the mean, standard deviation, quartiles, and maximum
and minimum values for each feature.

df.describe().transpose()    

From the output, you’ll notice that rain_1h is mostly 0 throughout the dataset, as its
third quartile is still at 0. Since at least 75% of the values for rain_1h are 0, it is unlikely
that it is a strong predictor of traffic volume. Thus, this feature will be removed.

 Looking at snow_1h, you’ll notice that this variable is at 0 through the entire data-
set. This is easily observable, since its minimum and maximum values are both 0.
Thus, this is not predictive of the variation in traffic volume over time. This feature
will also be removed from the dataset.

cols_to_drop = ['rain_1h', 'snow_1h']
df = df.drop(cols_to_drop, axis=1)

Now we reach the interesting problem of encoding time as a usable feature for our
deep learning models. Right now, the date_time feature is not usable by our models,
since it is a datetime string. We will thus convert it into a numerical value.

 A simple way to do that is to express the date as a number of seconds. This is
achieved through the use of the timestamp method from the datetime library.

timestamp_s = 

➥ pd.to_datetime(df['date_time']).map(datetime.datetime.timestamp)

Unfortunately, we are not done, as this simply expresses each date in seconds, as
shown in figure 12.7. This leads us to losing the cyclical nature of time, because the
number of seconds simply increases linearly with time.

 Therefore, we must apply a transformation to recover the cyclical behavior of
time. A simple way to do that is to apply a sine transformation. We know that the
sine function is cyclical, bounded between –1 and 1. This will help us regain part of
the cyclical property of time.

day = 24 * 60 * 60    

df['day_sin'] = (np.sin(timestamp_s * (2*np.pi/day))).values    

With a single sine transformation, we regain some of the cyclical property that was lost
when converting to seconds. However, at this point, 12 p.m. is equivalent to 12 a.m.,
and 5 p.m. is equivalent to 5 a.m. This is undesired, as we want to distinguish between
morning and afternoon. Thus, we’ll apply a cosine transformation. We know that
cosine is out of phase with the sine function. This allows us to distinguish between

The transpose method puts 
each feature on its own row.

The timestamp is in seconds, so we must 
calculate the number of seconds in a day 
before applying the sine transformation.

Application of the
transformation. N
that we use radia
the sine function.
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5 a.m. and 5 p.m., expressing the cyclical nature of time in a day. At this point, we can
remove the date_time column from the DataFrame.

df['day_cos'] = (np.cos(timestamp_s * (2*np.pi/day))).values    
df = df.drop(['date_time'], axis=1)    

We can quickly convince ourselves that these transformations worked by plotting a
sample of day_sin and day_cos. The result is shown in figure 12.8.

df.sample(50).plot.scatter('day_sin','day_cos').set_aspect('equal');

In figure 12.8 you’ll notice that the points form a circle, just like a clock. Therefore,
we have successfully expressed each timestamp as a point on the clock, meaning that
we now have numerical values that retain the cyclical nature of time in a day, and this

Figure 12.7 Number of seconds expressing each date in the dataset. The number of seconds linearly increases 
with time, meaning that we lose the cyclical property of time.

Apply the cosine
transformation to the
timestamp in seconds.

Remove the 
date_time column.
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can be used in our deep learning models. This will be useful since we observed daily
seasonality for both the temperature and the volume of traffic.

 With the feature engineering complete, we can now split our data train, validation,
and test sets. The train set is the sample of data used to fit the model. The validation
set is a bit like a test set that the model can peek at to tune its hyperparameters and
improve its performance during the model’s training. The test set is completely sepa-
rate from the model’s training procedure and is used for an unbiased evaluation of
the model’s performance.

 Here we’ll use a simple 70:20:10 split for the train, validation, and test sets. While
10% of the data seems like a small portion for the test set, remember that we have

Figure 12.8 Plot of a sample of the day_sin and day_cos encoding. We have successfully 
encoded the time as a numerical value while keeping the daily cycle.
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more than 17,000 records, meaning that we will evaluate the model on more than
1,000 data points, which is more than enough.

n = len(df)

# Split 70:20:10 (train:validation:test)
train_df = df[0:int(n*0.7)]    
val_df = df[int(n*0.7):int(n*0.9)]    
test_df = df[int(n*0.9):]    

Before saving the data, we must scale it so all values are between 0 and 1. This
decreases the time required for training deep learning models, and it improves their
performance. We’ll use MinMaxScaler from sklearn to scale our data. 

 Note that we will fit the scaler on the training set to avoid data leakage. That way,
we are simulating the fact that we only have the training data available when we’re
using the model, and no future information is known by the model. The evaluation of
the model remains unbiased.

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
scaler.fit(train_df)    

train_df[train_df.columns] = scaler.transform(train_df[train_df.columns])
val_df[val_df.columns] = scaler.transform(val_df[val_df.columns])
test_df[test_df.columns] = scaler.transform(test_df[test_df.columns])

It is worth mentioning why the data is scaled and not normalized. Scaling and normal-
ization can be confusing terms for data scientists, as they are often used interchange-
ably. In short, scaling the data affects only its scale and not its distribution. Thus, it
simply forces the values into a certain range. In our case, we force the values to be
between 0 and 1. 

 Normalizing the data, on the other hand, affects its distribution and its scale. Thus,
normalizing the data would force it to have a normal distribution or a Gaussian distri-
bution. The original range would also change, and plotting the frequency of each
value would generate a classic bell curve.

 Normalizing the data is only useful when the models we use require the data to
be normal. For example, linear discriminant analysis (LDA) is derived from the
assumption of a normal distribution, so it is better to normalize data before using
LDA. However, in the case of deep learning, no assumptions are made, so normaliz-
ing is not required. 

 Finally, we’ll save each set as a CSV file for use in the following chapters.

train_df.to_csv('../data/train.csv')
val_df.to_csv('../data/val.csv')
test_df.to_csv('../data/test.csv')

First 70% goes to 
the train set.

Next 20% goes to 
the validation set.

The remaining 10% 
goes to the test set.

Fit only on the 
training set.
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12.4 Next steps
In this chapter, we looked at the use of deep learning for forecasting and covered the
three main types of deep learning models. We then explored the data we’ll be using
and performed feature engineering so the data is ready to be used in the next chap-
ter, where we’ll apply deep learning models to forecast traffic volume.

 In the next chapter, we will start by implementing baseline models that will serve as
benchmarks for more complex deep learning architectures. We will also implement
linear models, the simplest models that can be built, followed by deep neural net-
works, which have at least one hidden layer. Baselines, linear models, and deep neural
networks will be implemented as single-step models, multi-step models, and multi-out-
put models. You should be excited for the next chapter, as we’ll start modeling and
forecasting using deep learning.

12.5 Exercise
As an exercise, we will prepare some data for use in deep learning exercises in chap-
ters 12 through 18. This data will be used to develop a deep learning model to fore-
cast the air quality in Beijing at the Aotizhongxin station. 

 Specifically, for univariate modeling, we will ultimately predict the concentration
of nitrogen dioxide (NO2). For the multivariate problem, we will predict the concen-
tration of nitrogen dioxide and temperature.

NOTE Predicting the concentration of air pollutants is an important prob-
lem, as they can have negative health effects on a population, such as cough-
ing, wheezing, inflammation, and reduced lung function. Temperature also
plays an important role, because hot air tends to rise, creating a convection
effect and moving pollutants from the ground to higher altitudes. With accu-
rate models, we can better manage air pollution and better inform the popu-
lation to take the right precautions.

The original dataset is available in the UCI Machine Learning Repository: https://
archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data. It has been pre-
processed and cleaned to treat missing data and make it easy to work with (the prepro-
cessing steps are available on GitHub). You will find the data in a CSV file on GitHub:
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH12.

 The objective of this exercise is to prepare the data for deep learning. Follow
these steps:

1 Read the data.
2 Plot the target.
3 Remove unnecessary columns.
4 Identify whether there is daily seasonality and encode the time accordingly.
5 Split your data into training, validation, and testing sets.
6 Scale the data using MinMaxScaler.
7 Save the train, validation, and test sets to be used later.

https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH12
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Summary
 Deep learning for forecasting is used when:

– The dataset is large (more than 10,000 data points).
– Declination of the SARIMAX model takes a long time to fit.
– The residuals of the statistical model still show some correlation.
– There is more than one seasonal period.

 There are three types of models for forecasting:
– Single-step model: Predicts one step into the future for one variable.
– Multi-step model: Predicts many steps into the future for one variable.
– Multi-output model: Predicts many variables one or more steps into the future.



Data windowing
and creating baselines

for deep learning
In the last chapter, I introduced deep learning for forecasting by covering the situa-
tions where deep learning is ideal and by outlining the three main types of deep learn-
ing models: single-step, multi-step, and multi-output. We then proceeded with data
exploration and feature engineering to remove useless features and create new fea-
tures that will help us forecast traffic volume. With that setup done, we are now ready
to implement deep learning to forecast our target variable, which is the traffic volume.

 In this chapter, we’ll build a reusable class that will create windows of data. This
step is probably the most complicated and most useful topic in this part of the book
on deep learning. Applying deep learning for forecasting relies on creating appro-
priate time windows and specifying the inputs and labels. Once that is done, you
will see that implementing different models becomes incredibly easy, and this
framework can be reused for different situations and datasets. 

 Once you know how to create windows of data, we’ll move on to implement
baseline models, linear models, and deep neural networks. This will let us measure
the performance of these models, and we can then move on to more complex
architectures in the following chapters. 

This chapter covers
 Creating windows of data

 Implementing baseline models for deep learning
248
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13.1 Creating windows of data
We’ll start off by creating the DataWindow class, which will allow us to format the data
appropriately to be fed to our deep learning models. We’ll also add a plotting method
to this class so that we can visualize the predictions and the actual values.

 Before diving into the code and building the DataWindow class, however, it is
important to understand why we must perform data windowing for deep learning.
Deep learning models have a particular way of fitting on data, which we’ll explore in
the next section. Then we’ll move on and implement the DataWindow class.

13.1.1 Exploring how deep learning models are trained 
for time series forecasting

In the first half of this book, we fit statistical models, such as SARIMAX, on training
sets and made predictions. We were, in reality, fitting a set of predefined functions of a
certain order (p,d,q)(P,D,Q)m, and finding out which order resulted in the best fit.

 For deep learning models, we do not have a set of functions to try. Instead, we let
the neural network derive its own function such that when it takes the inputs, it gener-
ates the best predictions possible. To achieve that, we perform what is called data win-
dowing. This is a process in which we define a sequence of data points on our time
series and define which are inputs and which are labels. That way, the deep learning
model can fit on the inputs, generate predictions, compare them to the labels, and
repeat this process until it cannot improve the accuracy of its predictions.

 Let’s walk through an example of data windowing. Our data window will use 24
hours of data to predict the next 24 hours. You probably wonder why are we using just
24 hours of data to generate predictions. After all, deep learning is data hungry and is
used for large datasets. The key lies in the data window. A single window has 24 time-
steps as input to generate an output of 24 timesteps. However, the entire training set is
separated into multiple windows, meaning that we have many windows with inputs
and labels, as shown in figure 13.1.

 In figure 13.1 you can see the first 400 timesteps of our training set for traffic vol-
ume. Each data window consists of 24 input timesteps and 24 label timesteps (as
shown in figure 13.2), giving us a total length of 48 timesteps. We can generate
many data windows with the training set, so we are, in fact, leveraging this large
quantity of data.

 As you can see in figure 13.2, the data window’s total length is the sum of the
lengths of each sequence. In this case, since we have 24 timesteps as input and 24
labels, the total length of the data window is 48 timesteps.

 You might think that we are wasting a lot of training data, since in figure 13.2
timesteps 24 to 47 are labels. Are those never going to be used as inputs? Of course,
they will be. The DataWindow class that we’ll implement in the next section gener-
ates data windows with inputs starting at t = 0. Then it will create another set of data
windows, but this time starting at t = 1. Then it will start at t = 2. This goes on until it
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cannot have a sequence of 24 consecutive labels in the training set, as illustrated in
figure 13.3.
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Figure 13.1 Visualizing the data windows on the training set. The inputs are shown with square 
markers, and the labels are shown with crosses. Each data window consists of 24 timesteps with 
square markers followed by 24 labels with crosses.

LabelInput

Data window

t = 0 t = 1 t = ... t = 22 t = 23 t = 24 t = 25 t = ... t = 46 t = 47

Figure 13.2 An example of a data window. Our data window has 24 timesteps as input and 24 
timesteps as output. The model will then use 24 hours of input to generate 24 hours of predictions. 
The total length of the data window is the sum of the length of inputs and labels. In this case, we have 
a total length of 48 timesteps.
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To make computation more efficient, deep learning models are trained with batches. A
batch is simply a collection of data windows that are fed to the model for training, as
shown in figure 13.4.

 Figure 13.4 shows an example of a batch with a batch size of 32. That means that
32 data windows are grouped together and used to train the model. Of course, this is
only one batch—the DataWindow class generates as many batches as possible with the
given training set. In our case, we have a training set with 12,285 rows. If each batch
has 32 data windows, that means that we will have 12285/32 = 384 batches.

 Training the model on all 384 batches once is called one epoch. One epoch often
does not result in an accurate model, so the model will train for as many epochs as
necessary until it cannot improve the accuracy of its predictions.

 The final important concept in data windowing for deep learning is shuffling. I
mentioned in the very first chapter of this book that time series data cannot be shuf-
fled. Time series data has an order, and that order must be kept, so why are we shuf-
fling the data here?

 In this context, shuffling occurs at the batch level, not inside the data window—
the order of the time series itself is maintained within each data window. Each data
window is independent of all others. Therefore, in a batch, we can shuffle the data

LabelInput

Data window #1

LabelInput

Data window #2

LabelInput

Data window #3

t = 0 t = 1 t = ... t = 22 t = 23 t = 24 t = 25 t = ... t = 46 t = 47

t = 1 t = 2 t = ... t = 23 t = 24 t = 25 t = 26 t = ... t = 47 t = 48

t = 2 t = 3 t = ... t = 24 t = 25 t = 26 t = 27 t = ... t = 48 t = 49

Figure 13.3 Visualizing the different data windows that are generated by the DataWindow class. 
You can see that by repeatedly shifting the starting point by one timestep, we use as much of the 
training data as possible to fit our deep learning models.
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windows and still keep the order of our time series, as shown in figure 13.5. Shuf-
fling the data is not essential, but it is recommended as it tends to make more
robust models.

Data window #1

Data window #2

Data window #3

Data window #30

Data window #31

Data window #32

Batch #1

Batch size = 32

Figure 13.4 A batch is simply a collection of data windows that are used for training the deep 
learning model.

Data window #1

Data window #2

Data window #3

Data window #30

Data window #31

Data window #32

Batch

shuffle = False

Data window #11

Data window #24

Data window #3

Data window #23

Data window #15

Data window #8

Batch

shuffle = True

Figure 13.5 Shuffling the data windows in a batch. Each data window is independent of all others, so it is safe 
to shuffle the data windows within a batch. Note that the order of the time series is maintained within each 
data window.
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Now that you understand the inner working of data windowing and how it is used for
training deep learning models, let’s implement the DataWindow class.

13.1.2 Implementing the DataWindow class 

We are now ready to implement the DataWindow class. This class has the advantage
of being flexible, meaning that you can use it in a wide variety of scenarios to apply
deep learning. The full code is available on GitHub: https://github.com/marcopeix/
TimeSeriesForecastingInPython/tree/master/CH13%26CH14. 

 The class is based on the width of the input, the width of the label, and the shift.
The width of the input is simply the number of timesteps that are fed into the model
to make predictions. For example, given that we have hourly data in our dataset, if we
feed the model with 24 hours of data to make a prediction, the input width is 24. If we
feed only 12 hours of data, the input width is 12. 

 The label width is equivalent to the number of timesteps in the predictions. If we
predict only one timestep, the label width is 1. If we predict a full day of data (with
hourly data), the label width is 24. 

 Finally, the shift is the number of timesteps separating the input and the predic-
tions. If we predict the next timestep, the shift is 1. If we predict the next 24 hours
(with hourly data), the shift is 24.

 Let’s visualize some windows of data to better understand these parameters. Fig-
ure 13.6 shows a window of data where the model predicts the next data point, given a
single data point.

Now let’s consider the situation where we feed 24 hours of data to the model in order
to predict the next 24 hours. The data window in that situation is shown in figure 13.7.
Now that you understand the concept of input width, label width, and shift, we can
create the DataWindow class and define its initialization function in listing 13.1. The
function will also take in the training, validation, and test sets, as the windows of data
will come from our dataset. Finally, we’ll allow the target column to be specified.

Shift = 1

Label width = 1

t = 1t = 0

Input width = 1

Total window size = 2

Figure 13.6 A data window where the model predicts one 
timestep in the future, given a single point of data. The input 
width is 1, since the model takes only 1 data point as input. 
The label width is also only 1, since the model outputs the 
prediction for 1 timestep only. Since the model predicts the 
next timestep, the shift is also 1. Finally, the total window size 
is the sum of the shift and the input widths, which equals 2.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
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class DataWindow():
    def __init__(self, input_width, label_width, shift, 
                 train_df=train_df, val_df=val_df, test_df=test_df, 
                 label_columns=None):
        
        self.train_df = train_df
        self.val_df = val_df
        self.test_df = test_df
        
        self.label_columns = label_columns    
        if label_columns is not None:
            self.label_columns_indices = {name: i for i, name in 

➥ enumerate(label_columns)}    
        self.column_indices = {name: i for i, name in 

➥ enumerate(train_df.columns)}   
        
        self.input_width = input_width
        self.label_width = label_width
        self.shift = shift
        
        self.total_window_size = input_width + shift
        
        self.input_slice = slice(0, input_width)    
        self.input_indices = 

➥ np.arange(self.total_window_size)[self.input_slice]    
        
        self.label_start = self.total_window_size - self.label_width    
        self.labels_slice = slice(self.label_start, None)    
        self.label_indices = 

➥ np.arange(self.total_window_size)[self.labels_slice]

Listing 13.1 Defining the initialization function of DataWindow

Shift = 24

Label width = 24Input width = 24

Total window size = 48

t = 0 t = 1 t = ... t = 22 t = 23 t = 24 t = 25 t = ... t = 46 t = 47

Figure 13.7 Data window where the model predicts the next 24 hours using the last 24 hours of data. 
The input width is 24 and the label width is also 24. Since there are 24 timesteps separating the 
inputs and the predictions, the shift is also 24. This gives a total window size of 48 timesteps.

Name of the 
column that we 
wish to predict

Create a dictionary with the name and index of 
the label column. This will be used for plotting.

Create a dictionary with the name 
and index of each column. This will 
be used to separate the features 
from the target variable.

The slice function returns a 
slice object that specifies how 
to slice a sequence. In this 
case, it says that the input 
slice starts at 0 and ends when
we reach the input_width.

Assign indices 
to the inputs. 
These are 
useful for 
plotting.

Get the index at which the 
label starts. In this case, it is 
the total window size minus 
the width of the label.

The same steps that were
applied for the inputs are

applied for labels.
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In listing 13.1 you can see that the initialization function basically assigns the variables
and manages the indices of the inputs and the labels. Our next step is to split our
window between inputs and labels, so that our models can make predictions based on
the inputs and measure an error metric against the labels. The following split_to_
inputs_labels function is defined within the DataWindow class.

def split_to_inputs_labels(self, features):
    inputs = features[:, self.input_slice, :]    
    labels = features[:, self.labels_slice, :]    
    if self.label_columns is not None:    
        labels = tf.stack(
            [labels[:,:,self.column_indices[name]] for name in 

➥ self.label_columns],
            axis=-1
        )
    inputs.set_shape([None, self.input_width, None])    
    labels.set_shape([None, self.label_width, None])
    
    return inputs, labels

The split_to_inputs_labels function will separate the big data window into two
windows: one for the inputs and the other for the labels, as shown in figure 13.8.

Slice the window to get the 
inputs using the input_slice 
defined in __init__.

Slice the window to get the labels using 
the labels_slice defined in __init__.

If we have more than one 
target, we stack the labels.

The shape will be [batch, 
time, features]. At this point
we only specify the time 
dimension and allow the 
batch and feature dimension
to be defined later.

Shift = 24

Label width = 24

Label =

Input width = 24

Input =

Total window size = 48

split_to_inputs_labels

t = 0 t = 1 t = 22 t = 23 t = 24 t = 25 t = 46 t = 47t = ...t = ...

t = 0 t = 1 t = 22 t = 23t = ...

t = 24 t = 25 t = 46 t = 47t = ...

Figure 13.8 The split_to_inputs_labels function simply separates the big data window into 
two windows, where one contains the inputs and the other the labels.
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Next we’ll define a function to plot the input data, the predictions, and the actual val-
ues (listing 13.2). Since we will be working with many time windows, we’ll show only
the plot of three time windows, but this parameter can easily be changed. Also, the
default label will be traffic volume, but we can change that by specifying any column
we choose. Again, this function should be included in the DataWindow class.

def plot(self, model=None, plot_col='traffic_volume', max_subplots=3):
    inputs, labels = self.sample_batch
    

    plt.figure(figsize=(12, 8))
    plot_col_index = self.column_indices[plot_col]
    max_n = min(max_subplots, len(inputs))
    

    for n in range(max_n):
        plt.subplot(3, 1, n+1)
        plt.ylabel(f'{plot_col} [scaled]')
        plt.plot(self.input_indices, inputs[n, :, plot_col_index],
                 label='Inputs', marker='.', zorder=-10)    

        if self.label_columns:
          label_col_index = self.label_columns_indices.get(plot_col, 

➥ None)
        else:
          label_col_index = plot_col_index

        if label_col_index is None:
          continue

        plt.scatter(self.label_indices, labels[n, :, label_col_index],
                    edgecolors='k', marker='s', label='Labels', 

➥ c='green', s=64)    
        if model is not None:
          predictions = model(inputs)
          plt.scatter(self.label_indices, predictions[n, :, 

➥ label_col_index],
                      marker='X', edgecolors='k', label='Predictions',
                      c='red', s=64)    

        if n == 0:
          plt.legend()

    plt.xlabel('Time (h)')

We are almost done building the DataWindow class. The last main piece of logic will
format our dataset into tensors so that they can be fed to our deep learning models.
TensorFlow comes with a very handy function called timeseries_dataset_from_
array, which creates a dataset of sliding windows, given an array.

 

Listing 13.2 Method to plot a sample of data windows

Plot the inputs. They will
appear as a continuous

blue line with dots.

Plot the labels or actual
values. They will appear
as green squares.

Plot the predictions. 
They will appear as 
red crosses.
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def make_dataset(self, data):
    data = np.array(data, dtype=np.float32)
    ds = tf.keras.preprocessing.timeseries_dataset_from_array(
        data=data,    
        targets=None,    
        sequence_length=self.total_window_size,    
        sequence_stride=1,    
        shuffle=True,    
        batch_size=32    
    )
    
    ds = ds.map(self.split_to_inputs_labels)
    return ds

Remember that we are shuffling the sequences in a batch. This means that within
each sequence, the data is in chronological order. However, in a batch of 32
sequences, we can and should shuffle them to make our model more robust and less
prone to overfitting.

 We’ll conclude our DataWindow class by defining some properties to apply the
make_dataset function on the training, validation, and testing sets. We’ll also create a
sample batch that we’ll cache within the class for plotting purposes.

@property
def train(self):
    return self.make_dataset(self.train_df)

@property
def val(self):
    return self.make_dataset(self.val_df)

@property
def test(self):
    return self.make_dataset(self.test_df)
    
@property
def sample_batch(self):    
    result = getattr(self, '_sample_batch', None)
    if result is None:
        result = next(iter(self.train))
        self._sample_batch = result
    return result

Pass in the data. This 
corresponds to our training 
set, validation set, or test set.

Targets are set to None, as
they are handled by the

split_to_input_labels
function.

Define the total length of 
the array, which is equal to 
the total window length.

Define the number of timesteps 
separating each sequence. In our 
case, we want the sequences to be 
consecutive, so sequence_stride=1.

Shuffle the sequences. Keep in mind that the 
data is still in chronological order. We are simply 
shuffling the order of the sequences, which 
makes the model more robust.

Define the number of 
sequences in a single batch.

Get a sample batch of data for 
plotting purposes. If the sample 
batch does not exist, we’ll retrieve 
a sample batch and cache it.
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Our DataWindow class is now complete. The full class with all methods and properties
is shown in listing 13.3.

class DataWindow():
    def __init__(self, input_width, label_width, shift, 
                 train_df=train_df, val_df=val_df, test_df=test_df, 
                 label_columns=None):
        

        self.train_df = train_df
        self.val_df = val_df
        self.test_df = test_df
        

        self.label_columns = label_columns
        if label_columns is not None:
            self.label_columns_indices = {name: i for i, name in 

➥ enumerate(label_columns)}
        self.column_indices = {name: i for i, name in 

➥ enumerate(train_df.columns)}
        

        self.input_width = input_width
        self.label_width = label_width
        self.shift = shift

        

        self.total_window_size = input_width + shift

        

        self.input_slice = slice(0, input_width)
        self.input_indices = 

➥ np.arange(self.total_window_size)[self.input_slice]

        self.label_start = self.total_window_size - self.label_width
        self.labels_slice = slice(self.label_start, None)
        self.label_indices = 

➥ np.arange(self.total_window_size)[self.labels_slice]
    

    def split_to_inputs_labels(self, features):
        inputs = features[:, self.input_slice, :]
        labels = features[:, self.labels_slice, :]
        if self.label_columns is not None:
            labels = tf.stack(
                [labels[:,:,self.column_indices[name]] for name in 

➥ self.label_columns],
                axis=-1
            )
        inputs.set_shape([None, self.input_width, None])
        labels.set_shape([None, self.label_width, None])

        

        return inputs, labels

    

    def plot(self, model=None, plot_col='traffic_volume', max_subplots=3):
        inputs, labels = self.sample_batch

Listing 13.3 The complete DataWindow class
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        plt.figure(figsize=(12, 8))
        plot_col_index = self.column_indices[plot_col]
        max_n = min(max_subplots, len(inputs))
        
        for n in range(max_n):
            plt.subplot(3, 1, n+1)
            plt.ylabel(f'{plot_col} [scaled]')
            plt.plot(self.input_indices, inputs[n, :, plot_col_index],
                     label='Inputs', marker='.', zorder=-10)

            if self.label_columns:
              label_col_index = self.label_columns_indices.get(plot_col, 

➥ None)
            else:
              label_col_index = plot_col_index

            if label_col_index is None:
              continue

            plt.scatter(self.label_indices, labels[n, :, label_col_index],
                        edgecolors='k', marker='s', label='Labels', 

➥ c='green', s=64)
            if model is not None:
              predictions = model(inputs)
              plt.scatter(self.label_indices, predictions[n, :, 

➥ label_col_index],
                          marker='X', edgecolors='k', label='Predictions',
                          c='red', s=64)

            if n == 0:
              plt.legend()

        plt.xlabel('Time (h)')

    def make_dataset(self, data):
        data = np.array(data, dtype=np.float32)
        ds = tf.keras.preprocessing.timeseries_dataset_from_array(
            data=data,
            targets=None,
            sequence_length=self.total_window_size,
            sequence_stride=1,
            shuffle=True,
            batch_size=32
        )
        
        ds = ds.map(self.split_to_inputs_labels)
        return ds
    
    @property
    def train(self):
        return self.make_dataset(self.train_df)
    
    @property
    def val(self):
        return self.make_dataset(self.val_df)
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    @property
    def test(self):
        return self.make_dataset(self.test_df)
    
    @property
    def sample_batch(self):
        result = getattr(self, '_sample_batch', None)
        if result is None:
            result = next(iter(self.train))
            self._sample_batch = result
        return result

For now, the DataWindow class might seem a bit abstract, but we will soon use it to
apply baseline models. We will be using this class in all the chapters in this deep learn-
ing part of the book, so you will gradually tame this code and appreciate how easy it is
to test different deep learning architectures.

13.2 Applying baseline models
With the DataWindow class complete, we are ready to use it. We will apply baseline
models as single-step, multi-step, and multi-output models. You will see that their
implementation is similar and incredibly simple when we have the right data windows.

 Recall that a baseline is used as a benchmark to evaluate more complex models. A
model is performant if it compares favorably to another, so building a baseline is an
important step in modeling.

13.2.1 Single-step baseline model

We’ll first implement a single-step model as a baseline. In a single-step model, the
input is one timestep and the output is the prediction of the next timestep.

 The first step is to generate a window of data. Since we are defining a single-step
model, the input width is 1, the label width is 1, and the shift is also 1, since the model
predicts the next timestep. Our target variable is the volume of traffic.

single_step_window = DataWindow(input_width=1, label_width=1, shift=1, 

➥ label_columns=['traffic_volume'])

For plotting purposes, we’ll also define a wider window so we can visualize many pre-
dictions of our model. Otherwise, we could only visualize one input data point and
one output prediction, which is not very interesting.

wide_window = DataWindow(input_width=24, label_width=24, shift=1, 

➥ label_columns=['traffic_volume'])

In this situation, the simplest prediction we can make is the last observed value. Basi-
cally, the prediction is simply the input data point. This is implemented by the class
Baseline. As you can see in the following listing, the Baseline class can also be used
for a multi-output model. For now, we’ll solely focus on a single-step model.
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class Baseline(Model):
    def __init__(self, label_index=None):
        super().__init__()
        self.label_index = label_index
        
    def call(self, inputs):
        if self.label_index is None:    
            return inputs
        
        elif isinstance(self.label_index, list):    
            tensors = []
            for index in self.label_index:
                result = inputs[:, :, index]
                result = result[:, :, tf.newaxis]
                tensors.append(result)
            return tf.concat(tensors, axis=-1)
        
        result = inputs[:, :, self.label_index]    
        return result[:,:,tf.newaxis]

With the class defined, we can now initialize the model and compile it to generate pre-
dictions. To do so, we’ll find the index of our target column, traffic_volume, and pass
it in to Baseline. Note that TensorFlow requires us to provide a loss function and a
metric of evaluation. In this case, and throughout the deep learning chapters, we’ll
use the mean squared error (MSE) as a loss function—it penalizes large errors, and it
generally yields well-fitted models. For the evaluation metric, we’ll use the mean abso-
lute error (MAE) for its ease of interpretation.

column_indices = {name: i for i, name in enumerate(train_df.columns)}    

baseline_last = Baseline(label_index=column_indices['traffic_volume'])   

baseline_last.compile(loss=MeanSquaredError(), 

➥ metrics=[MeanAbsoluteError()])    

We’ll now evaluate the performance of our baseline on both the validation and test sets.
Models built with TensorFlow conveniently come with the evaluate method, which
allows us to compare the predictions to the actual values and calculate the error metric.

val_performance = {}    
performance = {}    

val_performance['Baseline - Last'] = 

➥ baseline_last.evaluate(single_step_window.val)    

Listing 13.4 Class to return the input data as a prediction

If no target is specified, we 
return all columns. This is useful 
for multi-output models where 
all columns are to be predicted.

If we specify a list of targets, it 
will return only the specified 
columns. Again, this is used 
for multi-output models.

Return the input for a 
given target variable.

Generate a dictionary with the name and
index of each column in the training set.

Pass the index of the
target column in the

Baseline class.
Compile the model to

generate the predictions.

Create a dictionary to hold the MAE 
of a model on the validation set.

Create a dictionary 
to hold the MAE of 
a model on the 
test set.

Store the MAE 
of the baseline on 
the validation set.
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performance['Baseline - Last'] = 

➥ baseline_last.evaluate(single_step_window.test, verbose=0)    

Great, we have successfully built a baseline that predicts the last known value and eval-
uated it. We can visualize the predictions using the plot method of the DataWindow
class. Remember to use the wide_window to see more than just two data points. 

wide_window.plot(baseline_last)

In figure 13.9 the labels are squares and the predictions are crosses. The crosses at
each timestep are simply the last known value, meaning that we have a baseline that
functions as expected. Your plot may differ from figure 13.9, as the cached sample
batch changes every time a data window is initialized.

We can optionally print the MAE of our baseline on the test set.

print(performance['Baseline - Last'][1])

This returns an MAE of 0.081. More complex models should perform better than the
baseline, resulting in a smaller MAE.

Store the MAE of the
baseline on the test set.
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Figure 13.9 Predictions of our baseline single-step model on three sequences from the sample batch. The 
prediction at each timestep is the last known value, meaning that our baseline works as expected.
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13.2.2 Multi-step baseline models

In the previous section, we built a single-step baseline model that simply predicted the
last known value. For multi-step models, we’ll predict more than one timestep into
the future. In this case, we’ll forecast the traffic volume for the next 24 hours of data
given an input of 24 hours.

 Again, the first step is to generate the appropriate window of data. Because we wish
to predict 24 timesteps into the future with an input of 24 hours, the input width is 24,
the label width is 24, and the shift is also 24.

multi_window = DataWindow(input_width=24, label_width=24, shift=24, 

➥ label_columns=['traffic_volume'])

With the data window generated, we can now focus on implementing the baseline
models. In this situation, there are two reasonable baselines:

 Predict the last known value for the next 24 timesteps.
 Predict the last 24 timesteps for the next 24 timesteps.

With that in mind, let’s implement the first baseline, where we’ll simply repeat the last
known value over the next 24 timesteps.

PREDICTING THE LAST KNOWN VALUE

To predict the last known value, we’ll define a MultiStepLastBaseline class that sim-
ply takes in the input and repeats the last value of the input sequence over 24 time-
steps. This acts as the prediction of the model.

class MultiStepLastBaseline(Model):
    def __init__(self, label_index=None):
        super().__init__()
        self.label_index = label_index
        

    def call(self, inputs):
        if self.label_index is None:
            return tf.tile(inputs[:, -1:, :], [1, 24, 1])    
        return tf.tile(inputs[:, -1:, self.label_index:], [1, 24, 1])    

Next we’ll initialize the class and specify the target column. We’ll then repeat the same
steps as in the previous section, compiling the model and evaluating it on the valida-
tion set and test set.

ms_baseline_last = 

➥ MultiStepLastBaseline(label_index=column_indices['traffic_volume'])

ms_baseline_last.compile(loss=MeanSquaredError(), 

➥ metrics=[MeanAbsoluteError()])

ms_val_performance = {}
ms_performance = {}

If no target is specified, return the
last known value of all columns

over the next 24 timesteps.

Return the last known value
of the target column over

the next 24 timesteps.
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ms_val_performance['Baseline - Last'] = 

➥ ms_baseline_last.evaluate(multi_window.val)
ms_performance['Baseline - Last'] = 

➥ ms_baseline_last.evaluate(multi_window.test, verbose=0)

We can now visualize the predictions using the plot method of DataWindow. The
result is shown in figure 13.10.

multi_window.plot(ms_baseline_last)

Again, we can optionally print the baseline’s MAE. From figure 13.10, we can expect it to
be fairly high, since there is a large discrepancy between the labels and the predictions.

print(ms_performance['Baseline - Last'][1])

This gives an MAE of 0.347. Now let’s see if we can build a better baseline by simply
repeating the input sequence.

REPEATING THE INPUT SEQUENCE

Let’s implement a second baseline for multi-step models, which simply returns the input
sequence. This means that the prediction for the next 24 hours will simply be the last
known 24 hours of data. This is implemented through the RepeatBaseline class.
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Figure 13.10 Predicting the last known value for the next 24 timesteps. We can see that the predictions, 
shown as crosses, correspond to the last value of the input sequence, so our baseline behaves as expected.
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class RepeatBaseline(Model):
    def __init__(self, label_index=None):
        super().__init__()
        self.label_index = label_index
        

    def call(self, inputs):
        return inputs[:, :, self.label_index:]    

Now we can initialize the baseline model and generate predictions. Note that the loss
function and evaluation metric remain the same.

ms_baseline_repeat = 

➥ RepeatBaseline(label_index=column_indices['traffic_volume'])

ms_baseline_repeat.compile(loss=MeanSquaredError(), 

➥ metrics=[MeanAbsoluteError()])

ms_val_performance['Baseline - Repeat'] = 

➥ ms_baseline_repeat.evaluate(multi_window.val)
ms_performance['Baseline - Repeat'] = 

➥ ms_baseline_repeat.evaluate(multi_window.test, verbose=0)

Next we can visualize the predictions. The result is shown in figure 13.11.
 This baseline performs well. This is to be expected, since we identified daily seasonality

in the previous chapter. This baseline is the equivalent to predicting the last known season.

Return the input 
sequence for the 
given target column.
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Figure 13.11 Repeating the input sequence as the predictions. You’ll see that the predictions 
(represented as crosses) match exactly the input sequence. You’ll also notice that many predictions 
overlap the labels, which indicates that this baseline performs quite well.



266 CHAPTER 13 Data windowing and creating baselines for deep learning
Again, we can print the MAE on the test set to verify that we indeed have a better base-
line than simply predicting the last known value.

print(ms_performance['Baseline - Repeat'][1])

This gives an MAE of 0.341, which is lower than the MAE obtained by predicting the
last known value. We have therefore successfully built a better baseline.

13.2.3 Multi-output baseline model

The final type of model we’ll cover is the multi-output model. In this situation, we
wish to predict the traffic volume and the temperature for the next timestep using a
single input data point. Essentially, we’re applying the single-step model on both the
traffic volume and temperature, making it a multi-output model.

 Again, we’ll start off by defining the window of data, but here we’ll define two win-
dows: one for training and the other for visualization. Since the model takes in one
data point and outputs one prediction, we want to initialize a wide window of data to
visualize many predictions over many timesteps.

mo_single_step_window = DataWindow(input_width=1, label_width=1, shift=1, 

➥ label_columns=['temp','traffic_volume'])     
mo_wide_window = DataWindow(input_width=24, label_width=24, shift=1, 

➥ label_columns=['temp','traffic_volume'])

Then we’ll use the Baseline class that we defined for the single-step model. Recall
that this class can output the last known value for a list of targets.

class Baseline(Model):
    def __init__(self, label_index=None):
        super().__init__()
        self.label_index = label_index
        
    def call(self, inputs):
        if self.label_index is None:    
            return inputs
        
        elif isinstance(self.label_index, list):    
            tensors = []
            for index in self.label_index:
                result = inputs[:, :, index]
                result = result[:, :, tf.newaxis]
                tensors.append(result)
            return tf.concat(tensors, axis=-1)

        result = inputs[:, :, self.label_index]    
        return result[:,:,tf.newaxis]

Listing 13.5 Class to return the input data as a prediction

Notice that we pass in both temp and traffic_volume, as 
those are our two targets for the multi-output model.

If no target is specified, we 
return all columns. This is useful 
for multi-output models where 
all columns are to be predicted.

If we specify a list of 
targets, it will return only 
these specified columns. 
Again, this is used for 
multi-output models.

Return the input for a 
given target variable.
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In the case of the multi-output model, we must simply pass the indexes of the temp
and traffic_volume columns to output the last known value for the respective variables
as a prediction.

print(column_indices['traffic_volume'])    
print(column_indices['temp'])    

mo_baseline_last = Baseline(label_index=[0, 2])

With the baseline initialized with our two target variables, we can now compile the
model and evaluate it. 

mo_val_performance = {}
mo_performance = {}

mo_val_performance['Baseline - Last'] = 

➥ mo_baseline_last.evaluate(mo_wide_window.val)
mo_performance['Baseline - Last'] = 

➥ mo_baseline_last.evaluate(mo_wide_window.test, verbose=0)

Finally, we can visualize the predictions against the actual values. By default, our plot
method will show the traffic volume on the y-axis, allowing us to quickly display one of
our targets, as shown in figure 13.12.

mo_wide_window.plot(mo_baseline_last)
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Prints out 0
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Figure 13.12 Predicting the last known value for traffic volume
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Figure 13.12 does not show anything surprising, as we already saw these results when
we built a single-step baseline model. The particularity of the multi-output model is
that we also have predictions for the temperature. Of course, we can also visualize the
predictions for the temperature by specifying the target in the plot method. The
result is shown in figure 13.13.

mo_wide_window.plot(model=mo_baseline_last, plot_col='temp')

Again, we can print the MAE of our baseline model.

print(mo_performance['Baseline - Last'])

We obtain an MAE of 0.047 on the test set. In the next chapter, we’ll start building
more complex models, and they should result in a lower MAE, as they will be trained
to fit the data.

13.3 Next steps
In this chapter, we covered the crucial step of creating data windows, which will allow
us to quickly build any type of model. We then proceeded to build baseline models for
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Figure 13.13 Predicting the last known value for the temperature. The predictions (crosses) are equal to 
the previous data point, so our baseline model behaves as expected.
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each type of model, so that we have benchmarks we can compare to when we build
our more complex models in later chapters.

 Of course, building baseline models is not an application of deep learning just yet.
In the next chapter, we will implement linear models and deep neural networks, and see
if those models are already more performant than the simple baselines.

13.4 Exercises
In the previous chapter, as an exercise, we prepared the air pollution dataset for deep
learning modeling. Now we’ll use the training set, validation set, and test set to build
baseline models and evaluate them.

 For each type of model, follow the steps outlined. Recall that the target for the single-
step and multi-step model is the concentration of NO2, and the targets for the multi-
output model are the concentration of NO2 and temperature. The complete solution is
available on GitHub: https://github.com/marcopeix/TimeSeriesForecastingInPython/
tree/master/CH13%26CH14.

1 For the single-step model
a Build a baseline model that predicts the last known value.
b Plot it.
c Evaluate its performance using the mean absolute error (MAE) and store it

for comparison in a dictionary.
2 For the multi-step model

a Build a baseline that predicts the last known value over a horizon of 24 hours.
b Build a baseline model that repeats the last 24 hours.
c Plot the predictions of both models.
d Evaluate both models using the MAE and store their performance.

3 For the multi-output model
a Build a baseline model that predicts the last known value.
b Plot it.
c Evaluate its performance using the MAE and store it for comparison in a

dictionary.

Summary
 Data windowing is essential in deep learning to format the data as inputs and

labels for the model.
 The DataWindow class can easily be used in any situation and can be extended to

your liking. Make use of it in your own projects.
 Deep learning models require a loss function and an evaluation metric. In our

case, we chose the mean squared error (MSE) as the loss function, because it
penalizes large errors and tends to yield better-fit models. The evaluation met-
ric is the mean absolute error (MAE), chosen for its ease of interpretation.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14


Baby steps with
deep learning
In the last chapter, we implemented the DataWindow class, which allows us to
quickly create windows of data for building single-step models, multi-step models,
and multi-output models. With this crucial component in place, we then developed
the baseline models that will serve as benchmarks for our more complex models,
which we’ll start building in this chapter.

 Specifically, we’ll implement linear models and deep neural networks. A linear
model is a special case of a neural network, where there is no hidden layer. This
model simply calculates weights for each input variable in order to output a predic-
tion for the target. In contrast, a deep neural network has at least one hidden layer,
allowing us to start modeling nonlinear relationships between the features and the
target, usually resulting in better forecasts.

 In this chapter, we’ll continue the work we started in chapter 13. I recommend
that you continue coding in the same notebook or Python scripts as in the last
chapter, so that you can compare the performance of these linear models and deep
neural networks to that of the baseline models from chapter 13. We’ll also keep

This chapter covers
 Implementing linear models

 Enacting deep neural networks
270
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working with the same dataset as previously, and our target variable will remain the
traffic volume for both the single-step and multi-step models. For the multi-output
model, we’ll keep the temperature and traffic volume as our targets.

14.1 Implementing a linear model
A linear model is the simplest architecture we can implement in deep learning. In fact,
we might argue that it is not deep learning at all, since the model has no hidden layer.
Each input feature is simply given a weight, and they are combined to output a predic-
tion for the target, just like in a traditional linear regression.

 Let’s consider a single-step model as an example. Recall that we have the following
features in our dataset: temperature, cloud coverage, traffic volume, and day_sin and
day_cos, which encode the time of day as numerical values. A linear model simply
takes all the features, calculates a weight for each of them, and sums them to output a
prediction for the next timestep. This process is illustrated in figure 14.1.

The model in figure 14.1 can be mathematically expressed as equation 14.1, where
x1 is cloud coverage, x2 is temperature, x3 is traffic volume, x4 is day_sin, and x5 is
day_cos.

                   traffic volumet+1 = w1x1,t + w2x2,t + w3x3,t + w4x4,t + w5x5,t Equation 14.1

We can easily recognize equation 14.1 as being a simple multivariate linear regression.
During training, the model tries multiple values for w1 to w5 in order to minimize the
mean squared error (MSE) between the prediction and actual value of the traffic vol-
ume at the next timestep.

Cloud coveraget

Temperaturet

Traffic volumet

day_cost

day_sint

Traffic volumet +1

w1

w2

w3

w4

w5

Figure 14.1 An example of a linear model as a single-step model. Each 
feature at time t is assigned a weight (w1 to w5). They are then summed 
to calculate an output for the traffic volume at the next timestep, t+1. 
This is similar to a linear regression.
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 Now that you understand the concept of a linear model in deep learning, let’s
implement it as a single-step model, multi-step model, and multi-output model.

14.1.1 Implementing a single-step linear model

A single-step linear model is one of the simplest models to implement, as it is exactly
as described in figure 14.1 and equation 14.1. We simply take all the inputs, assign a
weight to each, take the sum, and generate a prediction. Remember that we are using
the traffic volume as a target. 

 Assuming that you are working in the same notebook or Python script as in the
last chapter, you should have access to the single_step_window for training and
wide_window for plotting. Recall also that the performance of the baseline is stored in
val_performance and performance.

 Unlike a baseline model, a linear model actually requires training. Thus, we’ll
define a compile_and_fit function that configures the model for training and then
fits the model on the data, as shown in the following listing. 

NOTE You can consult the source code for this chapter on GitHub: https://
github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%
26CH14.

def compile_and_fit(model, window, patience=3, max_epochs=50):   
    early_stopping = EarlyStopping(monitor='val_loss',   
                                   patience=patience,   
                                   mode='min')
    
    model.compile(loss=MeanSquaredError(),    
                  optimizer=Adam(),
                  metrics=[MeanAbsoluteError()])   
    
    history = model.fit(window.train,    
                       epochs=max_epochs,    
                       validation_data=window.val,   
                       callbacks=[early_stopping])   
    
    return history

This piece of code will be reused throughout the deep learning chapters, so it’s
important to understand what is happening. The compile_and_fit function takes in

Listing 14.1 Function to configure a deep learning model and fit it on data

The function takes a model and a window of data from the DataWindow 
class. The patience is the number of epochs after which the model should 
stop training if the validation loss does not improve; max_epochs sets a 
maximum number of epochs to train the model.

The validation loss is
tracked to determine

if we should apply
early stopping or not.

Early stopping 
occurs if 3 
consecutive epochs 
do not decrease the 
validation loss, as 
set by the patience 
parameter.

The MSE
 used as
the loss

function.

The MAE is used as an 
error metric. This is 
how we compare the 
performance of our 
models. A lower MAE 
means a better model.

e model
it on the
ning set.

The model can train for 
at most 50 epochs, as 
set by the max_epochs 
parameter.

We use the validation 
set to calculate the 
validation loss.

early_stopping is passed as a
callback. If the validation

loss does not decrease after
3 consecutive epochs, the
model stops training. This

avoids overfitting.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14


27314.1 Implementing a linear model
a deep learning model, a window of data from the DataWindow class, the patience
parameter, and the max_epochs parameter. The patience parameter is used in the
early_stopping function, which allows us to stop the model from training if there are
no improvements in the validation loss, as specified by the monitor parameter. That
way, we avoid useless training time and overfitting. 

 Then the model is compiled. In Keras, this simply configures the model to specify
the loss function to be used, the optimizer, and metrics of evaluation. In our case,
we’ll use the MSE as the loss function because the error is squared, meaning that the
model is heavily penalized for large differences between the predicted and actual val-
ues. We’ll use the Adam optimizer because it is a fast and efficient optimizer. Finally,
we’ll use the MAE as an evaluation metric to compare the performance of our models
because we used it to evaluate our baseline models in the previous chapter, and it is
easy to interpret.

 The model is then fit on the training data for up to 50 epochs, as set by the max_
epochs parameter. The validation is performed on the validation set, and we pass in
early_stopping as a callback. That way, Keras will apply early stopping if it sees that
the validation loss has not decreased after 3 consecutive epochs.

 With compile_and_fit in place, we can move on to actually building our linear
model. We’ll use the Sequential model from Keras, as it allows us to stack different
layers. Since we are building a linear model here, we only have one layer—a Dense
layer, which is the most basic layer in deep learning. We’ll specify the number of units
as 1, since the model must output only one value: the prediction for traffic volume at
the next timestep.

linear = Sequential([
    Dense(units=1)
])

Clearly, Keras makes it very easy to build models. With this step complete, we can then
train the model using compile_and_fit and store the performance to later compare
it to the baseline.

history = compile_and_fit(linear, single_step_window)

val_performance['Linear'] = linear.evaluate(single_step_window.val)
performance['Linear'] = linear.evaluate(single_step_window.test, verbose=0)

Optionally, we can visualize the predictions of our linear model using the plot
method of the wide_window. The result is shown in figure 14.2.

wide_window.plot(linear)

Our model makes fairly good predictions, as we can observe some overlap between
the forecasts and the actual values. We will wait until the end of the chapter to compare
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the performance of our models to the baselines. For now, let’s move on to implement-
ing the multi-step linear and multi-output linear models.

14.1.2 Implementing a multi-step linear model

Our single-step linear model is built, and we can now extend it to a multi-step linear
model. Recall that in the multi-step situation, we wish to predict the next 24 hours of
data using an input window of 24 hours of data. Our target remains the traffic volume.

 This model will greatly resemble the single-step linear model, but this time we’ll
use 24 hours of input and output 24 hours of predictions. The multi-step linear model
is illustrated in figure 14.3. As you can see, the model takes in 24 hours of each fea-
ture, combines them in a single layer, and outputs a tensor containing the forecast for
the next 24 hours.

 Implementing the model is easy, as our model only contains a single Dense layer.
We can optionally initialize the weights to 0, which makes the training procedure
slightly faster. We then compile and fit the model before storing its evaluation metrics
in ms_val_performance and ms_performance.
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Figure 14.2 Predictions of traffic volume using the linear model as a single-step model. The predictions 
(shown as crosses) are fairly accurate, with some predictions overlapping the actual values (shown as 
squares).
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ms_linear = Sequential([
    Dense(1, kernel_initializer=tf.initializers.zeros)    
])

history = compile_and_fit(ms_linear, multi_window)

ms_val_performance['Linear'] = ms_linear.evaluate(multi_window.val)
ms_performance['Linear'] = ms_linear.evaluate(multi_window.test, verbose=0)

We have just built a multi-step linear model. You might feel underwhelmed, since the
code is almost identical to the single-step linear model. This is due to our work build-
ing the DataWindow class and properly windowing our data. With that step done,
building models becomes extremely easy.

 Next we’ll implement a multi-output linear model.

14.1.3 Implementing a multi-output linear model

The multi-output linear model will return predictions for the traffic volume and the
temperature. The input is the present timestep, and the predictions are for the next
timestep.

 The model’s architecture is shown in figure 14.4. There, you can see that our
multi-output linear model will take all the features at t = 0, combine them in a single
layer, and output both the temperature and traffic volume at the next timestep.

Cloud coverage

Temperature

Traffic volume

day_sin

day_cos

Traffic volume

t = 24

t = 22 t = 23

t = 22 t = 23

t = 22 t = 23

t = 22 t = 23

t = 22 t = 23

t = 0 t = 1

t = 0 t = 1

t = 0 t = 1

t = 0 t = 1

t = 0 t = 1

...
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...

...

t = 25 t = 46 t = 47...

Figure 14.3 The multi-step linear model. We’ll take 24 hours of each feature, combine them in a single layer, 
and immediately output predictions for the next 24 hours.

Initializing the 
weights to 0 
makes training 
slightly faster. 
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Up to this point, we have only predicted the traffic volume, meaning that we had only
one target, so we used the layer Dense(units=1). In this case, since we must output a
prediction for two targets, our layer will be Dense(units=2). As before, we’ll train the
model and store its performance to compare it later to the baseline and deep neural
network.

mo_linear = Sequential([
    Dense(units=2)    
])

history = compile_and_fit(mo_linear, mo_single_step_window)

mo_val_performance['Linear'] = 

➥ mo_linear.evaluate(mo_single_step_window.val)
mo_performance['Linear'] = mo_linear.evaluate(mo_single_step_window.test, 

➥ verbose=0)

Again, you can see how easy it is to build a deep learning model in Keras, especially
when we have the proper data window as input.

 With our single-step, multi-step, and multi-output linear models done, we can now
move on to implementing a more complex architecture: a deep neural network.

14.2 Implementing a deep neural network
With our three types of linear models implemented, it is time to move on to deep neu-
ral networks. It has been empirically shown that adding hidden layers in neural net-
works helps achieve better results. Furthermore, we’ll introduce a nonlinear activation
function to capture nonlinear relationships in the data.

Cloud coverage

Temperature

Traffic volume

day_sin

day_cos

Traffic volume

Temperature

t = 1
t = 0

t = 0

t = 0

t = 0

t = 0

t = 1

Figure 14.4 A multi-output linear model. In this case, the model takes the 
present timestep of all features and produces a forecast for the temperature 
and traffic volume at the next timestep.

We set units equal to the number 
of targets we are predicting in 
the output layer.
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 Linear models have no hidden layers; the model had an input layer and an output
layer. In a deep neural network (DNN), we’ll add more layers between the input and
output layers, called hidden layers. This difference in architecture is highlighted in fig-
ure 14.5. 

The idea behind adding layers to the network is that it gives the model more opportu-
nities to learn, which usually results in the model generalizing better on unseen data,
thus improving its performance. Of course, with added layers, the model necessarily
trains for a longer time and is thus supposed to learn better.

 Each circle in a hidden layer represents a neuron, and each neuron has an activa-
tion function. The number of neurons is equal to the number of units that is passed
as an argument in the Dense layer in Keras. Usually we set the number of units, or neu-
rons, as a power of 2, as it is more computationally efficient—calculations in the CPU
and GPU happen in batch sizes that are also powers of 2. 

 Before implementing a DNN, we need to address the activation function in each
neuron of the hidden layers. The activation function defines the output of each neu-
ron based on the input. Therefore, if we wish to model nonlinear relationships, we
need to use a nonlinear activation function.

Prediction

Input layer

Linear model

Output
layer

Prediction

Input layer

Hidden
layer

Hidden
layer

Output
layer

Deep neural network

Figure 14.5 Comparing a linear model to a deep neural network. In the linear model, the input layer is directly 
connected to an output layer that returns a prediction. Therefore, only a linear relationship is derived. A deep 
neural network contains hidden layers. These layers allow it to model nonlinear relationships between inputs 
and predictions, generally resulting in better models.
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In our case, we’ll use the Rectified Linear Unit (ReLU) activation function. This non-
linear activation function basically returns either the positive part of its input or 0, as
defined by equation 14.2.

                 f(x) = x+ = max (0, x) Equation 14.2

This activation function comes with many advantages, such as better gradient propa-
gation, more efficient computation, and scale-invariance. For all those reasons, it is
now the most widely used activation function in deep learning, and we’ll use it when-
ever we have a Dense layer that is a hidden layer.

 We are now ready to implement a deep neural network in Keras.

14.2.1 Implementing a deep neural network as a single-step model

We are now back to the single-step model, but this time we’ll implement a deep neural
network. The DNN takes in the features at the current timestep to output the predic-
tion for traffic volume at the next timestep.

 The model still makes use of the Sequential model, as we’ll stack Dense layers in
order to build a deep neural network. In this case, we’ll use two hidden layers with 64
neurons each. As mentioned before, we’ll specify the activation function to be ReLU.
The last layer is the output layer, which in this case only returns one value represent-
ing the prediction for traffic volume.

dense = Sequential([
    Dense(units=64, activation='relu'),   
    Dense(units=64, activation='relu'),
    Dense(units=1)     
])

With the model defined, we can now compile it, train it, and record its performance
to compare it to the baseline and the linear model.

history = compile_and_fit(dense, single_step_window)

val_performance['Dense'] = dense.evaluate(single_step_window.val)
performance['Dense'] = dense.evaluate(single_step_window.test, verbose=0)

Activation function
The activation function is in each neuron of the neural network and is responsible for
generating an output from the input data. 

If a linear activation function is used, the model will only model linear relationships.
Therefore, to model nonlinear relationships in the data, we must use a nonlinear
activation function. Examples of nonlinear activation functions are ReLU, softmax,
or tanh.

First hidden layer with 64 
neurons. Specify the activation 
function to be ReLU.

The output layer has only one neuron, 
as we output only one value.
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Of course, we can take a look at the model’s predictions using the plot method, as
shown in figure 14.6. Our deep neural network seems to be making quite accurate
predictions.

Let’s compare the MAE of the DNN with the linear model and the baseline that we
built in chapter 13. The result is shown in figure 14.7.

mae_val = [v[1] for v in val_performance.values()]
mae_test = [v[1] for v in performance.values()]

x = np.arange(len(performance))

fig, ax = plt.subplots()
ax.bar(x - 0.15, mae_val, width=0.25, color='black', edgecolor='black', 

➥ label='Validation')
ax.bar(x + 0.15, mae_test, width=0.25, color='white', edgecolor='black', 

➥ hatch='/', label='Test')
ax.set_ylabel('Mean absolute error')
ax.set_xlabel('Models')
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Figure 14.6 Predicting the traffic volume using a deep neural network as a single-step model. Here even more 
predictions (shown as crosses) overlap with the actual values (shown as squares), suggesting that the model 
is making very accurate predictions.
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for index, value in enumerate(mae_val):
    plt.text(x=index - 0.15, y=value+0.0025, s=str(round(value, 3)), 

➥ ha='center')
    
for index, value in enumerate(mae_test):
    plt.text(x=index + 0.15, y=value+0.0025, s=str(round(value, 3)), 

➥ ha='center')

plt.ylim(0, 0.1)
plt.xticks(ticks=x, labels=performance.keys())
plt.legend(loc='best')
plt.tight_layout()

In figure 14.7 the MAE is highest for the baseline. It decreases with the linear model
and decreases again with the deep neural network. Thus, both models outperformed
the baseline, with the deep neural network having the best performance.
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Figure 14.7 The MAE for all of the single-step models so far. The linear model performs better than the 
baseline, which only predicts the last known value. The dense model outperforms both models, since it has 
the lowest MAE.
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14.2.2 Implementing a deep neural network as a multi-step model

Now let’s implement a deep neural network as a multi-step model. In this case, we
want to predict the next 24 hours of traffic volume based on the last 24 hours of
recorded data.

 Again we’ll use two hidden layers with 64 neurons each, and we’ll use the ReLU
activation function. Since we have a data window with 24 hours of input, the model
will also output 24 hours of predictions; the output layer simply has one neuron
because we are predicting traffic volume only.

ms_dense = Sequential([
    Dense(64, activation='relu'),
    Dense(64, activation='relu'),
    Dense(1, kernel_initializer=tf.initializers.zeros),
])

Then we’ll compile, train the model, and save its performance for comparison with
the linear and baseline models.

history = compile_and_fit(ms_dense, multi_window)

ms_val_performance['Dense'] = ms_dense.evaluate(multi_window.val)
ms_performance['Dense'] = ms_dense.evaluate(multi_window.test, verbose=0)

Just like that, we have built a multi-step deep neural network model. Let’s see which
model performed best for the multi-step task. The result is shown in figure 14.8.

ms_mae_val = [v[1] for v in ms_val_performance.values()]
ms_mae_test = [v[1] for v in ms_performance.values()]

x = np.arange(len(ms_performance))

fig, ax = plt.subplots()
ax.bar(x - 0.15, ms_mae_val, width=0.25, color='black', edgecolor='black', 

➥ label='Validation')
ax.bar(x + 0.15, ms_mae_test, width=0.25, color='white', edgecolor='black', 

➥ hatch='/', label='Test')
ax.set_ylabel('Mean absolute error')
ax.set_xlabel('Models')

for index, value in enumerate(ms_mae_val):
    plt.text(x=index - 0.15, y=value+0.0025, s=str(round(value, 3)), 

➥ ha='center')
    

for index, value in enumerate(ms_mae_test):
    plt.text(x=index + 0.15, y=value+0.0025, s=str(round(value, 3)), 

➥ ha='center')

plt.ylim(0, 0.4)
plt.xticks(ticks=x, labels=ms_performance.keys())
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plt.legend(loc='best')
plt.tight_layout()

In figure 14.8 you’ll see that the linear model and deep neural network both outper-
form the two baselines that we built for the multi-step task in chapter 13. Again, the
deep neural network has the lowest MAE of all, meaning that it is the most perfor-
mant model for now.

14.2.3 Implementing a deep neural network as a multi-output model

Finally, we’ll implement a deep neural network as a multi-output model. In this case,
we’ll use the features at the present timestep to forecast both the traffic volume and
temperature at the next timestep.

 As for the previous DNNs that we implemented, we’ll use two hidden layers of 64
neurons each. This time, because we are forecasting two targets, our output layer has
two neurons or units.
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Figure 14.8 The MAE for all of the multi-step models so far. The linear model performs better than both 
baselines. The dense model outperforms all models.
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mo_dense = Sequential([
    Dense(units=64, activation='relu'),
    Dense(units=64, activation='relu'),
    Dense(units=2)    
])

Next we’ll compile and fit the model and store its performance for comparison.

history = compile_and_fit(mo_dense, mo_single_step_window)

mo_val_performance['Dense'] = mo_dense.evaluate(mo_single_step_window.val)
mo_performance['Dense'] = mo_dense.evaluate(mo_single_step_window.test, 

➥ verbose=0)

Let’s see which model performed best at the multi-output task. Note that the reported
MAE is averaged for both targets.

mo_mae_val = [v[1] for v in mo_val_performance.values()]
mo_mae_test = [v[1] for v in mo_performance.values()]

x = np.arange(len(mo_performance))

fig, ax = plt.subplots()
ax.bar(x - 0.15, mo_mae_val, width=0.25, color='black', edgecolor='black', 

➥ label='Validation')
ax.bar(x + 0.15, mo_mae_test, width=0.25, color='white', edgecolor='black', 

➥ hatch='/', label='Test')
ax.set_ylabel('Mean absolute error')
ax.set_xlabel('Models')

for index, value in enumerate(mo_mae_val):
    plt.text(x=index - 0.15, y=value+0.0025, s=str(round(value, 3)), 

➥ ha='center')
    

for index, value in enumerate(mo_mae_test):
    plt.text(x=index + 0.15, y=value+0.0025, s=str(round(value, 3)), 

➥ ha='center')

plt.ylim(0, 0.06)
plt.xticks(ticks=x, labels=mo_performance.keys())
plt.legend(loc='best')
plt.tight_layout()

As you can see in figure 14.9, our models outperform the baseline, with the deep
learning model being the most performant.

 
 
 

The output layer has two neurons, 
since we are forecasting two targets.
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14.3 Next steps
In this chapter, we implemented both linear models and deep neural networks to
make single-step, multi-step, and multi-output predictions. In all cases, the deep neu-
ral network outperformed the other models. This is generally the case, as DNNs can
map nonlinear relationships between the features and the targets, which generally
leads to more accurate predictions.

 This chapter only brushed the surface of what deep learning can achieve in time
series forecasting. In the next chapter, we’ll explore a more complex architecture: the
long short-term memory (LSTM). This architecture is widely used to process sequences of
data. Since a time series is a sequence of points equally spaced in time, it makes sense
to apply an LSTM for time series forecasting. We will then test whether the LSTM out-
performs the DNN or not.
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Figure 14.9 The MAE for all of the multi-output models built so far. Again, the baseline has the highest MAE, 
while the deep neural network achieves the lowest error metric. 
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14.4 Exercises
In the last chapter, as an exercise, you built baseline models to forecast the concentra-
tion of NO2 and temperature. Now you’ll build linear models and deep neural net-
works. The full solutions to these exercises are available on GitHub: https://github
.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14.

1 For the single-step model:
a Build a linear model.
b Plot its predictions.
c Measure its performance using the mean absolute error (MAE) and store it.
d Build a deep neural network (DNN).
e Plot its predictions.
f Measure its performance using the MAE and store it.
g Which model performs best?

2 For the multi-step model:
a Build a linear model.
b Plot its predictions.
c Measure its performance using the MAE and store it.
d Build a DNN.
e Plot its predictions.
f Measure its performance using the MAE and store it.
g Which model performs best?

3 For the multi-output model:
a Build a linear model.
b Plot its predictions.
c Measure its performance using the MAE and store it.
d Build a DNN.
e Plot its predictions.
f Measure its performance using the MAE and store it.
g Which model performs best?

At any point, feel free to run your own experiments with the deep neural networks.
Add layers, change the number of neurons, and see how those changes impact the
performance of the model.

Summary
 A linear model is the simplest architecture in deep learning. It has an input

layer and an output layer, with no activation function.
 A linear model can only derive linear relationships between the features and

the target.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH13%26CH14
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 A deep neural network (DNN) has hidden layers, which are layers between the
input and output layers. Adding more layers usually improves the performance
of the model, as it allows it more time to train and learn the data.

 To model nonlinear relationships from the data, you must use a nonlinear acti-
vation function in the network. Examples of nonlinear activation functions are
ReLU, softmax, tanh, sigmoid, etc.

 The number of neurons in a hidden layer is usually a power of 2, to make com-
putation more efficient.

 The Rectified Linear Unit (ReLU) is a popular nonlinear activation function
that does not vary with scale and allows for efficient model training.



Remembering
the past with LSTM
In the last chapter, we built our first models in deep learning, implementing both
linear and deep neural network models. In the case of our dataset, we saw that both
models outperformed the baselines we built in chapter 13, with the deep neural
network being the best model for single-step, multi-step, and multi-output tasks.

 Now we’ll explore a more advanced architecture called long short-term memory
(LSTM), which is a particular case of a recurrent neural network (RNN). This type of
neural network is used to process sequences of data, where the order matters. One
common application of RNN and LSTM is in natural language processing. Words
in a sentence have an order, and changing that order can completely change the
meaning of a sentence. Thus, we often find this architecture behind text classifica-
tion and text generation algorithms.

 Another situation where the order of data matters is time series. We know that
time series are sequences of data equally spaced in time, and that their order can-
not be changed. The data point observed at 9 a.m. must come before the data point

This chapter covers
 Examining the long short-term memory (LSTM) 

architecture

 Implementing an LSTM with Keras
287
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at 10 a.m. and after the data point at 8 a.m. Thus, it makes sense to apply the LSTM
architecture for forecasting time series.

 In this chapter, we’ll first explore the general architecture of a recurrent neural
network, and then we’ll dive deep into the LSTM architecture and examine its unique
features and inner workings. Then we’ll implement an LSTM using Keras to produce
single-step, multi-step, and multi-output models. We’ll finally compare the perfor-
mance of LSTM against all the models we’ve built, from the baselines to the deep neu-
ral networks.

15.1 Exploring the recurrent neural network (RNN)
A recurrent neural network (RNN) is a deep learning architecture especially adapted
to processing sequences of data. It denotes a set of networks that share a similar archi-
tecture: long short-term memory (LSTM) and gated recurrent unit (GRU) are sub-
types of RNNs. In this chapter, we’ll solely focus on the LSTM architecture.

 To understand the inner workings of an RNN, we’ll start with figure 15.1, which
shows a compact illustration of an RNN. Just like in a deep neural network (DNN), we
have an input, denoted as xt, and an output, denoted as yt. Here xt is an element of a
sequence. When it is fed to the RNN, it computes a hidden state, denoted as ht. This
hidden state acts as memory. It is computed for each element of the sequence and fed
back to the RNN as an input. That way, the network effectively uses past information
computed for previous elements of the sequence to inform the output for the next
element of the sequence.

Figure 15.2 shows an expanded illustration of an RNN. You can see how the hidden
state is first computed at t = 0 and then is updated and passed on as each element of
the sequence is processed. This is how the RNN effectively replicates the concept of
memory and uses past information to produce a new output.

RNN

yt

xt

Figure 15.1 A compact illustration of an RNN. It 
computes a hidden state ht, which is looped back in 
the network and combined with the next input of the 
sequence. This is how RNNs keep information from 
past elements of a sequence and use them to process 
the next element of a sequence.



28915.1 Exploring the recurrent neural network (RNN)
However, the basic RNNs that we have examined come with a drawback: they suffer
from short-term memory due to the vanishing gradient. The gradient is simply the
function that tells the network how to change the weights. If the change in gradient is
large, the weights change by a large magnitude. On the other hand, if the change in
gradient is small, the weights do not change significantly. The vanishing gradient
problem refers to what happens when the change in gradient becomes very small,
sometimes close to 0. This in turn means that the weights of the network do not get
updated, and the network stops learning. 

 In practice, this means the RNN forgets about past information that is far away in
the sequence. It therefore suffers from a short-term memory. For example, if an
RNN is processing 24 hours of hourly data, the points at hours 9, 10, and 11 might
still impact the output at hour 12, but any point prior to hour 9 might not contrib-
ute at all to the network’s learning, because the gradient gets very small for those
early data points.

Recurrent neural network
A recurrent neural network (RNN) is especially adapted to processing sequences of
data. It uses a hidden state that is fed back into the network so it can use past infor-
mation as an input when processing the next element of a sequence. This is how it
replicates the concept of memory.

However, RNNs suffer from short-term memory, meaning that information from an
early element in the sequence will stop having an impact further into the sequence.

RNN RNN RNN RNN

y0 y1 y2

x0 x1 x2

h2h1h0

yt

xt

Figure 15.2 Expanded illustration of an RNN. Here you can see how the hidden state is updated and passed 
on to the next element of the sequence as an input. 
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 Therefore, we must find a way to retain the importance of past information in our
network. This brings us to the long short-term memory (LSTM) architecture, which
uses the cell state as an additional way of keeping past information in memory for a
long time.

15.2 Examining the LSTM architecture
The long short-term memory (LSTM) architecture adds a cell state to the RNN architec-
ture to avoid the vanishing gradient problem, where past information ceases to impact
the learning of the network. This allows the network to keep past information in
memory for a longer time. 

 The LSTM architecture is shown in figure 15.3, and you can see that it is more
complex than the basic RNN architecture. You’ll notice the addition of the cell state,
denoted as C. This cell state is what allows the network to keep past information in the
network for a longer time, thus resolving the vanishing gradient problem. Note that
this is unique to the LSTM architecture. We still have an element of a sequence being
processed, shown as xt, and a hidden state is also computed, denoted as ht. In this case,
both the cell state Ct and the hidden ht are passed on to the next element of the
sequence, making sure that past information is used as an input for the next element
in the sequence being processed.

You’ll also notice the presence of three gates: the forget gate, the input gate, and
the output gate. Each has its specific function in the LSTM, so let’s explore each
one in detail.

Forget

gate

Input

gate

Output

gate

ht

ht–1

Ct

ht

xt

Ct–1

Figure 15.3 The architecture of an LSTM neuron. The cell state is denoted 
as C, while the input is x and the hidden state is h. 
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15.2.1 The forget gate

The forget gate is the first gate in an LSTM cell. Its role is to determine what informa-
tion, from both the past values and the current value of the sequence, should be for-
gotten or kept in the network.

Looking at figure 15.4, we can see how the different inputs flow through the forget
gate. First, the past hidden state ht–1 and the present value of a sequence xt are fed
into the forget gate. Recall that the past hidden state carries information from past
values. Then, ht–1 and xt are combined and duplicated. One copy goes straight to
the input gate, which we’ll study in the next section. The other copy is sent through

Long short-term memory
Long short-term memory (LSTM) is a deep learning architecture that is a subtype of
RNN. LSTM addresses the problem of short-term memory by adding the cell state. This
allows for past information to flow through the network for a longer period of time,
meaning that the network still carries information from early values in the sequence.

The LSTM is made up of three gates: 

 The forget gate determines what information from past steps is still relevant.
 The input gate determines what information from the current step is relevant.
 The output gate determines what information is passed on to the next ele-

ment of the sequence or as a result to the output layer.

sigmoid

×

To the input gate[ht–1 + xt ]

xt

To the input gate

ht–1

Ct–1 C't–1

Figure 15.4 The forget gate in an LSTM 
cell. The present element of a sequence, 
xt, and past information, ht–1, are first 
combined. They are duplicated, and one is 
sent to the input gate while the other goes 
through the sigmoid activation function. 
The sigmoid outputs a value between 0 and 
1, and if the output is close to 0, this means 
that information must be forgotten. If it 
is close to 1, the information is kept. The 
output is then combined with the past 
cell state using pointwise multiplication, 
generating an updated cell state C't–1.
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a sigmoid activation function, which is expressed as equation 15.1 and is shown in
figure 15.5.

Equation 15.1

The sigmoid function determines which information to keep or to forget. That output
is then combined with the previous cell state Ct–1 using pointwise multiplication. This
results in an updated cell state that we call C't–1.

 Once this is done, two things are sent to the input gate: an updated cell state,
and a copy of the combination of the past hidden state and the current element of
the sequence.

15.2.2 The input gate

Once information has passed through the forget gate, it proceeds to the input gate.
This is the step where the network determines which information is relevant from the
current element of the sequence. The cell state is updated again here, resulting in the
final cell state.

 Again, let’s zoom in on the input gate using figure 15.6. The combination of the
past hidden state and the current element of a sequence [ht–1 + xt] coming from the
forget gate is fed into the input gate and it is again duplicated. One copy goes out the
input gate toward the output gate, which we’ll explore in the next section. Another
copy is sent through the sigmoid activation function to determine if the information
will be kept or forgotten. Another copy is sent through the hyperbolic tangent (tanh)
function, which is shown in figure 15.7.

Figure 15.5 The sigmoid function 
outputs values between 0 and 1. In the 
context of the forget gate, if the output 
of the sigmoid function is close to 0, the 
output is information that is forgotten. If 
the output is close to 1, it is information 
that must be kept.
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Sigmoid

To the output gate

To the output gate[ht–1 + xt ] [ht–1 + xt ] [ t–1 + xt ] [ t–1 + xt ]

Ct

×

+
C't–1

h h

Tanh

Figure 15.6 The input gate of an LSTM. The past hidden state and current 
element of the sequence are duplicated again and sent through a sigmoid 
activation function and a hyperbolic tangent (tanh) activation function. Again, the 
sigmoid determines what information is kept or discarded, while the tanh function 
regulates the network to keep it computationally efficient. The results of both 
operations are combined using pointwise multiplication, and the result is used to 
update the cell state using pointwise addition, resulting in the final cell state Ct. 
This final cell state is then sent to the output gate. Meanwhile, the same 
combination, [ht–1 + xt], is sent to the output gate too.

Figure 15.7 The hyperbolic tangent 
(tanh) function outputs values between 
–1 and 1. In the context of the LSTM, this 
serves as a way to regulate the network, 
making sure that values do not get very 
large and ensuring that computation 
remains efficient.
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The outputs of the sigmoid and tanh functions are combined using pointwise multi-
plication, and the result is combined with the updated cell state coming from the
forget gate C't–1 using pointwise addition. This operation generates the final cell
state Ct . 

 Therefore, it is in the input gate that we add information from the current ele-
ment in the sequence to the long memory of the network. This newly updated cell
state is then sent to the output gate.

15.2.3 The output gate

Information has now passed from the forget gate to the input gate, and now it arrives
at the output gate. It is in this gate that past information contained in the network’s
memory, represented by the cell state Ct, is finally used to process the current element
of the sequence. This is also where the network either outputs a result to the output
layer or computes new information to be sent to the processing of the next element in
the sequence.

In figure 15.8 the past hidden state and current element of a sequence are sent
through the sigmoid function. In parallel, the cell state goes through the tanh function.

Sigmoid

Tanh

[ht–1 + xt ][ht–1 + xt ]

CtCt

Ct

htht

×

Figure 15.8 The output gate of an LSTM. The past hidden state and 
current element of a sequence [ht–1 + xt] are passed through the sigmoid 
function to determine if information will be kept or discarded. Then the cell 
state is passed through the tanh function and combined with the output 
of the sigmoid using pointwise multiplication. This is the step where past 
information is used to process the current element of a sequence. We then 
output a new hidden state ht, which is passed to the next LSTM neuron or 
to the output layer. The cell state is also output.
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The resulting values from the tanh and sigmoid functions are then combined using
pointwise multiplication, generating an updated hidden state ht. This is the step where
past information, represented by the cell state Ct, is used to process the information of
the present element of the sequence.

 The current hidden state is then sent out of the output gate. This will either be
sent to the output layer of the network or to the next LSTM neuron treating the next
element of the sequence. The same applies for the cell state Ct.

 In summary, the forget gate determines which information from the past is kept or
discarded. The input gate determines which information from the current step is kept
to update the network’s memory or is discarded. Finally, the output gate uses the
information from the past stored in the network’s memory to process the current ele-
ment of a sequence.

 Having examined the inner workings of the LSTM architecture, we can now imple-
ment it for our interstate traffic dataset.

15.3 Implementing the LSTM architecture
We’ll now implement the LSTM architecture for the interstate traffic dataset we
have been working with since chapter 12. Recall that the main target of our scenario
is the traffic volume. For the multi-output model, the targets are traffic volume and
temperature.

 We’ll implement LSTM as a single-step model, a multi-step model, and a multi-
output model. The single-step model will predict the traffic volume for the next
timestep only, the multi-step model will predict the traffic volume for the next 24
hours, and the multi-output model will predict the temperature and traffic volume
for the next timestep.

 Make sure you have the DataWindow class and the compile_and_fit function
(from chapters 13 and 14) in your notebook or Python script, as we’ll use these pieces
of code to create windows of data and train the LSTM model. 

 The other prerequisite is to read the training set, the validation set, and the test
set, so let’s do that right now:

train_df = pd.read_csv('../data/train.csv', index_col=0)
val_df = pd.read_csv('../data/val.csv', index_col=0)
test_df = pd.read_csv('../data/test.csv', index_col=0)

NOTE At any point, feel free to consult the source code for this chapter on
GitHub: https://github.com/marcopeix/TimeSeriesForecastingInPython/
tree/master/CH15.

15.3.1 Implementing an LSTM as a single-step model

We’ll start by implementing the LSTM architecture as a single-step model. In this case,
we’ll use 24 hours of data as an input to predict the next timestep. That way, there is a

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH15
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH15
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH15
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sequence of time that can be processed by the LSTM, allowing us to leverage past
information to make a future prediction.

 First we need to create a data window to train the model. This will be a wide win-
dow, with 24 hours of data as input. For plotting purposes, the label_width is also 24,
so that we can compare the predictions to the actual values over 24 timesteps. Note
that this is still a single-step model, so over 24 hours the model will only predict one
timestep at a time, just like a rolling forecast.

wide_window = DataWindow(input_width=24, label_width=24, shift=1, 

➥ label_columns=['traffic_volume'])

Then we need to define our LSTM model in Keras. Again we’ll use the Sequential
model to allow us to stack different layers in our network. Keras conveniently comes
with the LSTM layer, which implements an LSTM. We’ll set return_sequences to True,
as this signals Keras to use past information from the sequence, in the form of the hid-
den state and cell state, which we covered earlier. Finally, we’ll define the output layer,
which is simply a Dense layer with one unit because we are forecasting the traffic vol-
ume only.

lstm_model = Sequential([
    LSTM(32, return_sequences=True),   
    Dense(units=1)
])

It is as simple as that. We can now train the model using the compile_and_fit func-
tion and store its performance on the validation and test sets.

history = compile_and_fit(lstm_model, wide_window)

val_performance = {}
performance = {}

val_performance['LSTM'] = lstm_model.evaluate(wide_window.val)
performance['LSTM'] = lstm_model.evaluate(wide_window.test, verbose=0)

Optionally, we can visualize the predictions of our model on three sampled sequences
using the plot method of our data window. The result is shown in figure 15.9.

wide_window.plot(lstm_model)

Figure 15.9 shows that we have a performant model generating accurate predictions.
Of course, this visualization is only three sampled sequences of 24 hours, so let’s visu-
alize the model’s performance on the entire validation and test sets and compare it to
the previous models we have built so far.

 

Set return_sequences to True to 
make sure that past information 
is being used by the network.
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Figure 15.10 shows that the LSTM is the winning model, since it has the lowest MAE
on both the validation and test sets, meaning that it generated the most accurate pre-
dictions of all the models.

15.3.2 Implementing an LSTM as a multi-step model

We’ll move on to implementing the LSTM architecture as a multi-step model. In this
case, we wish to predict traffic volume for next 24 hours, using an input window of
24 hours.

 First, we’ll define the time window to feed our model. The input_width and
label_width are both 24, since we want to input 24 hours of data and evaluate the
predictions on 24 hours of data as well. This time the shift is also 24, specifying that
the model must output predictions for the next 24 hours in a single shot.

multi_window = DataWindow(input_width=24, label_width=24, shift=24, 

➥ label_columns=['traffic_volume'])

Next, we’ll define our model in Keras. From chapter 14, you might recall that the pro-
cess of defining the multi-step model and single-step model was exactly the same. The
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Figure 15.9 Predicting traffic volume using an LSTM as a single-step model. Many predictions (shown as 
crosses) overlap the labels (shown as squares), suggesting we have a performant model with accurate 
predictions.
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same is true here. We still use the Sequential model, along with the LSTM layer and a
Dense output layer with one unit.

ms_lstm_model = Sequential([
    LSTM(32, return_sequences=True),
    Dense(1, kernel_initializer=tf.initializers.zeros),
])

Once it’s defined, we’ll train the model and store its evaluation metrics for compari-
son. By now, you should be comfortable with this workflow.

history = compile_and_fit(ms_lstm_model, multi_window)

ms_val_performance = {}
ms_performance = {}

ms_val_performance['LSTM'] = ms_lstm_model.evaluate(multi_window.val)
ms_performance['LSTM'] = ms_lstm_model.evaluate(multi_window.test, 

➥ verbose=0)
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Figure 15.10 Mean absolute error (MAE) of all single-step models built so far. For now, the LSTM is the 
winning model, since it has the lowest MAE on both the validation and test sets.
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We can visualize the predictions of the model using the plot method, as shown in fig-
ure 15.11.

multi_window.plot(ms_lstm_model)

In figure 15.11 you’ll see that the predictions for the top sequence are very good, as
most predictions overlap the actual values. However, there are some discrepancies
between the output and labels in the bottom two sequences. Let’s compare its MAE to
that of the other multi-step models we have built.

 As you can see in figure 15.12, the LSTM is our most accurate model so far, as it
achieved the lowest MAE on both the validation and test sets. 

15.3.3 Implementing an LSTM as a multi-output model

Finally, we’ll implement an LSTM as a multi-output model. Again, we’ll use 24 hours
of input data, so that the network can process a sequence of data points and use past
information to produce forecasts. The predictions will be for both the traffic volume
and temperature at the next timestep.
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Figure 15.11 Predicting the traffic volume over the next 24 hours using a multi-step LSTM model. We can 
see some discrepancies between the predictions and the labels. Of course, this visual inspection is not enough 
to assess the performance of the model.
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In this situation, the data window consists of an input of 24 timesteps and 24 timesteps
of labels. The shift is 1, as we want to produce forecasts for the next timestep only.
Thus, our model will be creating rolling forecasts to generate predictions one time-
step at a time, over 24 timesteps. We’ll specify temp and traffic_volume as our target
columns.

mo_wide_window = DataWindow(input_width=24, label_width=24, shift=1, 

➥ label_columns=['temp','traffic_volume'])

The next step is to define our LSTM model. Just as before, we’ll use the Sequential
model to stack an LSTM layer and a Dense output layer with two units, since we have
two targets.

mo_lstm_model = Sequential([
    LSTM(32, return_sequences=True),
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Figure 15.12 The MAE of all the multi-step models built so far. Again, the LSTM is the winning model, since 
it achieves the lowest MAE on both the validation and test sets.
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    Dense(units = 2)   
])

Then we’ll train the model and store its performance metrics for comparison.

history = compile_and_fit(mo_lstm_model, mo_wide_window)

mo_val_performance = {}
mo_performance = {}

mo_val_performance['LSTM'] = mo_lstm_model.evaluate(mo_wide_window.val)
mo_performance['LSTM'] = mo_lstm_model.evaluate(mo_wide_window.test, 

➥ verbose=0)

We can now visualize the prediction for the traffic volume (figure 15.13) and tempera-
ture (figure 15.14). Both figures show many predictions (shown as crosses) overlap-
ping the labels (shown as squares), which means that we have a performant model
generating accurate predictions.

We have two units because we have 
two targets: the temperature and 
the traffic volume.
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Figure 15.13 Predicting the traffic volume with an LSTM as a multi-output model. Many predictions 
(shown as crosses) overlap the labels (shown as squares), suggesting very accurate predictions for the 
traffic volume.
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Let’s compare our LSTM model’s performance to the other multi-output models built
so far. Figure 15.15 again shows the LSTM as the winning model, since it achieves the
lowest MAE on the validation and test sets. Thus, it generated the most accurate pre-
dictions so far for both our targets.

15.4 Next steps
In this chapter, we examined the long short-term memory (LSTM) architecture. You
learned that it is a subtype of RNN, and you saw how it uses a cell state to overcome
the problem of short-term memory that occurs in a basic RNN that uses only the hid-
den state. 

 We also studied the three gates of the LSTM. The forget gate determines which
information from the past and present must be kept, the input gate determines the
relevant information from the current element of a sequence, and the output gate
uses the information stored in memory to generate a prediction.

 We then implemented the LSTM as a single-step model, multi-step model, and
multi-output model. In all cases, the LSTM was the winning model, as it achieved the
lowest MAE of all models built so far.
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Figure 15.14 Predicting the temperature using an LSTM as a multi-output model. Again, we see a lot of 
overlap between the predictions (shown as crosses) and the labels (shown as squares), indicating accurate 
predictions.
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The deep learning architecture that we will explore in the next chapter is the convolu-
tional neural network (CNN). You might have come across a CNN, especially in com-
puter vision, as it is a very popular architecture for analyzing pictures. We will apply it
for time series forecasting, as CNNs are faster to train than LSTMs, they are robust to
noise, and they are good feature extractors.

15.5 Exercises
In the last chapter, we built linear models and deep neural networks to forecast the air
quality. Now we’ll try LSTM models and see if there is a gain in performance. The
solution to these exercises can be found on GitHub: https://github.com/marcopeix/
TimeSeriesForecastingInPython/tree/master/CH15.

1 For the ingle-step model:
a Build an LSTM model.
b Plot its predictions.
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Figure 15.15 The MAE of all the multi-output models built so far. Again, the winning model is the LSTM, as 
it achieved the lowest MAE of all.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH15
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH15
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH15
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c Evaluate it using the MAE and store the MAE.
d Is it the most performant model?

2 For the multi-step model:
a Build an LSTM model.
b Plot its predictions.
c Evaluate it using the MAE and store the MAE.
d Is it the most performant model?

3 For the multi-output model:
a Build an LSTM model.
b Plot its predictions.
c Evaluate it using the MAE and store the MAE.
d Is it the most performant model? 

At any point, try to experiment with the following ideas:

 Add more LSTM layers.
 Change the number of units in the LSTM layer.
 Set return_sequences to False.
 Experiment with different initializers in the output Dense layer.
 Run as many experiments as you want, and see how they impact the error metric.

 Summary
 A recurrent neural network (RNN) is a deep learning architecture especially

adapted to processing sequences of data like a time series.
 RNNs use a hidden state to store information in memory. However, this is only

short-term memory due to the vanishing gradient problem.
 Long short-term memory (LSTM) is a type of RNN that addresses the short-

term memory problem. It uses a cell state to store information for a longer
time, giving the network a long memory.

 The LSTM is made of three gates:
– The forget gate determines what information from the past and present must

be kept.
– The input gate determines what information from the present must be kept.
– The output gate uses information stored in memory to process the current

element of a sequence.



Filtering a time
series with CNN
In the last chapter, we examined and implemented a long short-term memory
(LSTM) network, which is a type of recurrent neural network (RNN) that processes
sequences of data especially well. Its implementation was the top performing archi-
tecture for the single-step model, multi-step model, and multi-output model.

 Now we’re going to explore the convolutional neural network (CNN). CNNs are
mostly applied in the field of computer vision, and this architecture is behind many
algorithms for image classification and image segmentation.

 Of course, this architecture can also be used for time series analysis. It turns out
that CNNs are noise resistant and can effectively filter out the noise in a time series
with the convolution operation. This allows the network to produce a set of robust
features that do not include abnormal values. In addition, CNNs are usually faster
to train than LSTMs, as their operations can be parallelized.

 In this chapter, we’ll first explore the CNN architecture and understand how
the network filters a time series and creates a unique set of features. Then we’ll

This chapter covers
 Examining the CNN architecture

 Implementing a CNN with Keras

 Combining a CNN with an LSTM
305
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implement a CNN using Keras to produce forecasts. We’ll also combine the CNN
architecture with the LSTM architecture to see if we can further improve the perfor-
mance of our deep learning models.

16.1 Examining the convolutional neural network (CNN)
A convolutional neural network is a deep learning architecture that makes use of
the convolution operation. The convolution operation allows the network to create
a reduced set of features. Therefore, it is a way of regularizing the network, preventing
overfitting, and effectively filtering the inputs. Of course, for this to make sense, you
must first understand the convolution operation and how it impacts the inputs.

 In mathematical terms, a convolution is an operation on two functions that gener-
ates a third function that expresses how the shape of one function is changed by the
other. In a CNN, this operation occurs between the inputs and a kernel (also known as
a filter). The kernel is simply a matrix that is placed on top of the feature matrix. In fig-
ure 16.1, the kernel is slid along the time axis, taking the dot product between the ker-
nel and the features. This results in a reduced set of features, achieving regularization
and the filtering of abnormal values.

To better understand the convolution operation, let’s consider a simple example with
only one feature and one kernel, as shown in figure 16.2. To make things simple, we’ll
consider only one row of features. Keep in mind that the horizontal axis remains the
time dimension. The kernel is a smaller vector that is used to perform the convolution
operation. Do not worry about the values used inside the kernel and the feature vec-
tor. They are arbitrary values. The values of the kernel are optimized and will change
as the network is trained.

Feature 1

Feature 2

Feature 4

Feature 3

Feature 5

Time

Figure 16.1 Visualizing the kernel 
and the feature map. The kernel is 
the light gray matrix that is applied 
on top of the feature map. Each row 
corresponds to a feature of the 
dataset, while the length is the 
time axis. 

2 3 12 0 3 1

1 0 1Kernel

Feature

Figure 16.2 A simple example of one 
row of features and one kernel. 
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We can visualize the convolution operation and its result in figure 16.3. At first, the
kernel is aligned with the beginning of the feature vector and the dot product is taken
between the kernel and the values of the feature vector that are aligned with it. Once
this is done, the kernel shifts one timestep to the right—this is also called a stride of
one timestep. The dot product is again taken between the kernel and the feature vec-
tor, again only with the values that are aligned with the kernel. The kernel again shifts
one timestep to the right, and the process is repeated until the kernel reaches the end
of the feature vector. This happens when the kernel cannot be shifted any further with
all of its values having an aligned feature value.

In figure 16.3 you can see that using a feature vector of length 6 and a kernel of length
3, we obtain an output vector of length 4. Thus, in general, the length of the output
vector of a convolution is given by equation 16.1.

             output length = input length – kernel length + 1 Equation 16.1

Note that since the kernel is moving only in one direction (to the right), this is a 1D
convolution. Luckily, Keras comes with the Conv1D layer, allowing us to easily implement

2 3 12 0 3 1

1 0 1

Step 1
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314

2 3 12 0 3 1

1 0 1

Step 3

314 15
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14 3 15 1

1 2 0 3 1 12 14× + × + × =

1 3 0 12 1 0 3× + × + × =

1 12 0 0 1 3 15× + × + × =

1 0 0 3 1 1 1× + × + × =

Figure 16.3 The full convolution operation. The operation starts with the kernel aligned at the 
beginning of the feature vector in step 1. The dot product is computed as shown by the intermediary 
equation of step 1, resulting in the first value in our output vector. In step 2, the kernel shifts one 
timestep to the right, and the dot product is taken again, resulting in the second value in the output 
vector. The process is repeated two more times until the kernel reaches the end of the feature vector.
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it in Python. This is mostly used for time series forecasting, as the kernel can only
move in the time dimension. For image processing, you’ll often see 2D or 3D convolu-
tions, but that is outside of the scope of this book.

 A convolution layer reduces the length of the set of features, and performing many
convolutions will keep reducing the feature space. This can be problematic, as it limits
the number of layers in the network, and we might lose too much information in the
process. A common technique to prevent that is padding. Padding simply means adding
values before and after the feature vector to keep the output length equivalent to the
input length. Padding values are often zeros. You can see this in action in figure 16.4,
where the output of the convolution is the same length as the input.
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3 14 3 15

0 0

1
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Step 6
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1 3

Figure 16.4 Convolution with padding. Here we padded the original input vector with zeros, as shown by 
the black squares. The output of the convolution thus has a length of 6, just like the original feature vector.
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You can thus see how padding keeps the dimension of the output constant, allowing
us to stack more convolution layers, and allowing the network to process features for a
longer time. We use zeroes for padding because a multiplication by 0 is ignored. Thus,
using zeroes as padding values is usually a good initial option.

Now that you understand the inner working of a CNN, we can implement it with Keras
and see if a CNN can produce more accurate predictions than the models we have
built so far.

16.2 Implementing a CNN
As in previous chapters, we’ll implement the CNN architecture as a single-step model,
a multi-step model, and a multi-output model. The single-step model will predict the
traffic volume for the next timestep only, the multi-step model will predict the traffic
volume for the next 24 hours, and the multi-output model will predict the tempera-
ture and traffic volume at the next timestep.

 Make sure you have the DataWindow class and the compile_and_fit function (from
chapters 13 to 15) in your notebook or Python script, as we’ll use both pieces of code
to create windows of data and train the CNN model. 

NOTE The source code for this chapter is available on GitHub: https://github
.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH16.

In this chapter, we’ll also combine the CNN architecture with the LSTM architecture. It
can be interesting to see if filtering our time series with a convolution layer and then pro-
cessing the filtered sequence with an LSTM will improve the accuracy of our predictions.
Thus, we’ll implement both a CNN only, and the combination of a CNN with an LSTM.

 Of course, the other prerequisite is to read the training set, the validation set, and
the test set, so let’s do that right now.

train_df = pd.read_csv('../data/train.csv', index_col=0)
val_df = pd.read_csv('../data/val.csv', index_col=0)
test_df = pd.read_csv('../data/test.csv', index_col=0)

Convolutional neural network (CNN)
A convolutional neural network (CNN) is a deep learning architecture that uses the
convolution operation. This allows the network to reduce the feature space, effec-
tively filtering the inputs and preventing overfitting. 

The convolution is performed with a kernel, which is also trained during model fitting.
The stride of the kernel determines the number of steps it shifts at each step of the
convolution. In time series forecasting, only 1D convolution is used.

To avoid reducing the feature space too quickly, we can use padding, which adds
zeros before and after the input vector. This keeps the output dimension the same
as the original feature vector, allowing us to stack more convolution layers, which in
turn allows the network to process the features for a longer time.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH16
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH16
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH16
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Finally, we’ll use a kernel length of three timesteps in our CNN implementation. This
is an arbitrary value, and you will have a chance to experiment with various kernel
lengths in this chapter’s exercises and see how they impact the model’s performance.
However, your kernel should have a length greater than 1; otherwise, you are simply
multiplying the feature space by a scalar, and no filtering will be achieved.

16.2.1 Implementing a CNN as a single-step model

We’ll start by implementing a CNN as a single-step model. Recall that the single-step
model outputs a prediction for traffic volume at the next timestep using the last
known feature. 

 In this case, however, it does not make sense to provide the CNN model with only
one timestep as an input because we want to run a convolution. We will instead use
three input values to generate a prediction for the next timestep. That way we’ll have
a sequence of data on which we can run a convolution operation. Furthermore, our
input sequence must have a length at least equal to the kernel’s length, which in our
case is 3. Recall that we expressed the relationship between the input length, kernel
length, and output length in equation 16.1:

output length = input length – kernel length + 1

In this equation, no length can be equal to 0, since that would mean that no data is
being processed or output. The condition that no length can be 0 is only satisfied if
the input length is greater than or equal to the kernel length. Therefore, our input
sequence must have at least three timesteps.

 We can thus define the data window that will be used to train the model.

KERNEL_WIDTH = 3

conv_window = DataWindow(input_width=KERNEL_WIDTH, label_width=1, shift=1, 

➥ label_columns=['traffic_volume']) 

For plotting purposes, we would like to see the predictions of the model over a period
of 24 hours. That way, we can evaluate the rolling forecasts of the model 1 timestep
at a time, over 24 timesteps. Thus, we need to define another data window with a
label_width of 24. The shift remains 1, as the model only predicts the next time-
step. The input length is obtained by rearranging equation 16.1 as equation 16.2.

output length = input length – kernel length + 1

                   input length = output length + kernel length – 1 Equation 16.2

We can now simply compute the required input length to generate predictions over a
sequence of 24 timesteps. In this case, the input length is 24 + 3 – 1 = 26. That way, we
avoid using padding. Later, in the exercises, you’ll be able to try using padding instead
of a longer input sequence to accommodate the output length. 



31116.2 Implementing a CNN
 We can now define our data window for plotting the predictions of the model.

LABEL_WIDTH = 24
INPUT_WIDTH = LABEL_WIDTH + KERNEL_WIDTH – 1    

wide_conv_window = DataWindow(input_width=INPUT_WIDTH, 

➥ label_width=LABEL_WIDTH, shift=1, label_columns=['traffic_volume'])

With all the data windows ready, we can define our CNN model. Again, we’ll use the
Sequential model from Keras to stack different layers. Then we’ll use the Conv1D
layer, as we are working with time series, and the kernel only moves in the temporal
dimension. The filters parameter is equivalent to the units parameter of the Dense
layer, and it simply represents the number of neurons in the convolutional layer. We’ll
set the kernel_size to the width of our kernel, which is 3. We don’t need to specify
the other dimensions, as Keras will automatically take the right shape to accommo-
date the inputs. Then we’ll pass the output of the CNN to a Dense layer. That way, the
model will be learning on a reduced set of features that were previously filtered by the
convolutional step. We’ll finally output a prediction with a Dense layer of only one
unit, as we are forecasting only the traffic volume for the next timestep.

cnn_model = Sequential([
    Conv1D(filters=32,    
          kernel_size=(KERNEL_WIDTH,),    
          activation='relu'),
    Dense(units=32, activation='relu'),
    Dense(units=1)
])

Next, we’ll compile and fit the model, and we’ll store its performance metrics for com-
parison later.

history = compile_and_fit(cnn_model, conv_window)

val_performance = {}
performance = {}

val_performance['CNN'] = cnn_model.evaluate(conv_window.val)
performance['CNN'] = cnn_model.evaluate(conv_window.test, verbose=0)

We can visualize the predictions against the labels using the plot method of our data
window. The result is shown in figure 16.5.

wide_conv_window.plot(cnn_model)

As you can see in figure 16.5, many predictions overlap labels, meaning that we have
fairly accurate predictions. Of course, we must compare this model’s performance
metrics to those of the other models to properly assess its performance.

From equation 
16.2

The filters parameter is equivalent to the units 
parameter of the Dense layer; it defines the number 
of neurons in the convolutional layer.

The width of the kernel is specified, 
but the other dimensions are left 
out, as Keras automatically adapts 
to the shape of the inputs.



312 CHAPTER 16 Filtering a time series with CNN
Before doing that, let’s combine the CNN and LSTM architectures into a single model.
You saw in the previous chapter how the LSTM architecture resulted in the best-
performing models so far. Thus, it is a reasonable hypothesis that filtering our input
sequence before feeding it to an LSTM might improve the performance.

 Thus, we’ll follow the Conv1D layer with two LSTM layers. This is an arbitrary
choice, so make sure you experiment with it later on. There is rarely only one good
way of building models, so it is important to showcase what is possible.

cnn_lstm_model = Sequential([
    Conv1D(filters=32,
          kernel_size=(KERNEL_WIDTH,),
          activation='relu'),
    LSTM(32, return_sequences=True),
    LSTM(32, return_sequences=True),
    Dense(1)
]) 

We’ll then fit the model and store its evaluation metrics.
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Figure 16.5 Predicting traffic volume with a CNN as a single-step model. The model takes three values as an 
input, which is why we only see a prediction at the fourth timestep. Again, many predictions (shown as 
crosses) overlap labels (shown as squares), meaning that the model is fairly accurate. 
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history = compile_and_fit(cnn_lstm_model, conv_window)

val_performance['CNN + LSTM'] = cnn_lstm_model.evaluate(conv_window.val)
performance['CNN + LSTM'] = cnn_lstm_model.evaluate(conv_window.test, 

➥ verbose=0)

With both models built and evaluated, we can look at the MAE of our newly built mod-
els in figure 16.6. As you can see, the CNN model did not perform any better than the
LSTM, and the combination of CNN and LSTM resulted in a slightly higher MAE
than the CNN alone.

These results might be explained by the length of the input sequence. The model is
given only an input sequence of three values, which might not be sufficient for the
CNN to extract valuable features for predictions. While a CNN is better than the base-
line model and the linear model, the LSTM remains the best-performing single-step
model for now.
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Figure 16.6 The MAE of all the single-step models built so far. You can see that the CNN did not improve 
upon the LSTM performance. Combining the CNN with an LSTM did not help either, and the combination even 
performed slightly worse than the CNN.
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16.2.2 Implementing a CNN as a multi-step model

We’ll now move on to the multi-step model. Here we’ll use the last known 24 hours to
forecast the traffic volume over the next 24 hours.

 Again, keep in mind that the convolution reduces the length of the features, but
we still expect the model to generate 24 predictions in a single shot. Therefore, we’ll
reuse equation 16.2 and feed the model an input sequence with a length of 26 to
make sure that we get an output of length 24. This, of course, means that we’ll keep
the kernel length of 3. We can thus define our data window for the multi-step model.

KERNEL_WIDTH = 3
LABEL_WIDTH = 24
INPUT_WIDTH = LABEL_WIDTH + KERNEL_WIDTH - 1

multi_window = DataWindow(input_width=INPUT_WIDTH, label_width=LABEL_WIDTH, 

➥ shift=24, label_columns=['traffic_volume'])

Next, we’ll define the CNN model. Again, we’ll use the Sequential model, in which
we’ll stack the Conv1D layer, followed by a Dense layer with 32 neurons, and then a
Dense layer with one unit, since we are predicting only traffic volume.

ms_cnn_model = Sequential([
    Conv1D(32, activation='relu', kernel_size=(KERNEL_WIDTH)),
    Dense(units=32, activation='relu'),
    Dense(1, kernel_initializer=tf.initializers.zeros),
])

We can then train the model and store its performance metrics for comparison later.

history = compile_and_fit(ms_cnn_model, multi_window)

ms_val_performance = {}
ms_performance = {}

ms_val_performance['CNN'] = ms_cnn_model.evaluate(multi_window.val)
ms_performance['CNN'] = ms_cnn_model.evaluate(multi_window.test, verbose=0)

Optionally, we can visualize the forecasts of the model using multi_window

.plot(ms_cnn_model). For now, let’s skip this and combine the CNN architecture
with the LSTM architecture as previously. Here we’ll simply replace the intermediate
Dense layer with an LSTM layer. Once the model is defined, we can fit it and store its
performance metrics.

ms_cnn_lstm_model = Sequential([
    Conv1D(32, activation='relu', kernel_size=(KERNEL_WIDTH)),
    LSTM(32, return_sequences=True),
    Dense(1, kernel_initializer=tf.initializers.zeros),
])

history = compile_and_fit(ms_cnn_lstm_model, multi_window)
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ms_val_performance['CNN + LSTM'] = 

➥ ms_cnn_lstm_model.evaluate(multi_window.val)
ms_performance['CNN + LSTM'] = 

➥ ms_cnn_lstm_model.evaluate(multi_window.test, verbose=0)

With the two new models trained, we can evaluate their performance against all the
multi-step models built so far. As you can see in figure 16.7, the CNN model did not
improve upon the LSTM model. However, combining both models resulted in the
lowest MAE of all the multi-step models, meaning that it generates the most accurate
predictions. The LSTM model is thus dethroned, and we have a new winning model.

16.2.3 Implementing a CNN as a multi-output model

Finally, we’ll implement the CNN architecture as a multi-output model. In this case,
we wish to forecast the temperature and traffic volume for the next timestep only.

 We have seen that giving an input sequence of length 3 was not sufficient for the
CNN model to extract meaningful features, so we will use the same input length as for
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since it has a higher MAE. However, combining the CNN with an LSTM resulted in the lowest MAE of all.
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the multi-step model. This time, however, we are forecasting one timestep at a time
over 24 timesteps.

 We’ll define our data window as follows:

KERNEL_WIDTH = 3
LABEL_WIDTH = 24
INPUT_WIDTH = LABEL_WIDTH + KERNEL_WIDTH - 1

wide_mo_conv_window = DataWindow(input_width=INPUT_WIDTH, label_width=24, 

➥ shift=1, label_columns=['temp', 'traffic_volume'])

By now you should be comfortable building models with Keras, so defining the CNN
architecture as a multi-output model should be straightforward. Again, we’ll use the
Sequential model, in which we’ll stack a Conv1D layer, followed by a Dense layer,
allowing the network to learn on a set of filtered features. The output layer will have
two neurons, since we’re forecasting both the temperature and the traffic volume.
Next we’ll fit the model and store its performance metrics.

mo_cnn_model = Sequential([
    Conv1D(filters=32, kernel_size=(KERNEL_WIDTH,), activation='relu'),
    Dense(units=32, activation='relu'),
    Dense(units=2)
])

history = compile_and_fit(mo_cnn_model, wide_mo_conv_window)

mo_val_performance = {}
mo_performance = {}

mo_val_performance['CNN'] = mo_cnn_model.evaluate(wide_mo_conv_window.val)
mo_performance['CNN'] = mo_cnn_model.evaluate(wide_mo_conv_window.test, 

➥ verbose=0)

We can also combine the CNN architecture with the LSTM architecture as done previ-
ously. We’ll simply replace the intermediate Dense layer with an LSTM layer, fit the
model, and store its metrics.

mo_cnn_lstm_model = Sequential([
    Conv1D(filters=32, kernel_size=(KERNEL_WIDTH,), activation='relu'),
    LSTM(32, return_sequences=True),
    Dense(units=2)
])

history = compile_and_fit(mo_cnn_lstm_model, wide_mo_conv_window)

mo_val_performance['CNN + LSTM'] = 

➥ mo_cnn_model.evaluate(wide_mo_conv_window.val)
mo_performance['CNN + LSTM'] = 

➥ mo_cnn_model.evaluate(wide_mo_conv_window.test, verbose=0)

As usual, we’ll compare the performance of the new models with the previous multi-
output models in figure 16.8. You’ll notice that the CNN, and the combination of
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CNN and LSTM, did not result in an improvement over the LSTM. In fact, all three
models achieve the same MAE.

 Explaining this behavior is hard, as deep learning models are black boxes, mean-
ing that they are hard to interpret. While they can be very performant, the tradeoff
lies in their explicability. Methods to interpret neural network models do exist, but
they are outside of the scope of this book. If you want to learn more, take a look at Chris-
tof Molnar’s book, Interpretable Machine Learning, Second Edition (https://christophm
.github.io/interpretable-ml-book/).

16.3 Next steps
In this chapter, we examined the architecture of the CNN. We observed how the con-
volution operation is used in the network and how it effectively filters the input
sequence with the use of a kernel. We then implemented the CNN architecture and
combined it with the LSTM architecture to produce two new single-step models,
multi-step models, and multi-output models.
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Figure 16.8 The MAE of all multi-output models built so far. As you can see, the CNN and the combination 
of CNN and LSTM did not result in improvements over the LSTM model.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
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 In the case of the single-step models, using a CNN did not improve the results. In
fact, it performed worse than the LSTM alone. For the multi-step models, we observed
a slight performance boost and obtained the best-performing multi-step model with
the combination of a CNN and an LSTM. In the case of the multi-output model, the
use of a CNN resulted in constant performance, so we have a tie between the CNN,
the LSTM, and the combination of CNN and LSTM. Thus, we can see that a CNN
does not necessarily result in the best-performing model. In one situation it did, in
another it did not, and in another there was no difference. 

 It is important to consider the CNN architecture as a tool in your toolset when it
comes to modeling with deep learning. Models will perform differently depending on
the dataset and the forecasting goal. The key lies in windowing your data correctly, as
is done by the DataWindow class, and in following a testing methodology, as we have
done by keeping the training set, validation set, and testing set constant and evaluat-
ing all models using the MAE against baseline models.

 The last deep learning architecture that we are going to explore specifically con-
cerns the multi-step models. Up until now, all multi-step models have output predic-
tions for the next 24 hours in a single shot. However, it is possible to gradually predict
the next 24 hours and feed a past prediction back into the model to output the next
prediction. This is especially done with the LSTM architecture, resulting in an autore-
gressive LSTM (ARLSTM). This will be the subject of the next chapter.

16.4 Exercises
In the previous chapter’s exercises, you built LSTM models. Now you’ll experiment
with a CNN and a combination of CNN and LSTM to see if you can gain in perfor-
mance. The solutions to these exercises are available on GitHub: https://github.com/
marcopeix/TimeSeriesForecastingInPython/tree/master/CH16.

 For the single-step model:
a Build a CNN model. Set the kernel width to 3.
b Plot its predictions.
c Evaluate the model using the mean absolute error (MAE) and store the MAE.
d Build a CNN + LSTM model.
e Plot its predictions.
f Evaluate the model using the MAE and store the MAE.
g Which model performs best?

 For the multi-step model:
a Build a CNN model. Set the kernel width to 3.
b Plot its predictions.
c Evaluate the model using the MAE and store the MAE.
d Build a CNN+LSTM model.
e Plot its predictions.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH16
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH16
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH16
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f Evaluate the model using the MAE and store the MAE.
g Which model performs best?

 Multi-output model:
a Build a CNN model. Set the kernel width to 3.
b Plot its predictions.
c Evaluate the model using the MAE and store the MAE.
d Build a CNN + LSTM model.
e Plot its predictions.
f Evaluate the model using the MAE and store the MAE.
g Which model performs best?

As always, this is an occasion to experiment. You can explore the following:

 Add more layers.
 Change the number of units.
 Pad the sequence instead of increasing the input length. This is done in the

Conv1D layer using the parameter padding="same". In that case, your input
sequence must have a length of 24.

 Use different layer initializers.

Summary
 The convolutional neural network (CNN) is a deep learning architecture that

makes use of the convolution operation.
 The convolution operation is performed between a kernel and the feature

space. It is simply the dot product between the kernel and the feature vector.
 Running a convolution operation results in an output sequence that is shorter

than the input sequence. Running many convolutions can therefore decrease
the output length quickly. Padding can be used to prevent that. 

 In time series forecasting, the convolution is performed in one dimension only:
the temporal dimension. 

 The CNN is just another model in your toolbox and may not always be the best-
performing model. Make sure you window your data correctly with DataWindow,
and keep your testing methodology valid by keeping each set of data constant,
building baseline models, and evaluating all models with the same error metric.



Using predictions to
make more predictions
In the last chapter, we examined and built a convolutional neural network (CNN).
We even combined it with the LSTM architecture to test whether we could outper-
form the LSTM models. The results were mixed, as the CNN models performed
worse as single-step models, performed best as multi-step models, and performed
equally well as multi-output models.

 Now we’ll focus entirely on the multi-step models, as all of them output the
entire sequence of predictions in a single shot. We’re going to modify that behavior
and gradually output the prediction sequence, using past predictions to make new
predictions. That way, the model will create rolling forecasts, but using its own pre-
dictions to inform the output.

 This architecture is commonly used with LSTM and is called autoregressive LSTM
(ARLSTM). In this chapter, we’ll first explore the general architecture of the
ARLSTM model, and then we’ll build it in Keras to see if we can build a new top-
performing multi-step model.

This chapter covers
 Examining the autoregressive LSTM (ARLSTM) 

architecture

 Discovering the caveat of the ARLSTM

 Implementing an ARLSTM
320
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17.1 Examining the ARLSTM architecture
We have built many multi-step models that all output predictions for traffic volume in
the next 24 hours. Each model has generated the entire prediction sequence in a sin-
gle shot, meaning that we get 24 values from the model right away.

 For illustration purposes, let’s consider a simple model with only an LSTM layer.
Figure 17.1 shows the general architecture of the multi-step models we have built so
far. Each of them had inputs coming in, passing through a layer, whether it is LSTM,
Dense, or Conv1D, and resulting in a sequence of 24 values. This type of architecture
forces an output of 24 values.

But what if we want a longer sequence? Or a shorter sequence? What if we wish to
forecast the next 8 hours only, or forecast the next 48 hours? In that case, we must
redo our data windows and retrain the models, which might represent quite a bit
of work.

 Instead, we can opt for an autoregressive deep learning model. As you can see
in figure 17.2, each prediction is sent back into the model, allowing it to generate
the next prediction. This process is repeated until we obtain a sequence of the
desired length.

LSTM
layer

t24 t25Inputs t46 t47

Figure 17.1 Illustrating a single-shot multi-step model with an LSTM layer. 
All multi-step models that we have built have had this general architecture. 
The LSTM layer can easily be replaced by a CNN layer or a dense layer.

LSTM
layer

t24 t25Inputs t46 t47

Figure 17.2 An autoregressive LSTM model. This model returns a first 
prediction at t24, and it is sent back into the model to generate the prediction 
at t25. This process is repeated until the desired output length is obtained. 
Again, an LSTM layer is shown, but it could be a CNN or a dense layer.
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You can see how easy it becomes to generate any sequence length using an autoregres-
sive deep learning architecture. This approach has the added advantage of allowing us
to forecast time series with different scales, such as hours, days, or months, while avoid-
ing having to retrain a new model. This is the type of architecture built by Google Deep-
Mind to create WaveNet (https://deepmind.com/blog/article/wavenet-generative-
model-raw-audio), a model that generates raw audio sequences. In the context of time
series, DeepAR (http://mng.bz/GEoV) is a methodology that also uses an autoregres-
sive recurrent neural network to achieve state-of-the-art results.

 Nevertheless, autoregressive deep learning models come with a major caveat, which
is the accumulation of error. We have forecast many time series, and we know that
there is always some discrepancy between our predictions and the actual values. That
error accumulates as it is fed back into the model, meaning that later predictions will
have a larger error than earlier predictions. Thus, while the autoregressive deep learn-
ing architecture seems powerful, it might not be the best solution for a particular
problem. Hence the importance of using a rigorous testing protocol, which is really
what we have developed since chapter 13.

 Still, it is good to have this model in your toolbox of time series forecasting meth-
ods. In the next section, we’ll code an autoregressive LSTM model to produce fore-
casts for the next 24 hours. We’ll compare its performance to that of our previous
multi-step models.

17.2 Building an autoregressive LSTM model
We are now ready to code our own autoregressive deep learning model in Keras. Spe-
cifically, we’ll code an ARLSTM model, since our experiments have shown that the
LSTM model achieves the best performance of the multi-step models. Thus we’ll try
to further improve this model by making it autoregressive.

 As always, make sure that you have the DataWindow class and the compile_and_fit
function accessible in your notebook or Python script. They are the same versions that
we developed in chapter 13. 

NOTE At any time, feel free to consult the source code for this chapter on
GitHub: https://github.com/marcopeix/TimeSeriesForecastingInPython/
tree/master/CH17. 

The first step is to read the training, validation, and test sets.

train_df = pd.read_csv('../data/train.csv', index_col=0)
val_df = pd.read_csv('../data/val.csv', index_col=0)
test_df = pd.read_csv('../data/test.csv', index_col=0)

Next, we’ll define our window of data. In this case, we’ll reuse the window of data we
used for the LSTM model. The input and label sequences will each have 24 timesteps.

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
http://mng.bz/GEoV
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH17
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH17
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH17
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d 
 

We’ll specify a shift of 24 so that the model outputs 24 predictions. Our target
remains the traffic volume.

multi_window = DataWindow(input_width=24, label_width=24, shift=24, 

➥ label_columns=['traffic_volume'])

Now we’ll wrap our model in a class called AutoRegressive, which inherits from the
Model class in Keras. This is what allows us to access inputs and outputs. That way, we’ll
be able to specify that the output should become an input at each prediction step.

 We’ll start by defining the __init__ function in our AutoRegressive class. This
function takes three parameters:

 self—References the instance of the AutoRegressive class.
 units—Represents the number of neurons in a layer.
 out_steps—Represents the length of the prediction sequence. In this case, it

is 24.

Then we’ll make use of three different Keras layers: the Dense layer, the RNN layer, and
the LSTMCell layer. The LSTMCell layer is a lower-level layer than the LSTM layer. It
allows us to access more granular information, such as state and predictions, which
we can then manipulate to feed an output back into the model as an input. As for
the RNN layer, this is used to train the LSTMCell layer on the input data. Its output is
then passed through the Dense layer to generate a prediction. This is the complete
__init__ function:

class AutoRegressive(Model):
    def __init__(self, units, out_steps):    
        super().__init__()
        self.out_steps = out_steps
        self.units = units
        self.lstm_cell = LSTMCell(units)    
        self.lstm_rnn = RNN(self.lstm_cell, return_state=True)    
        self.dense = Dense(train_df.shape[1])   

With the initialization done, the next step is to define a function that outputs the
very first prediction. Since this is an autoregressive model, that prediction is then
fed back into the model as an input to generate the next prediction. We must there-
fore have a method to capture that very first forecast before entering the autoregres-
sive loop.

 Thus, we’ll define the warmup function, which replicates a single-step LSTM model.
We’ll simply pass the inputs into the lstm_rnn layer, get the prediction from the
Dense layer, and return both the prediction and the state.

The number of neurons in a layer is define
by units, and the length of the prediction
sequence is defined by out_steps.

The LSTMCell layer is a lower-level class 
that allows us to access more granular 
information, such as state and outputs.

The RNN layer wraps the
LSTMCell layer so it is easier

to train the LSTM on the data.

The
prediction

comes from
this Dense

layer.
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def warmup(self, inputs):
    x, *state = self.lstm_rnn(inputs)    
    prediction = self.dense(x)   

    return prediction, state

Now that we have a way to capture the first prediction, we can define the call func-
tion, which will run a loop to generate the sequence of predictions with a length of
out_steps. Note that the function must be named call because it is called implicitly
by Keras; naming it differently would result in an error. 

 Since we are using the LSTMCell class, which is a low-level class, we must manually
pass in the previous state. Once the loop is finished, we stack our predictions and
make sure they have the right output shape using the transpose method.

def call(self, inputs, training=None):
    predictions = []    
    prediction, state = self.warmup(inputs)    

    predictions.append(prediction)   

    for n in range(1, self.out_steps):
        x = prediction   
        x, state = self.lstm_cell(x, states=state, training=training)

        prediction = self.dense(x)    
        predictions.append(prediction)

    predictions = tf.stack(predictions)   
    predictions = tf.transpose(predictions, [1, 0, 2])    

    return predictions

The complete class is shown in the following listing.

class AutoRegressive(Model):
    def __init__(self, units, out_steps):
        super().__init__()
        self.out_steps = out_steps
        self.units = units
        self.lstm_cell = LSTMCell(units)
        self.lstm_rnn = RNN(self.lstm_cell, return_state=True)
        self.dense = Dense(train_df.shape[1])
        

Listing 17.1 Defining a class to implement an ARLSTM model

Pass the inputs through the LSTM layer. 
The output is sent to the Dense layer.

Get a prediction from 
the Dense layer.

Initialize an empty list to 
collect all the predictions.

The first prediction is obtained 
from the warmup function.

Place the first prediction in 
the list of predictions.

The
prediction

becomes
an input

for the
next one.

Generate a new prediction using 
the previous one as an input.

Stack all the predictions. At this point, we 
have a shape (time, batch, features). It must 
be changed to (batch, time, features).

Use transpose to 
get the needed 
shape of (batch, 
time, features).
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    def warmup(self, inputs):
        x, *state = self.lstm_rnn(inputs)
        prediction = self.dense(x)

                

        return prediction, state

    

    def call(self, inputs, training=None):
        predictions = []
        prediction, state = self.warmup(inputs)

        

        predictions.append(prediction)

        

        for n in range(1, self.out_steps):
            x = prediction
            x, state = self.lstm_cell(x, states=state, training=training)
            

            prediction = self.dense(x)
            predictions.append(prediction)
        

        predictions = tf.stack(predictions)
        predictions = tf.transpose(predictions, [1, 0, 2])
        

        return predictions

We have now defined our AutoRegressive class, which implements an autoregressive
LSTM model. We can use it and train a model on our data. We’ll initialize it with 32
units and an output sequence length of 24 timesteps, since the objective of the multi-
step model is to forecast the next 24 hours.

AR_LSTM = AutoRegressive(units=32, out_steps=24)

Next, we’ll compile the model, train it, and store its performance metrics.

history = compile_and_fit(AR_LSTM, multi_window)

ms_val_performance = {}
ms_performance = {}

ms_val_performance['AR - LSTM'] = AR_LSTM.evaluate(multi_window.val)
ms_performance['AR - LSTM'] = AR_LSTM.evaluate(multi_window.test, 

➥ verbose=0)

We can visualize the predictions of our model against the actual values by using the
plot method from our DataWindow class.

multi_window.plot(AR_LSTM)

In figure 17.3 many predictions are very close to the actual values, sometimes even
overlapping them. This indicates that we have a fairly accurate model.
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This visual inspection is not sufficient to determine whether we have a new top-
performing model, so we’ll display its MAE against that of all previous multi-step
models. The result is shown in figure 17.4, which shows that our autoregressive
LSTM model achieves an MAE of 0.063 on the validation set and 0.049 on the test
set. This is a better score than the CNN, and the CNN + LSTM models, as well as the
simple LSTM model. Thus, the ARLSTM model becomes the top-performing multi-
step model.

 Always keep in mind that the performance of each model depends on the problem
at stake. The takeaway here is not that the ARLSTM is always the best model, but that
it is the best-performing model for this situation. For another problem, you might
find another champion model. If you have been completing the exercises since chap-
ter 13, you can already see this happening. Keep in mind that each model we have
built since chapter 13 is meant to be another tool in your toolbox to help you maxi-
mize the chances of solving a time series forecasting problem.
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Figure 17.3 Forecasting traffic volume for the next 24 hours using an ARLSTM model. Many predictions 
(shown as crosses) overlap the actual values (shown as squares), which means that we have a fairly accurate 
model.
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17.3 Next steps
This is a rather short chapter, as it builds on concepts that we have already covered,
such as the LSTM architecture and data windowing.

 The autoregressive LSTM model outperformed the simple LSTM multi-step model
in our example, and it performed better than a CNN model. Again, this does not
mean that an ARLSTM model will always outperform a CNN model or a simple LSTM
model. Each problem is unique, and a different architecture might result in the best
performance for a different problem. The important thing is that you now have a
wide array of models you can test and adapt to each problem in order to find the best
solution possible.

 This brings the deep learning part of the book almost to a conclusion. In the next
chapter, we’ll apply our knowledge of deep learning methods for time series forecast-
ing in a capstone project. As before, a problem and dataset will be provided, and we
must produce a forecasting model to solve the problem.
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Figure 17.4 The MAE of all our multi-step models on the validation and test sets. The ARLSTM model 
achieves a lower MAE than the CNN and the CNN + LSTM models and the simple LSTM model.
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17.4 Exercises
In the exercises since chapter 13, we have built many models to forecast the air quality
in Beijing using all three types of models (single-step, multi-step, and multi-output).
Now we’ll build one last multi-step model using an ARLSTM model. The solution can
be found on GitHub: https://github.com/marcopeix/TimeSeriesForecastingInPython/
tree/master/CH17.

 For the multi-step model:
a Build an ARLSTM model.
b Plot its predictions.
c Evaluate the model using the mean absolute error (MAE) and store the MAE

for comparison.
d Is the ARLSTM model the champion model?

Of course, feel free to experiment further. For example, you can vary the number of
units to see how it impacts the model’s performance.

Summary
 The autoregressive architecture in deep learning has given birth to state-of-the-art

models, such as WaveNet and DeepAR.
 An autoregressive deep learning model generates a sequence of predictions,

but each prediction is fed back into the model as an input.
 A caveat regarding autoregressive deep learning models is that errors accumu-

late as the length of the sequence increases. Therefore, an early bad prediction
can have a large effect on a late prediction.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH17
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH17
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH17


Capstone: Forecasting
the electric power

consumption of a household
Congratulations on making it this far! In chapters 12 to 17, we dove headfirst into
deep learning for time series forecasting. You learned that statistical models become
inefficient or unusable when you have large datasets, which usually means more
than 10,000 data points, with many features. We must then revert to using deep
learning models, which can leverage all the available information while remaining
computationally efficient, to produce forecasting models.

 Just as we had to design a new forecasting procedure in chapter 6 when we
started modeling time series with the ARMA(p,q) model, modeling with deep learn-
ing techniques required us to use yet another modeling procedure: creating win-
dows of data with the DataWindow class. This class plays a vital role in modeling with
deep learning, as it allows us to format our data appropriately to create a set of
inputs and labels for our models, as shown in figure 18.1.

This chapter covers
 Developing deep learning models to predict a 

household’s electric power consumption

 Comparing various multi-step deep learning 
models

 Evaluating the mean absolute error and selecting 
the champion model
329
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This data windowing step allows us to produce a wide variety of models, from simple
linear models to deep neural networks, long short-term memory (LSTM) networks,
and convolutional neural networks (CNNs). Furthermore, data windowing can be
used for different scenarios, allowing to us create single-step models where we predict
only the next timestep, multi-step models where we predict a sequence of future steps,
and multi-output models where we predict more than one target variable.

 Having worked with deep learning in the last several chapters, it’s time to apply
our knowledge to a capstone project. In this chapter, we’ll walk through the steps of a
forecasting project using deep learning models. We’ll first look at the project and
describe the data that we’ll use. Then we’ll cover the data wrangling and preprocess-
ing steps. Although those steps do not relate directly to time series forecasting, they
are crucial steps in any machine learning project. We’ll then focus on the modeling
steps, where we’ll try a set of deep learning models to uncover the best performer.

18.1 Understanding the capstone project
For this project, we’ll use a dataset that tracks the electric power consumption of a
household. The “Individual household electric power consumption” dataset is openly
available from the UC Irvine Machine Learning Repository: https://archive.ics.uci
.edu/ml/datasets/Individual+household+electric+power+consumption.

 Forecasting electric energy consumption is a common task with worldwide applica-
tions. In developing countries, it can help in planning the construction of power
grids. In countries where the grid is already developed, forecasting energy consump-
tion ensures that the grid can provide enough energy to power all households effi-
ciently. With accurate forecasting models, energy companies can better plan the load
on the grid, ensuring that they are producing enough energy during peak times or
have sufficient energy reserves to meet the demand. Also, they can avoid producing
too much electricity, which, if it’s not stored, could cause an imbalance in the grid,
posing a risk of disconnection. Thus, forecasting electric energy consumption is an
important problem that has consequences in our daily lives.

 To develop our forecasting model, we’ll use the power consumption dataset men-
tioned previously, which contains the electric consumption for a house in Sceaux,

LabelInput

Data window

t = 0 t = 1 t = ... t = 22 t = 23 t = 24 t = 25 t = ... t = 46 t = 47

Figure 18.1 Example of a data window. This data window has 24 timesteps as input and 24 
timesteps as output. The model will then use 24 hours of input to generate 24 hours of predictions. 
The total length of the data window is the sum of the lengths of inputs and labels. In this case, we 
have a total length of 48 timesteps.

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
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France, between December 2006 and November 2010. The data spans 47 months and
was recorded at every minute, meaning that we have more than two million data points. 

 The dataset contains a total of nine columns, listed in table 18.1. The main target
is the global active power, as it represents the real power used in a circuit. This is the
component that is used by the appliances. Reactive power, on the other hand, moves
between the source and the load of a circuit, so it does not produce any useful work. 

This dataset does not include any weather information, which could potentially be a
strong predictor of energy consumption. We can safely expect that during hot sum-
mer days, the air conditioning unit will function for longer, thus requiring more elec-
trical power. The same can be expected during cold winter days, because heating a
house requires a large amount of energy. This data is not available here, but in a pro-
fessional setting we could request this type of data to augment our dataset and poten-
tially produce better models.

 Now that you have a general understanding of the problem and the dataset, let’s
define the objective of this project and the steps we’ll take to achieve it.

18.1.1 Objective of this capstone project

The objective of this capstone project is to create a model that can forecast the next
24 hours of global active power. If you feel confident, this objective should be suffi-
cient for you to download the dataset, work it on your own, and compare your process
to the one presented in this chapter.

 Otherwise, here are the steps that need to be done:

1 Data wrangling and preprocessing. This step is optional. It is not directly
linked to time series forecasting, but it is an important step in any machine

Table 18.1 Description of the columns in the dataset

Column name Description

Date Date in the following format: dd/mm/yyyy

Time Time in the following format: hh:mm:ss

Global_active_power The global active power in kilowatts

Global_reactive_power The global reactive power in kilowatts

Voltage Voltage in volts 

Global_intensity The current intensity in amperes

Sub_metering_1 Energy consumed in the kitchen by a dishwasher, oven, and microwave in 
watt-hours

Sub_metering_2 Energy consumed in the laundry room by a washing machine, tumble-dryer, 
refrigerator, and light in watt-hours

Sub_metering_3 Energy consumed by a water heater and air conditioner in watt-hours
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learning project. You can safely skip this step and start at step 2 with a clean
dataset:
a Calculate the number of missing values.
b Impute the missing values.
c Express each variable as a numerical value (all data is originally stored as

strings).
d Combine the Date and Time columns into a DateTime object.
e Determine whether the data sampled at every minute is usable for forecast-

ing.
f Resample the data by hour.
g Remove any incomplete hours.

2 Feature engineering:
a Identify any seasonality.
b Encode the time with a sine and cosine transformation.
c Scale the data.

3 Split the data:
a Make a 70:20:10 split to create training, validation, and test sets.

4 Prepare for deep learning modeling:
a Implement the DataWindow class.
b Define the compile_and_fit function.
c Create a dictionary of column indices and column names.

5 Model with deep learning:
a Train at least one baseline model.
b Train a linear model.
c Train a deep neural network.
d Train an LSTM.
e Train a CNN.
f Train a combination of LSTM and CNN.
g Train an autoregressive LSTM.
h Select the best-performing model.

You now have all the steps required to successfully complete this capstone project. I
highly recommend that you try it on your own first, as that will reveal what you have
mastered and what you need to review. At any point, you can refer to the following sec-
tions for a detailed walkthrough of each step. 

 The entire solution is available on GitHub: https://github.com/marcopeix/
TimeSeriesForecastingInPython/tree/master/CH18. Note that the data files were too
large to be included in the repository, so you’ll need to download the dataset sepa-
rately. Good luck!

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH18
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH18
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH18
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18.2 Data wrangling and preprocessing
Data wrangling is the process of transforming data into a form that is easily usable for
modeling. This step usually involves exploring missing data, filling in blank values,
and ensuring that the data has the right type, meaning that numbers are numerical
values and not strings. This is a complex step, and it’s probably the most vital one in
any machine learning project. Having poor quality data at the start of a forecasting
project is a guarantee that you’ll have poor quality forecasts. You can skip this section
of the chapter if you wish to focus solely on time series forecasting, but I highly recom-
mend that you go through it, as it will really help you become comfortable with the
dataset.

NOTE If you have not done so already, you can download the “Individual house-
hold electric power consumption” dataset from the UC Irvine Machine Learn-
ing Repository: https://archive.ics.uci.edu/ml/datasets/Individual+household
+electric+power+consumption.

To perform this data wrangling, you can start by importing libraries that will be useful
for data manipulation and visualization into a Python script or Jupyter Notebook.

import datetime

import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings('ignore')

Whenever numpy and TensorFlow are used, I like to set a random seed to ensure that the
results can be reproduced. If you do not set a seed, your results might vary, and if you set
a seed that’s different than mine, your results will differ from those shown here.

tf.random.set_seed(42)
np.random.seed(42)

The next step is to read the data file into a DataFrame. We are working with a raw text
file, but we can still use the read_csv method from pandas. We simply need to specify
the separator, which is a semicolon in this case.

df = pd.read_csv('../data/household_power_consumption.txt', sep=';')   

We can optionally display the first five rows with df.head() and the last five rows with
df.tail(). This will show us that our data starts on December 16, 2006, at 5:24 p.m.
and ends on November 26, 2010, at 9:02 p.m. and that the data was collected at every

We can use this method with a .txt file as
long as we specify the separator.

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
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minute. We can also display the shape of our data with df.shape, showing us that we
have 2,075,529 rows and 9 columns.

18.2.1 Dealing with missing data

Now let’s check for missing values. We can do this by chaining the isna() method
with the sum() method. This returns the sum of missing values for each column of our
dataset.

df.isna().sum()

From the output shown in figure 18.2, only the Sub_metering_3 column has missing
values. In fact, about 1.25% of its values are missing, according to the documentation
of the data.

There are two options we can explore for dealing with the missing values. First, we
could simply delete this column, since no other features have missing values. Second,
we could fill in the missing values with a certain value. This process is called imputing.

 We’ll first check whether there are many consecutive missing values. If that is the
case, it is preferable to get rid of the column, as imputing many consecutive values will
likely introduce a nonexistent trend in our data. Otherwise, if the missing values are
dispersed across time, it is reasonable to fill them. The following code block outputs
the length of the longest sequence of consecutive missing values:

na_groups = 

➥ df['Sub_metering_3'].notna().cumsum()[df['Sub_metering_3'].isna()]
len_consecutive_na = na_groups.groupby(na_groups).agg(len)

longest_na_gap = len_consecutive_na.max()

This outputs a length of 7,226 consecutive minutes of missing data, which is equiva-
lent to roughly 5 days. In this case, the gap is definitely too large to fill with missing
values, so we’ll remove this column from the dataset.

df = df.drop(['Sub_metering_3'], axis=1)

We no longer have any missing data in our dataset, so we can move on to the next step.

Figure 18.2 Output of the total number 
of missing values in our dataset. You can 
see that only the Sub_metering_3 column 
has missing values.
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18.2.2 Data conversion

Now let’s check if our data has the right type. We should be studying numerical data,
as our dataset is a collection of sensor readings.

 We can output the type of each column using df.dtypes, which shows us that each
column is of object type. In pandas this means that our data is mostly text, or a mix of
numeric and non-numeric values.

 We can convert each column to a numerical value with the to_numeric function
from pandas. This is essential, as our models expect numerical data. Note that we will
not convert the date and time columns to numerical values—these will be processed
in a later step.

cols_to_convert = df.columns[2:]

df[cols_to_convert] = df[cols_to_convert].apply(pd.to_numeric, 

➥ errors='coerce')

We can optionally check the type of each column again using df.dtypes to make sure
that the values were converted correctly. This will show that every column from
Global_active_power to Sub_metering_2 is now a float64 as expected.

18.2.3 Data resampling

The next step is to check if data sampled every minute is appropriate for modeling. It
is possible that data sampled every minute is too noisy to build a performant predic-
tive model.

 To check this, we’ll simply plot our target to see what it looks like. The resulting
plot is shown in figure 18.3.

fig, ax = plt.subplots(figsize=(13,6))

ax.plot(df['Global_active_power'])
ax.set_xlabel('Time')
ax.set_xlim(0, 2880)

fig.autofmt_xdate()
plt.tight_layout()

Figure 18.3 shows that the data is very noisy, with large oscillations or flat sequences
occurring at every minute. This kind of pattern is difficult to forecast using a deep
learning model, since it seems to move at random. Also, we could question the need
to forecast electricity consumption by the minute, as changes to the grid cannot occur
in such short amounts of time.

 Thus, we definitely need to resample our data. In this case, we’ll resample by the
hour. That way, we’ll hopefully smooth out the data and uncover a pattern that may be
easier to predict with a machine learning model.
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To do this, we’ll need a datetime data type. We can combine the Date and Time
columns to create a new column that holds the same information with a datetime
data type.

df.loc[:,'datetime'] = pd.to_datetime(df.Date.astype(str) + ' ' + 

➥ df.Time.astype(str))    

df = df.drop(['Date', 'Time'], axis=1)

Now we can resample our data. In this case, we’ll take an hourly sum of each variable.
That way we’ll know the total electrical power consumed by the household every hour.

hourly_df = df.resample('H', on='datetime').sum()

Remember that our data started on December 16, 2006, at 5:24 p.m. and ended on
November 26, 2010, at 9:02 p.m. With the new resampling, we now have a sum of each
column per hour, which means that we have data that starts on December 16, 2006, at
5 p.m. and ends on November 26, 2010, at 9 p.m. However, the first and last rows of
data do not have a full 60 minutes in their sum. The first row computed the sum from
5:24 p.m. to 5:59 p.m., which is 35 minutes. The last row computed the sum from 9:00
p.m. to 9:02 p.m., which is only 2 minutes. Therefore, we’ll remove the first and last
rows of data so that we are working only with sums over full hours.

hourly_df = hourly_df.drop(hourly_df.tail(1).index)
hourly_df = hourly_df.drop(hourly_df.head(1).index)
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Figure 18.3 The first 24 hours of recorded global active power sampled every minute. You can see that the 
data is quite noisy. 

This step will take a long time. Do 
not worry if it seems like your 
code is hanging.
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Finally, this process has changed the index. I personally prefer to have the index as
integers and the dates as a column, so we’ll simply reset the index of our DataFrame.

hourly_df = hourly_df.reset_index()

We can optionally check the shape of our data using hourly_df.shape, and we
would see that we now have 34,949 rows of data. This is a drastic drop from the orig-
inal two million rows. Nevertheless, a dataset of this size is definitely suitable for
deep learning methods.

 Let’s plot our target again to see if resampling our data generated a discernible
pattern that can be forecast. Here we’ll plot the first 15 days of global active power
sampled hourly:

fig, ax = plt.subplots(figsize=(13,6))

ax.plot(hourly_df['Global_active_power'])
ax.set_xlabel('Time')
ax.set_xlim(0, 336)

plt.xticks(np.arange(0, 360, 24), ['2006-12-17', '2006-12-18', 

➥ '2006-12-19', '2006-12-20', '2006-12-21', '2006-12-22', '2006-12-23', 

➥ '2006-12-24', '2006-12-25', '2006-12-26', '2006-12-27', '2006-12-28', 

➥ '2006-12-29', '2006-12-30', '2006-12-31'])

fig.autofmt_xdate()
plt.tight_layout()

As you can see in figure 18.4, we now have a smoother pattern of global active power.
Furthermore, we can discern daily seasonality, although it is not as apparent as previ-
ous examples in this book.
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Figure 18.4 Total global active power sampled every hour. We now have a smoother pattern with daily 
seasonality. This is ready to be forecast with a deep learning model.
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With the data wrangling done, we can save our dataset as a CSV file so we have a clean
version of our data. This will be our starting file for the next section.

hourly_df.to_csv('../data/clean_household_power_consumption.csv', 
header=True, index=False)

18.3 Feature engineering
At this point, we have a clean dataset with no missing values and a smoothed pattern
that will be easier to predict using deep learning techniques. Whether you followed
along with the last section or not, you can read a clean version of the data and start
working on the feature engineering.

hourly_df = pd.read_csv('../data/clean_household_power_consumption.csv')

18.3.1 Removing unnecessary columns

The first step in feature engineering is to display the basic statistics for each column.
This is especially useful for detecting whether there are any variables that do not vary
greatly. Such variables should be removed, since if they are almost constant over time,
they are not predictive of our target.

 We can get a description of each column using the describe method from pandas:

hourly_df.describe().transpose()

As you can see in figure 18.5, Sub_metering_1 is likely not a good predictor for our
target, since its constant value will not explain the variations in global active power. We
can safely remove this column and keep the rest.

hourly_df = hourly_df.drop(['Sub_metering_1'], axis=1)

count mean std min 25% 50% 75% max
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Figure 18.5 A description of each column in our dataset. You’ll notice that Sub_metering_1 has a value 
of 0 for 75% of the time. Because this variable doesn’t vary much over time, it can be removed from the set 
of features.



33918.3 Feature engineering
18.3.2 Identifying the seasonal period

With our target being global active power in a household, it is likely that we’ll have
some seasonality. We can expect that at night, less electrical power will be used. Simi-
larly, there may be a peak in consumption when people come back from work during
the week. Thus, it is reasonable to assume that there will be some seasonality in our
target.

 We can plot our target to see if we can visually detect the period.

fig, ax = plt.subplots(figsize=(13,6))

ax.plot(hourly_df['Global_active_power'])
ax.set_xlabel('Time')
ax.set_xlim(0, 336)

plt.xticks(np.arange(0, 360, 24), ['2006-12-17', '2006-12-18', 

➥ '2006-12-19', '2006-12-20', '2006-12-21', '2006-12-22', '2006-12-23', 

➥ '2006-12-24', '2006-12-25', '2006-12-26', '2006-12-27', '2006-12-28', 

➥ '2006-12-29', '2006-12-30', '2006-12-31'])

fig.autofmt_xdate()
plt.tight_layout()

In figure 18.6 you can see that our target has some cyclical behavior, but the seasonal
period is hard to determine from the graph. While our hypothesis about daily season-
ality makes sense, we need to make sure that it is present in our data. One way to do it
is with a Fourier transform.
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Figure 18.6 Total global active power in the first 15 days. While there is clear cyclical behavior, the seasonal 
period is hard to determine from the graph only.
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Without diving into the details, a Fourier transform basically allows us to visualize the
frequency and amplitude of a signal. Hence, we can treat our time series as a signal,
apply a Fourier transform, and find the frequencies with large amplitudes. Those fre-
quencies will determine the seasonal period. The great advantage of this method is
that it is independent of the seasonal period. It can identify yearly, weekly, and daily
seasonality, or any specific period we wish to test. 

NOTE For more information about Fourier transforms, I suggest reading
Lakshay Akula’s “Analyzing seasonality with Fourier transforms using Python
& SciPy” blog post, which does a great job of gently introducing Fourier trans-
forms for analyzing seasonality: http://mng.bz/7y2Q.

For our situation, let’s test for weekly and daily seasonality. 

fft = tf.signal.rfft(hourly_df['Global_active_power'])    

f_per_dataset = np.arange(0, len(fft))     

n_sample_h = len(hourly_df['Global_active_power'])   

hours_per_week = 24 * 7   
weeks_per_dataset = n_sample_h / hours_per_week   
f_per_week = f_per_dataset / weeks_per_dataset    

plt.step(f_per_week, np.abs(fft))   
plt.xscale('log')
plt.xticks([1, 7], ['1/week', '1/day'])    
plt.xlabel('Frequency')
plt.tight_layout()
plt.show()

In figure 18.7 you can see the amplitude of the weekly and daily frequencies. The
weekly frequency does not show any visible peak, meaning that its amplitude is very
small. Therefore, there is no weekly seasonality.

 Looking at the daily frequency, however, you’ll notice a clear peak in the figure.
This tells us that we indeed have daily seasonality in our data. Thus, we will encode
our timestamp using a sine and cosine transformation to express the time while keep-
ing its daily seasonal information. We did the same thing in chapter 12 when prepar-
ing our data for modeling with deep learning.

timestamp_s = 

➥ pd.to_datetime(hourly_df.datetime).map(datetime.datetime.timestamp)

day = 24 * 60 * 60

hourly_df['day_sin'] = (np.sin(timestamp_s * (2*np.pi/day))).values
hourly_df['day_cos'] = (np.cos(timestamp_s * (2*np.pi/day))).values

hourly_df = hourly_df.drop(['datetime'], axis=1)

Apply a Fourier 
transform on 
our target.

Get the number of frequencies 
from the Fourier transform.

Find out how 
many hours are 
in the dataset.

Get the number of 
hours in a week.

Get the number 
of weeks in the 
dataset.

Get the frequency 
of a week in the 
dataset.

Plot the frequency 
and amplitude.

Label
the weekly

and daily
frequencies.

http://mng.bz/7y2Q
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Our feature engineering is complete, and the data is ready to be scaled and split into
training, validation, and test sets.

18.3.3 Splitting and scaling the data

The final step is to split the dataset into training, validation, and test sets, and to scale
the data. Note that we’ll first split the data, so that we scale it using only the informa-
tion from the training set, thus avoiding information leakage. Scaling the data will
decrease training time and improve the performance of our models.

 We’ll split the data 70:20:10 for the training, validation, and test sets respectively.

n = len(hourly_df)

# Split 70:20:10 (train:validation:test)
train_df = hourly_df[0:int(n*0.7)]
val_df = hourly_df[int(n*0.7):int(n*0.9)]
test_df = hourly_df[int(n*0.9):] 

Next, we’ll fit the scaler to the training set only, and scale each individual set.

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
scaler.fit(train_df)

train_df[train_df.columns] = scaler.transform(train_df[train_df.columns])
val_df[val_df.columns] = scaler.transform(val_df[val_df.columns])
test_df[test_df.columns] = scaler.transform(test_df[test_df.columns])
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Figure 18.7 Amplitude of the weekly and daily seasonality in our target. 
You can see that the amplitude of the weekly seasonality is close to 0, 
while there is a visible peak for the daily seasonality. Therefore, we 
indeed have daily seasonality for our target.
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We can now save each set to be used later for modeling.

train_df.to_csv('../data/ch18_train.csv', index=False, header=True)
val_df.to_csv('../data/ch18_val.csv', index=False, header=True)
test_df.to_csv('../data/ch18_test.csv', index=False, header=True)

We are now ready to move on to the modeling step.

18.4 Preparing for modeling with deep learning
In the last section, we produced the three sets of data required for training deep
learning models. Recall that the objective of this project is to predict the global
active power consumption in the next 24 hours. This means that we must build a
univariate multi-step model, since we are forecasting only one target 24 timesteps into
the future.

 We will build two baselines, a linear model, a deep neural network model, a long
short-term memory (LSTM) model, a convolutional neural network (CNN), a combi-
nation of CNN and LSTM, and finally an autoregressive LSTM. In the end, we will use
the mean absolute error (MAE) to determine which model is the best. The one that
achieves the lowest MAE on the test set will be the top-performing model.

 Note that we’ll use the MAE as our evaluation metric and the mean squared error
(MSE) as the loss function, just as we have since chapter 13.

18.4.1 Initial setup

Before moving on to modeling, we first need to import the required libraries, as well
as define our DataWindow class and a function to train our models.

 We’ll start off by importing the necessary Python libraries for modeling. 

import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt

from tensorflow.keras import Model, Sequential

from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.losses import MeanSquaredError
from tensorflow.keras.metrics import MeanAbsoluteError

from tensorflow.keras.layers import Dense, Conv1D, LSTM, Lambda, Reshape, 

➥ RNN, LSTMCell

import warnings
warnings.filterwarnings('ignore')

Make sure you have TensorFlow 2.6 installed, as this is the latest version at the time of
writing. You can check the version of TensorFlow using print(tf.__version__).
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 Optionally, you can set parameters for the plots. In this case, I prefer to specify a
size and remove the grid on the axes.

plt.rcParams['figure.figsize'] = (10, 7.5)
plt.rcParams['axes.grid'] = False

Then you can set a random seed. This ensures constant results when training models.
Recall that the initialization of deep learning models is random, so training the same
model twice in a row might result in slightly different performance. Thus, to ensure
reproducibility, we set a random seed.

tf.random.set_seed(42)
np.random.seed(42)

Next, we need to read the training set, validation set, and test set so they are ready for
modeling.

train_df = pd.read_csv('../data/ch18_train.csv')
val_df = pd.read_csv('../data/ch18_val.csv')
test_df = pd.read_csv('../data/ch18_test.csv')

Finally, we’ll build a dictionary to store the column names and their corresponding
indexes. This will be useful later on for building the baseline models and creating win-
dows of data.

column_indices = {name: i for i, name in enumerate(train_df.columns)}

We’ll now move on to defining the DataWindow class.

18.4.2 Defining the DataWindow class

The DataWindow class allows us to quickly create windows of data for training deep
learning models. Each window of data contains a set of inputs and a set of labels. The
model is then trained to produce predictions as close as possible to the labels using
the inputs.

 An entire section of chapter 13 was dedicated to implementing the DataWindow
class step by step, and we have been using it ever since, so we will go straight to its
implementation. The only change here will be the name of the default column to plot
when we visualize the predictions against the labels.

class DataWindow():
    def __init__(self, input_width, label_width, shift, 
                 train_df=train_df, val_df=val_df, test_df=test_df, 
                 label_columns=None):
        
        self.train_df = train_df
        self.val_df = val_df
        self.test_df = test_df

Listing 18.1 Implementation of class to create windows of data
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        self.label_columns = label_columns
        if label_columns is not None:
            self.label_columns_indices = {name: i for i, name in 

➥ enumerate(label_columns)}
        self.column_indices = {name: i for i, name in 

➥ enumerate(train_df.columns)}
        
        self.input_width = input_width
        self.label_width = label_width
        self.shift = shift
        
        self.total_window_size = input_width + shift
        
        self.input_slice = slice(0, input_width)
        self.input_indices = 

➥ np.arange(self.total_window_size)[self.input_slice]
        
        self.label_start = self.total_window_size - self.label_width
        self.labels_slice = slice(self.label_start, None)
        self.label_indices = 

➥ np.arange(self.total_window_size)[self.labels_slice]
    
    def split_to_inputs_labels(self, features):
        inputs = features[:, self.input_slice, :]
        labels = features[:, self.labels_slice, :]
        if self.label_columns is not None:
            labels = tf.stack(
                [labels[:,:,self.column_indices[name]] for name in 

➥ self.label_columns],
                axis=-1
            )
        inputs.set_shape([None, self.input_width, None])
        labels.set_shape([None, self.label_width, None])
        
        return inputs, labels
    
    def plot(self, model=None, plot_col='Global_active_power', 

➥ max_subplots=3):    
        inputs, labels = self.sample_batch
        
        plt.figure(figsize=(12, 8))
        plot_col_index = self.column_indices[plot_col]
        max_n = min(max_subplots, len(inputs))
        
        for n in range(max_n):
            plt.subplot(3, 1, n+1)
            plt.ylabel(f'{plot_col} [scaled]')
            plt.plot(self.input_indices, inputs[n, :, plot_col_index],
                     label='Inputs', marker='.', zorder=-10)

            if self.label_columns:
              label_col_index = self.label_columns_indices.get(plot_col, 

➥ None)
            else:
              label_col_index = plot_col_index

Set the default name 
of our target to be the 
global active power.
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            if label_col_index is None:
              continue

            plt.scatter(self.label_indices, labels[n, :, label_col_index],
                        edgecolors='k', marker='s', label='Labels', 

➥ c='green', s=64)
            if model is not None:
              predictions = model(inputs)
              plt.scatter(self.label_indices, predictions[n, :, 

➥ label_col_index],
                          marker='X', edgecolors='k', label='Predictions',
                          c='red', s=64)

            if n == 0:
              plt.legend()

        plt.xlabel('Time (h)')
        
    def make_dataset(self, data):
        data = np.array(data, dtype=np.float32)
        ds = tf.keras.preprocessing.timeseries_dataset_from_array(
            data=data,
            targets=None,
            sequence_length=self.total_window_size,
            sequence_stride=1,
            shuffle=True,
            batch_size=32
        )
        
        ds = ds.map(self.split_to_inputs_labels)
        return ds
    
    @property
    def train(self):
        return self.make_dataset(self.train_df)
    
    @property
    def val(self):
        return self.make_dataset(self.val_df)
    
    @property
    def test(self):
        return self.make_dataset(self.test_df)
    
    @property
    def sample_batch(self):
        result = getattr(self, '_sample_batch', None)
        if result is None:
            result = next(iter(self.train))
            self._sample_batch = result
        return result

With the DataWindow class defined, we only need a function to compile and train the
different models we’ll develop.
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18.4.3 Utility function to train our models

Our final step before launching our experiments is to build a function that automates
the training process. This is the compile_and_fit function that we have been using
since chapter 13.

 Recall that this function takes in a model and a window of data. Then it imple-
ments early stopping, meaning that the model will stop training if the validation loss
does not change for three consecutive epochs. This is also the function in which we
specify the loss function to be the MSE and the evaluation metric to be the MAE.

def compile_and_fit(model, window, patience=3, max_epochs=50):
    early_stopping = EarlyStopping(monitor='val_loss',
                                   patience=patience,
                                   mode='min')
    
    model.compile(loss=MeanSquaredError(),
                  optimizer=Adam(),
                  metrics=[MeanAbsoluteError()])
    
    history = model.fit(window.train,
                       epochs=max_epochs,
                       validation_data=window.val,
                       callbacks=[early_stopping])
    
    return history

At this point, we have everything we need to start developing models to forecast the
next 24 hours of global active power.

18.5 Modeling with deep learning
The training, validation, and test sets are ready, as well as the DataWindow class and the
function that will train our models. Everything is set for us to start building deep
learning models.

 We’ll first implement two baselines, and then we’ll train models with increasing
complexity: a linear model, a deep neural network, an LSTM, a CNN, a CNN and
LSTM model, and an autoregressive LSTM. Once all the models are trained, we’ll
select the best model by comparing the MAE on the test set. The model with the low-
est MAE will be the one that we recommend.

18.5.1 Baseline models

Every forecasting project must start with a baseline model. Baselines serve as a bench-
mark for our more sophisticated models, as they can only be better in comparison to a
certain benchmark. Building baseline models also allows us to assess whether the added
complexity of a model really generates a significant benefit. It is possible that a complex
model does not perform much better than a baseline, in which case implementing a
complex model is hard to justify. In this case, we’ll build two baseline models: one that
repeats the last known value and another that repeats the last 24 hours of data.
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 We’ll start by creating the window of data that will be used. Recall that the objec-
tive is to forecast the next 24 hours of global active power. Thus, the length of our
label sequence is 24 timesteps, and the shift will also be 24 timesteps. We’ll also use an
input length of 24. 

multi_window = DataWindow(input_width=24, label_width=24, shift=24, 

➥ label_columns=['Global_active_power'])

Next, we’ll implement a class that will repeat the last known value of the input
sequence as a prediction for the next 24 hours.

class MultiStepLastBaseline(Model):
    def __init__(self, label_index=None):
        super().__init__()
        self.label_index = label_index
        
    def call(self, inputs):
        if self.label_index is None:
            return tf.tile(inputs[:, -1:, :], [1, 24, 1])
        return tf.tile(inputs[:, -1:, self.label_index:], [1, 24, 1])

We can now generate predictions using this baseline and store its performance in a
dictionary. This dictionary will store the performance of each model so that we can
compare them at the end. Note that we will not display the MAE of each model as we
build them. We will compare the evaluation metrics once all the models are trained.

baseline_last = 

➥ MultiStepLastBaseline(label_index=column_indices['Global_active_power'])

baseline_last.compile(loss=MeanSquaredError(), 

➥ metrics=[MeanAbsoluteError()])

val_performance = {}
performance = {}

val_performance['Baseline - Last'] = 

➥ baseline_last.evaluate(multi_window.val)
performance['Baseline - Last'] = baseline_last.evaluate(multi_window.test, 

➥ verbose=0)

We can visualize the predictions using the plot method of the DataWindow class, as
shown in figure 18.8. It will display three plots in the figure, as specified in the Data-
Window class.

multi_window.plot(baseline_last)

In figure 18.8 we have a working baseline—the forecasts correspond to a flat line with
the same value as the last input. You may get a slightly different plot, since the cached
sample batch used to create the plots may not be the same. However, the model’s met-
rics will be identical to what is shown here, as long as the random seeds are equal.
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Next, let’s implement a baseline model that repeats the input sequence. Remember
that we identified daily seasonality in our target, so this is equivalent to forecasting the
last known season.

class RepeatBaseline(Model):
    def __init__(self, label_index=None):
        super().__init__()
        self.label_index = label_index
        

    def call(self, inputs):
        return inputs[:, :, self.label_index:]

Once it’s defined, we can generate predictions and store the baseline’s performance for
comparison. We can also visualize the generated predictions, as shown in figure 18.9.

baseline_repeat = 

➥ RepeatBaseline(label_index=column_indices['Global_active_power'])

baseline_repeat.compile(loss=MeanSquaredError(), 

➥ metrics=[MeanAbsoluteError()])

val_performance['Baseline - Repeat'] = 

➥ baseline_repeat.evaluate(multi_window.val)
performance['Baseline - Repeat'] = 

➥ baseline_repeat.evaluate(multi_window.test, verbose=0)
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Figure 18.8 Predictions from the baseline model, which simply repeats the last known input value
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In figure 18.9 you’ll see that the predictions are equal to the input sequence, which is
the expected behavior for this baseline model. Feel free to print out the MAE for each
model as you build them. I’ll display them at the end of the chapter in a bar chart to
determine which model should be selected.

 With the baseline models in place, we can move on to the slightly more complex
linear model.

18.5.2 Linear model

One of the simplest models we can build is a linear model. This model consists of only
an input layer and an output layer. Thus, only a sequence of weights is computed to
generate predictions that are as close as possible to the labels.

 In this case, we’ll build a model with one Dense output layer that has only one neu-
ron, since we are predicting only one target. We’ll then train the model and store its
performance.

label_index = column_indices['Global_active_power']
num_features = train_df.shape[1]

linear = Sequential([
    Dense(1, kernel_initializer=tf.initializers.zeros)
])
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Figure 18.9 Predicting the last season as a baseline
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history = compile_and_fit(linear, multi_window)

val_performance['Linear'] = linear.evaluate(multi_window.val)
performance['Linear'] = linear.evaluate(multi_window.test, verbose=0)

As always, we can visualize the predictions using the plot method, as shown in fig-
ure 18.10.

multi_window.plot(linear)

Now let’s add hidden layers and implement a deep neural network.

18.5.3 Deep neural network

The previous linear model did not have any hidden layers; it was simply an input layer
and an output layer. Now we’ll add hidden layers, which will help us model nonlinear
relationships in the data.

 Here we’ll stack two Dense layers with 64 neurons and use ReLU as the activation
function. Then we’ll train the model and store its performance for comparison.

dense = Sequential([
    Dense(64, activation='relu'),
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Figure 18.10 Predictions generated from a linear model
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    Dense(64, activation='relu'),
    Dense(1, kernel_initializer=tf.initializers.zeros),
])

history = compile_and_fit(dense, multi_window)

val_performance['Dense'] = dense.evaluate(multi_window.val)
performance['Dense'] = dense.evaluate(multi_window.test, verbose=0)

You can optionally visualize the predictions with multi_window.plot(dense). 
 The next model we’ll implement is the long short-term memory model.

18.5.4 Long short-term memory (LSTM) model

The main advantage of the long short-term memory (LSTM) model is that it keeps
information from the past in memory. This makes it especially suitable for treating
sequences of data, like time series. It allows us to combine information from the pres-
ent and the past to produce a prediction.

 We’ll feed the input sequence through an LSTM layer before sending it to the out-
put layer, which remains a Dense layer with one neuron. We’ll then train the model
and store its performance in the dictionary for comparison at the end.

lstm_model = Sequential([
    LSTM(32, return_sequences=True),
    Dense(1, kernel_initializer=tf.initializers.zeros),
])

history = compile_and_fit(lstm_model, multi_window)

val_performance['LSTM'] = lstm_model.evaluate(multi_window.val)
performance['LSTM'] = lstm_model.evaluate(multi_window.test, verbose=0)

We can visualize the predictions from the LSTM—they are shown in figure 18.11.

multi_window.plot(lstm_model)

Now let’s implement a convolutional neural network. 

18.5.5 Convolutional neural network (CNN)

A convolutional neural network (CNN) uses the convolution function to reduce the
feature space. This effectively filters our time series and performs feature selection.
Furthermore, a CNN is faster to train than an LSTM since the operations are paral-
lelized, whereas the LSTM must treat one element of the sequence at a time.

 Because the convolution operation reduces the feature space, we must provide a
slightly longer input sequence to make sure that the output sequence contains 24
timesteps. How much longer it needs to be depends on the length of the kernel that
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performs the convolution operation. In this case, we’ll use a kernel length of 3. This is
an arbitrary choice, so feel free to experiment with different values, although your
results might differ from what is shown here. Given that we need 24 labels, we can cal-
culate the input sequence using equation 18.1.

                 input length = label length + kernel length – 1 Equation 18.1

This forces us to define a window of data specifically for the CNN model. Note that
since we are defining a new window of data, the sample batch used for plotting will
differ from the one used so far.

 We now have all the necessary information to define a window of data for the CNN
model.

KERNEL_WIDTH = 3
LABEL_WIDTH = 24
INPUT_WIDTH = LABEL_WIDTH + KERNEL_WIDTH - 1

cnn_multi_window = DataWindow(input_width=INPUT_WIDTH, 

➥ label_width=LABEL_WIDTH, shift=24, 

➥ label_columns=['Global_active_power'])
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Figure 18.11 Predictions generated from the LSTM model
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Next, we’ll send the input through a Conv1D layer, which filters the input sequence.
Then it is fed to a Dense layer with 32 neurons for learning before going to the output
layer. As always, we’ll train the model and store its performance for comparison.

cnn_model = Sequential([
    Conv1D(32, activation='relu', kernel_size=(KERNEL_WIDTH)),
    Dense(units=32, activation='relu'),
    Dense(1, kernel_initializer=tf.initializers.zeros),
])

history = compile_and_fit(cnn_model, cnn_multi_window)

val_performance['CNN'] = cnn_model.evaluate(cnn_multi_window.val)
performance['CNN'] = cnn_model.evaluate(cnn_multi_window.test, verbose=0)

We can now visualize the predictions.

cnn_multi_window.plot(cnn_model)

You will notice in figure 18.12 that the input sequence differs from our previous meth-
ods because working with a CNN involves windowing the data again to account for the
convolution kernel length. The training, validation, and test sets remain unchanged,
so it is still valid to compare all the models’ performance.

 Now let’s combine the CNN model with the LSTM model.
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Figure 18.12 Predictions generated by the CNN model
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18.5.6 Combining a CNN with an LSTM

We know that LSTM is good at treating sequences of data, while CNN can filter a
sequence of data. Therefore, it is interesting to test whether filtering a sequence
before feeding it to an LSTM can result in a better-performing model.

 We’ll feed the input sequence to a Conv1D layer, but use an LSTM layer for learn-
ing this time. Then we’ll send the information to the output layer. Again, we’ll train
the model and store its performance.

cnn_lstm_model = Sequential([
    Conv1D(32, activation='relu', kernel_size=(KERNEL_WIDTH)),
    LSTM(32, return_sequences=True),
    Dense(1, kernel_initializer=tf.initializers.zeros),
])

history = compile_and_fit(cnn_lstm_model, cnn_multi_window)

val_performance['CNN + LSTM'] = 

➥ cnn_lstm_model.evaluate(cnn_multi_window.val)
performance['CNN + LSTM'] = cnn_lstm_model.evaluate(cnn_multi_window.test, 

➥ verbose=0)

The predictions are visualized in figure 18.13.

cnn_multi_window.plot(cnn_lstm_model)
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Figure 18.13 Predictions from a CNN combined with an LSTM model
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Finally, let’s implement an autoregressive LSTM model.

18.5.7 The autoregressive LSTM model

The final model that we’ll implement is an autoregressive LSTM (ARLSTM) model.
Instead of generating the entire output sequence in a single shot, the autoregressive
model will generate one prediction at a time and use that prediction as an input to
generate the next one. This kind of architecture is present in state-of-the-art forecast-
ing models, but it comes with a caveat. If the model generates a very bad first prediction,
this mistake will be carried on to the next predictions, which will magnify the errors.
Nevertheless, it is worth testing this model to see if it works well in our situation.

 The first step is defining the class that implements the ARLSTM model. This is the
same class that we used in chapter 17.

class AutoRegressive(Model):
    def __init__(self, units, out_steps):
        super().__init__()
        self.out_steps = out_steps
        self.units = units
        self.lstm_cell = LSTMCell(units)
        self.lstm_rnn = RNN(self.lstm_cell, return_state=True)
        self.dense = Dense(train_df.shape[1])
        
    def warmup(self, inputs):
        x, *state = self.lstm_rnn(inputs)
        prediction = self.dense(x)
                
        return prediction, state
    
    def call(self, inputs, training=None):
        predictions = []
        prediction, state = self.warmup(inputs)
        
        predictions.append(prediction)
        
        for n in range(1, self.out_steps):
            x = prediction
            x, state = self.lstm_cell(x, states=state, training=training)
            
            prediction = self.dense(x)
            predictions.append(prediction)
        
        predictions = tf.stack(predictions)
        predictions = tf.transpose(predictions, [1, 0, 2])
        
        return predictions

We can then use this class to initialize our model. We’ll train the model on the multi_
window and store its performance for comparison.

Listing 18.2 Class to implement an ARLSTM model
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AR_LSTM = AutoRegressive(units=32, out_steps=24)

history = compile_and_fit(AR_LSTM, multi_window)

val_performance['AR - LSTM'] = AR_LSTM.evaluate(multi_window.val)
performance['AR - LSTM'] = AR_LSTM.evaluate(multi_window.test, verbose=0)

We can then visualize the predictions of the autoregressive LSTM model, as shown in
figure 18.14.

multi_window.plot(AR_LSTM)

Now that we have built a wide variety of models, let’s select the best one based on its
MAE on the test set.

18.5.8 Selecting the best model

We have built many models for this project, from a linear model to an ARLSTM
model. Now let’s visualize the MAE of each model to determine the champion.

 We’ll plot the MAE on both the validation and test sets. The result is shown in fig-
ure 18.15.
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Figure 18.14 Predictions from the ARLSTM model
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mae_val = [v[1] for v in val_performance.values()]
mae_test = [v[1] for v in performance.values()]

x = np.arange(len(performance))

fig, ax = plt.subplots()
ax.bar(x - 0.15, mae_val, width=0.25, color='black', edgecolor='black', 

➥ label='Validation')
ax.bar(x + 0.15, mae_test, width=0.25, color='white', edgecolor='black', 

➥ hatch='/', label='Test')
ax.set_ylabel('Mean absolute error')
ax.set_xlabel('Models')

for index, value in enumerate(mae_val):
    plt.text(x=index - 0.15, y=value+0.005, s=str(round(value, 3)), 

➥ ha='center')
    
for index, value in enumerate(mae_test):
    plt.text(x=index + 0.15, y=value+0.0025, s=str(round(value, 3)), 

➥ ha='center')
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Figure 18.15 Comparing the MAE of all models tested. The ARLSTM model achieved the lowest MAE on the 
test set.
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plt.ylim(0, 0.33)
plt.xticks(ticks=x, labels=performance.keys())
plt.legend(loc='best')
plt.tight_layout()

Figure 18.15 shows that all the models performed much better than the baselines.
Furthermore, our champion is the ARLSTM model, since it achieved a MAE of 0.074
on the test set, which is the lowest MAE of all. Thus, we would recommend using this
model to forecast the global active power over the next 24 hours.

18.6 Next steps
Congratulations on completing this capstone project! I hope that you were successful
in completing it on your own and that you feel confident in your knowledge of fore-
casting time series using deep learning models.

 I highly encourage you to make this project your own. You can turn this project
into a multivariate forecasting problem by forecasting more than one target. You
could also change the forecast horizon. In short, make changes and play around with
the models and the data and see what you can achieve on your own.

 In the next chapter, we’ll start the final part of this book, where we’ll automate the
forecasting process. There are many libraries that can generate accurate predictions
with minimal steps, and they are often used in the industry, making this an essential
tool for time series forecasting. We’ll look at a widely used library called Prophet.



Part 4

Automating
forecasting at scale

We have so far been building our models by hand. This has given us granu-
lar control over what is happening, but it can also be a lengthy process. Thus, it’s
time to explore some tools for automatic time series forecasting. These tools are
widely used in the industry, as they are easy to use and enable quick experimen-
tation. They also implement state-of-the-art models, making them easily accessi-
ble to any data scientist.

 Here we’ll explore the ecosystem of automatic forecasting tools and focus on
Prophet, as it is one of the most popular libraries for automatic forecasting, and
more recent libraries model their syntax on that of Prophet. This means that if
you know how to work with Prophet, it is easy to work with another tool.

 As in previous parts, we’ll conclude with a capstone project. 



 



Automating time series
forecasting with Prophet
Throughout this book, we have built models involving many manual steps. For dec-
linations of the SARIMAX models, for example, we had to develop a function to
select the best model according to the Akaike information criterion (AIC) and a
function to perform rolling forecasts. In the deep learning portion of the book, we
had to build a class to create windows of data, as well as define all the deep learning
models, although this was greatly facilitated by the use of Keras.

 While manually building and tweaking our models allows for great flexibility
and total control over our forecasting techniques, it is also useful to automate most
of the forecasting process, making it easier to forecast time series and accelerating
experiments. Therefore, it is important to understand the automation tools, as they
are a fast way to obtain predictions, and they often facilitate the use of state-of-the-
art models.

 In this chapter, we’ll first look at the various libraries that automate the process
of time series forecasting. Then we’ll focus specifically on the Prophet library, which

This chapter covers
 Assessing different libraries for automated 

forecasting

 Exploring the functionality of Prophet

 Forecasting with Prophet
361
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is arguably the most well-known and widely used forecasting library. We’ll explore its
functionality using a real-life dataset. Finally, we’ll conclude this chapter with a fore-
casting project so we can see Prophet in action.

19.1 Overview of the automated forecasting libraries
The data science community and companies have developed many libraries to auto-
mate the forecasting process and make it easier. Some of the most popular libraries
and their websites are listed here: 

 Pmdarima—http://alkaline-ml.com/pmdarima/modules/classes.html
 Prophet—https://facebook.github.io/prophet
 NeuralProphet—https://neuralprophet.com/html/index.html
 PyTorch Forecasting—https://pytorch-forecasting.readthedocs.io/en/stable

This is by no means an exhaustive list, and I wish to remain impartial in their use. As a
data scientist, you have the knowledge and capacity to assess whether a particular
library is suitable for your needs in a particular context.

 The pmdarima library is the Python implementation of the popular auto.arima
library in R. Pmdarima is essentially a wrapper that generalizes many of the statistical
models we have used, such as the ARMA, ARIMA, and SARIMA models. The main
advantage of this library is that it provides an easy-to-use interface that automatically
uses all the tools we’ve discussed for forecasting with statistical models, such as the
augmented Dickey-Fuller (ADF) test to test for stationarity and selecting the orders p,
q, P, and Q to minimize the AIC. It also comes with toy datasets, making it great for
first-time learners to test different models on simple time series. This package is built
and maintained by the community, but, most importantly, it is still being actively main-
tained at the time of writing. 

 Prophet is an open source package from Meta Open Source, meaning that it is built
and maintained by Meta. This library was built specifically for business forecasting at
scale. It arose from the internal need at Facebook to produce accurate forecasts quickly,
and the library was then made freely available. Prophet is arguably the best-known fore-
casting library in the industry, as it can fit nonlinear trends and combine the effect of
multiple seasonalities. The remainder of this chapter and the next one will focus
entirely on this library, and we’ll explore it in greater detail in the next section.

 NeuralProphet builds on the Prophet library to automate the use of hybrid models
for time series forecasting. This is a rather new project that is still in its beta phase at
the time of writing. The library was built with the collaboration of people from differ-
ent universities and Facebook. This package introduces a combination of classical
models, such as ARIMA, and neural networks, to produce accurate forecasts. It uses
PyTorch on the backend, meaning that experienced users can easily extend the
library’s functionality. Most importantly, it uses an API similar to Prophet’s, so once
you learn how to work with Prophet, you can seamlessly transition to working with
NeuralProphet. To learn more, you can read their paper, “NeuralProphet: Explainable

http://alkaline-ml.com/pmdarima/modules/classes.html
https://facebook.github.io/prophet
https://neuralprophet.com/html/index.html
https://pytorch-forecasting.readthedocs.io/en/stable
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Forecasting at Scale” (https://arxiv.org/abs/2111.15397). It provides greater detail
on NeuralProphet’s internal functions and performance benchmarks while still being
an accessible article.

 Finally, PyTorch Forecasting facilitates the use of state-of-the-art deep learning
models for time series forecasting. It, of course, uses PyTorch, and it provides a simple
interface to implement models such as DeepAR, N-Beats, LSTM, and more. This pack-
age is built by the community and, at the time of writing, is being actively maintained.

NOTE For more information about DeepAR, see David Salinas, Valentin
Flunkert, Jan Gasthaus, Tim Januschowski, “DeepAR: Probabilistic forecasting
with autoregressive recurrent networks,” International Journal of Forecasting
36:3 (2020), http://mng.bz/z4Kr. For information about N-Beats, see Boris
N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio, “N-BEATS:
Neural basis expansion analysis for interpretable time series forecasting,”
arXiv:1905.10437 (2019), https://arxiv.org/abs/1905.10437.

This gives you a brief overview of the automatic forecasting ecosystem. Note that this
list is not exhaustive, as there are many more libraries for automated time series fore-
casting. 

 You do not need to learn how to use each of the libraries I’ve presented. This is
meant to be an overview of the different tools available. Each time series forecasting
problem can require a different set of tools, but knowing how to use one of the librar-
ies usually makes it easier to use a new one. Thus, we’ll focus on the Prophet library
for the rest of this book. 

 As I mentioned, Prophet is a well-known and widely used library in the industry,
and anyone doing time series forecasting will likely come across Prophet. In the next
section, we’ll explore the package in greater detail and learn about its advantages, lim-
itations, and functionality before using it for forecasting.

19.2 Exploring Prophet
Prophet is an open source library created by Meta that implements a forecasting pro-
cedure taking into account nonlinear trends with multiple seasonal periods, such as
yearly, monthly, weekly, and daily. The package is available for use with Python. It
allows you forecast rapidly with minimal manual work. More advanced users, such as
ourselves, can fine tune the model to ensure that we get the best results possible.

 Under the hood, Prophet implements a general additive model where each time
series y(t) is modeled as the linear combination of a trend g(t), a seasonal component
s(t), holiday effects h(t), and an error term ϵt, which is normally distributed. Mathe-
matically, this is expressed as equation 19.1. 

                       y(t) = g(t) + s(t) + h(t) + ϵt Equation 19.1

The trend component models the non-periodic long-term changes in the time series.
The seasonal component models the periodic change, whether it is yearly, monthly,

https://arxiv.org/abs/2111.15397
http://mng.bz/z4Kr
https://arxiv.org/abs/1905.10437
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weekly, or daily. The holiday effect occurs irregularly and potentially on more than
one day. Finally, the error term represents any change in value that cannot be
explained by the previous three components.

 Notice that this model does not take into account the time dependence of the
data, unlike the ARIMA(p,d,q) model, where future values are dependent on past val-
ues. Thus, this process is closer to fitting a curve to the data, rather than finding the
underlying process. Although there is some loss of predictive information using this
method, it comes with the advantage that it is very flexible, since it can accommodate
multiple seasonal periods and changing trends. Also, it is robust to outliers and miss-
ing data, which is a clear advantage in a business context.

 The inclusion of multiple seasonal periods was motivated by the observation that
human behavior produced multi-period seasonal time series. For example, the five-
day work week can produce a pattern that repeats every week, while school break can
produce a pattern that repeats every year. Thus, to take multiple seasonal periods into
account, Prophet uses the Fourier series to model multiple periodic effects. Specifi-
cally, the seasonal component s(t) is expressed as equation 19.2, where P is the length
of the seasonal period in days, and N is the number of terms in the Fourier series.

Equation 19.2

In equation 19.2, if we have a yearly seasonality, P = 365.25, as there are 365.25 days in
a year. For a weekly seasonality, P = 7. N is simply the number of parameters we wish to
use to estimate the seasonal component. This has the added benefit that the seasonal
component’s sensitivity can be tweaked depending on how many parameters N are
estimated to model the seasonality. We’ll look at this in section 19.4 when we explore
the different functions of Prophet. By default, Prophet uses 10 terms to model the
yearly seasonality and 3 terms to model the weekly seasonality.

 Finally, this model allows us to consider the effect of holidays. Holidays are irregu-
lar events that can have a clear impact on a time series. For example, events such as
Black Friday in the United States can dramatically increase the attendance in stores or
the sales on an ecommerce website. Similarly, Valentine’s Day is probably a strong
indicator of an increase in sales of chocolates and flowers. Therefore, to model the
impact of holidays in a time series, Prophet lets us define a list of holidays for a spe-
cific country. Holiday effects are then incorporated in the model, assuming that they
are all independent. If a data point falls on a holiday date, a parameter Ki is calculated
to represent the change in the time series at that point in time. The larger the change,
the greater the holiday effect.

NOTE For more information on the inner workings of Prophet, I highly sug-
gest that you read the official paper, Sean J. Taylor and Benjamin Letham,
“Forecasting at Scale,” PeerJ Preprints 5:e3190v2 (2017), https://peerj.com/
preprints/3190/. It contains a more detailed explanation of the library, includ-
ing mathematical expressions and test results, while remaining accessible.

https://peerj.com/preprints/3190/
https://peerj.com/preprints/3190/
https://peerj.com/preprints/3190/
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The flexibility of Prophet can make it an attractive choice for rapid and accurate fore-
casting. However, it must not be considered to be a one-size-fits-all solution. The docu-
mentation itself specifies that Prophet works best with time series that have a strong
seasonal effect with several seasons of historical data. Therefore, there may be situa-
tions where Prophet is not the ideal choice, but that’s okay, since you have a variety of
statistical and deep learning models in your tool belt to produce forecasts.

 Let’s now dive deeper into Prophet and explore its functionality.

19.3 Basic forecasting with Prophet
To accompany our exploration of Prophet’s functionality, we’ll use a dataset containing
the historical daily minimum temperature recorded in Melbourne, Australia, between
1981 and 1990. Besides predicting the weather, this dataset can also help us identify
long-term climate trends and determine if the daily minimum temperature is, for exam-
ple, increasing over time. Our forecast horizon will be 1 year or 365 days. We thus wish
to build a model that forecasts the next year of daily minimum temperatures. 

NOTE At any time, feel free to consult the source code for this chapter on
GitHub: https://github.com/marcopeix/TimeSeriesForecastingInPython/
tree/master/CH19.

Prophet is as easy to install as any other Python package. It can then be imported in a
Jupyter Notebook or Python script with the same syntax as when you use pandas
or numpy.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from fbprophet import Prophet

The next step is, of course, to read the CSV file.

df = pd.read_csv('../data/daily_min_temp.csv') 

A note on installing Prophet on Windows
If you are using a Windows machine, it is highly recommended that you use Anaconda
to perform any data science task. Trying to install Prophet through Anaconda the first
time might result in an error. This is because a compiler must be installed in order
for the package to function correctly on Windows.

If you are using Anaconda, you can run the following commands in your Anaconda
prompt to install Prophet successfully:

conda install libpython m2w64-toolchain -c msys2
conda install numpy cython matplotlib scipy pandas -c conda-forge
conda install -c conda-forge pystan
conda install -c conda-forge fbprophet

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH19
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH19
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH19
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We can now plot our time series.

fig, ax = plt.subplots()

ax.plot(df['Temp'])
ax.set_xlabel('Date')
ax.set_ylabel('Minimum temperature (deg C)')

plt.xticks(np.arange(0, 3649, 365), np.arange(1981, 1991, 1))

fig.autofmt_xdate()
plt.tight_layout()

The result is shown in figure 19.1. You’ll see a clear yearly seasonality, which is
expected, as temperature is generally higher during summer and lower during winter.
We thus have a fairly large dataset with 10 seasons of data, which is a perfect scenario
for using Prophet, as the library performs best when there is a strong seasonal effect
with many historical seasonal periods.

Figure 19.1 Daily minimum temperature recorded in Melbourne from 1981 to 1991. There is a yearly seasonality, 
as expected, since it is hotter in the summer and colder in the winter.
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We can now move on to forecasting with Prophet. You will see how quickly you can
obtain accurate forecasts using Prophet with very few manual steps.

 The first step is to rename our columns. Prophet expects to have a DataFrame with
two columns: a date column named ds and a value column named y. The date col-
umn must have a format accepted by pandas—usually YYYY-MM-DD or YYYY-MM-DD
HH:MM:SS. The y column contains the values to be forecast, and those values must be
numeric, whether float or integer. In our case, the dataset has only two columns that
are already in the correct format, so we only need to rename them.

df.columns = ['ds', 'y']

Next, we’ll split our data into train and test sets. We’ll keep the last 365 days for the test
set, as this represents a full year. We’ll then take the first 9 years of data for training.

train = df[:-365]
test = df[-365:] 

Prophet follows the sklearn API, where a model is initialized by creating an instance
of the Prophet class, the model is trained using the fit method, and predictions are
generated using the predict method. Therefore, we’ll first initialize a Prophet model
by creating an instance of the Prophet class. Note that throughout this chapter, we’ll
code using Prophet’s naming convention.

m = Prophet() 

Once it’s initialized, we’ll then fit the model on the train set.

m.fit(train);

We now have a model that is ready to produce forecasts, with only two lines of code. 
 The next step is to create a DataFrame to hold the predictions from Prophet. We’ll

use the make_future_dataframe method and specify the number of periods, which is
the number of days in our forecast horizon. In this case, we want 365 days of forecast,
so that they can be compared to the actual values observed in the test set.

future = m.make_future_dataframe(periods=365)

All that’s left to do is to generate the forecast using the predict method.

forecast = m.predict(future)

Take some time to appreciate the fact that we trained a model and obtained predic-
tions using only four lines of code. One of the main benefits of automated forecasting
libraries is that we can experiment quickly and fine-tune the models later to tailor
them to the task at hand.
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 However, our work is not done, since we wish to evaluate the model and measure
its performance. The forecast DataFrame holds many columns with a lot of informa-
tion, as shown in figure 19.2.

We are only interested in these four columns: ds, yhat, yhat_lower, and yhat_upper.
The ds column simply has the datestamp of the forecast. The yhat column contains
the value of the forecast. You can see how Prophet uses y for the actual value and yhat
for the predicted value as a naming convention. Then, yhat_lower and yhat_upper
represent the lower and upper bounds of the 80% confidence interval of the forecast.
This means that there is an 80% chance that the forecast will fall between yhat_lower
and yhat_upper, with yhat being the value that we expect to obtain.

 We can now join test and forecast together, to create a single DataFrame holding
both the actual and predicted values.

test[['yhat', 'yhat_lower', 'yhat_upper']] = forecast[['yhat', 

➥ 'yhat_lower', 'yhat_upper']]

Before evaluating our mode, let’s implement a baseline, as our model can only be bet-
ter in relation to a certain benchmark. Here, let’s apply the last season naive forecast-
ing method, meaning that the last year of the training set is repeated as the forecast
for next year.

test['baseline'] = train['y'][-365:].values

Everything is set up to easily evaluate our model. We’ll use the mean absolute error
(MAE) for its ease of interpretation. Note that the mean absolute percentage error
(MAPE) is not suitable in this situation, because we have values that are close to 0, in
which case the MAPE gets inflated.

from sklearn.metrics import mean_absolute_error

prophet_mae = mean_absolute_error(test['y'], test['yhat'])
baseline_mae = mean_absolute_error(test['y'], test['baseline'])
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Figure 19.2 The forecast DataFrame containing the different components of the prediction. Note that if you 
add trend with additive_terms, you get the prediction yhat, which is hidden in the figure because the DataFrame 
has too many columns. Note also that additive_terms is the sum of weekly and yearly, indicating that we have 
both weekly and yearly seasonality.
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This returns a baseline MAE of 2.87, while the MAE achieved by the Prophet model is
1.94. Therefore, we achieve a lower MAE using Prophet, meaning that it is indeed bet-
ter than the baseline. This means that, on average, our model predicts the daily mini-
mum temperature with a difference of 1.94 degrees Celsius, either above or below the
observed value.

 We can optionally plot the forecasts, as well as the confidence interval from
Prophet. The result is shown in figure 19.3.

fig, ax = plt.subplots()

ax.plot(train['y'])
ax.plot(test['y'], 'b-', label='Actual')
ax.plot(test['yhat'], color='darkorange', ls='--', lw=3, label='Predictions')
ax.plot(test['baseline'], 'k:', label='Baseline')

ax.set_xlabel('Date')
ax.set_ylabel('Minimum temperature (deg C)')

ax.axvspan(3285, 3649, color='#808080', alpha=0.1)

ax.legend(loc='best')

plt.xticks(
    [3224, 3254, 3285, 3316, 3344, 3375, 3405, 3436, 3466, 3497, 3528, 

➥ 3558, 3589, 3619],
    ['Nov', 'Dec', 'Jan 1990', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 

➥ 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
plt.fill_between(x=test.index, y1=test['yhat_lower'], y2=test['yhat_upper'], 

➥ color='lightblue')
plt.xlim(3200, 3649)

fig.autofmt_xdate()
plt.tight_layout()

You’ll see that the Prophet forecast looks more like a curve-fitting procedure, since its
forecast, shown as a dashed line in figure 19.3, is a smooth curve that seems to filter
the noisier fluctuations in the data.

 Using Prophet allowed us to generate accurate forecasts with very few lines of
code. However, we have only scratched the surface in terms of Prophet’s functionality.
This is only the basic workflow of using Prophet. In the next section, we’ll explore
more advanced Prophet functions, such as visualization techniques and fine-tuning
procedures, as well as cross-validation and evaluation methods.
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19.4 Exploring Prophet’s advanced functionality
We’ll now explore Prophet’s more advanced functionality. These advanced functions
can be separated into three categories: visualization, performance diagnosis, and
hyperparameter tuning. We’ll work with the same dataset as in the previous section,
and I highly recommend that you work in the same Jupyter Notebook or Python script
as before.

19.4.1 Visualization capabilities

Prophet comes with many methods that allow us to quickly visualize a model’s predic-
tions or its different components.

 First of all, we can quickly generate a plot of our forecasts simply by using the plot
method. The result is shown in figure 19.4.

fig1 = m.plot(forecast)
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Figure 19.3 Forecasting the daily minimum temperature for the year 1990. We can see that the forecast 
from Prophet, shown as a dashed line, is smoother than the baseline, clearly demonstrating the curve-fitting 
property of Prophet.
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We can also display the different components used in our model with the plot_
components method. 

fig2 = m.plot_components(forecast)

The resulting plot is shown in figure 19.5. The top plot shows the trend component,
as well as the uncertainty in the trend for the forecast period. Looking closely, you’ll
see that the trend changes over time, with there being six different trends. We’ll
explore that in more detail later.

 The two bottom plots in figure 19.5 show two different seasonal components: one
with a weekly period and the other with a yearly period. The yearly seasonality makes
sense, as the summer months (December to February, since Australia is in the south-
ern hemisphere) see hotter temperatures than the winter months (June to August).
However, the weekly seasonal component is rather odd. While it may help the model
produce a better forecast, I doubt there is a meteorological phenomenon that can
explain weekly seasonality in daily minimum temperatures. Thus, this component
likely helps the model achieve a better fit and a better forecast, but it is hard to explain
its presence.

Figure 19.4 Plotting our predictions using Prophet. The black dots represent the training data, while the solid 
continuous line represents the model’s predictions. The shaded band surrounding the line represents an 80% 
confidence interval.
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Alternatively, Prophet allows us to plot only the seasonal component. Specifically, we
can plot the weekly seasonality using the plot_weekly method or the yearly seasonal-
ity with the plot_yearly method. The result for the latter is shown in figure 19.6.

from fbprophet.plot import plot_yearly, plot_weekly

fig4 = plot_yearly(m)

Figure 19.5 Displaying the components of our model. Here our model uses a trend component and two different 
seasonal components—one with a weekly period and the other with a yearly period.
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You’ll recognize the yearly seasonal component of our data, as it is the same plot as
the third plot in figure 19.5. However, this method allows us to visualize how chang-
ing the number of terms to estimate the seasonal component can impact our model.
Recall that Prophet uses 10 terms in the Fourier series to estimate the yearly season-
ality. Now let’s visualize the seasonal component if 20 terms are used for the estima-
tion.

m2 = Prophet(yearly_seasonality=20).fit(train)

fig6 = plot_yearly(m2)

In figure 19.7 the yearly seasonal component shows more fluctuation than in figure
19.6, meaning that it is more sensitive. Tuning this parameter can lead to overfitting if
too many terms are used, or to underfitting if we reduce the number of terms in the
Fourier series. This parameter is rarely changed, but it is interesting to see that
Prophet comes with this fine-tuning functionality.

 
 

Figure 19.6 Plotting the yearly seasonal component of our data. This is equivalent to the third plot in figure 19.5.
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Finally, we saw in figure 19.5 that the trend changed over time, and we could identify
six unique trends. Prophet can identify these trend changepoints. We can visualize
them using the add_changepoints_to_plot method. 

from fbprophet.plot import add_changepoints_to_plot

fig3 = m.plot(forecast)
a = add_changepoints_to_plot(fig3.gca(), m, forecast)

The result is shown in figure 19.8. Notice that Prophet identifies points in time where
the trend changes. 

 We’ve explored the most important visualization capabilities of Prophet, so let’s
move on to using cross-validation to diagnose our model in more detail.

19.4.2 Cross-validation and performance metrics

Prophet comes with an important cross-validation capability, allowing us to forecast
over multiple periods in our dataset to ensure that we have a stable model. This is sim-
ilar to a rolling forecast procedure.

Figure 19.7 Using 20 terms to estimate the yearly seasonal component in our data. Compared to figure 19.6, 
this view of the seasonal component is more sensitive, since it shows more variation across time. This can 
potentially lead to overfitting.
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Recall that with time series, the order of the data must remain the same. Therefore,
cross-validation is performed by training the model on a subset of the training data
and forecasting on a certain horizon. Figure 19.9 shows how we start by defining a sub-
set within the training set and use it to fit the model and generate predictions. Then
we add more data to the initial subset, and predict for another period of time. This
process is repeated until the entire training set is used.

 You’ll notice the resemblance to rolling forecasts, but this time we are using this
technique for cross-validation, to ensure that we have a stable model. A stable model is
one with an evaluation metric that is fairly constant over each forecast period, keeping
the horizon constant. In other words, the performance of our model should be con-
stant, whether it must forecast 365 days starting in January or starting in July.

 Prophet’s cross_validation function requires a Prophet model that has been fit
to training data. Then we must specify an initial length for the training set in the
cross-validation process, denoted as initial. The next parameter is the length of time
separating each cutoff date, denoted as period. Finally, we must specify the horizon of
the forecast, denoted as horizon. These three parameters must have units that are
compatible with the pandas.Timedelta class (https://pandas.pydata.org/docs/refer-
ence/api/pandas.Timedelta.html). In other words, the largest unit is days, and the

Figure 19.8 Showing trend changepoints in our model. Each point where the trend changes is identified by a 
vertical dashed line. Notice that there are six vertical dashed lines, matching the six different trend slopes in the 
top plot of figure 19.5.

https://pandas.pydata.org/docs/reference/api/pandas.Timedelta.html
https://pandas.pydata.org/docs/reference/api/pandas.Timedelta.html
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smallest unit is nanoseconds. Anything in between, such as hours, minutes, seconds,
or milliseconds, will work as well.

 By default, Prophet uses horizon to determine the length of initial and period.
It sets initial to three times the length of horizon and period to half the length of
horizon. Of course, we can tweak this behavior to meet our needs.

 Let’s start with an initial training period of 730 days, which represents two years of
data. The horizon will be 365 days, and each cutoff date will be separated by 180 days,
which is roughly half a year. Given our training set size, our cross-validation procedure
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Figure 19.9 Illustrating the cross-validation procedure in Prophet. The entire rectangle 
represents the training set, and an initial subset of the set is identified to fit the model. At a 
certain cutoff date, the model produces a forecast over a set horizon. In the next step, more data 
is added to the training subset, and the model makes predictions over another period of time. 
The process is then repeated until the horizon exceeds the length of the training set.
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has 13 steps. The output of the procedure is a DataFrame with the datestamp, the fore-
cast, its upper and lower bounds, the actual value, and the cutoff date, as shown in fig-
ure 19.10.

from fbprophet.diagnostics import cross_validation

df_cv = cross_validation(m, initial='730 days', period='180 days', 

➥ horizon='365 days')    

df_cv.head()

With cross-validation done, we can use the performance_metrics function to evaluate
the performance of the model over the multiple forecasting periods. We pass in the
output of cross-validation, which is df_cv, and we set the rolling_window parameter.
This parameter determines the portion of data over which we want to compute the
error metric. Setting it to 0 means that each evaluation metric is computed for each
forecast point. Setting it to 1 averages the evaluation metrics over the entire horizon.
Here, let’s set it to 0. 

from fbprophet.diagnostics import performance_metrics

df_perf = performance_metrics(df_cv, rolling_window=0)

df_perf.head()

The output of this procedure is shown in figure 19.11. The MAPE is not included,
since Prophet automatically detected that we have values close to 0, which makes the
MAPE an unsuitable evaluation metric.

 Finally, we can visualize the evolution of an evaluation metric over the horizon.
This allows us to determine whether the error increases as the model predicts further
in time or if it remains relatively stable. Again, we’ll use the MAE, as this is how we first
evaluated our model. 

from fbprophet.plot import plot_cross_validation_metric

fig7 = plot_cross_validation_metric(df_cv, metric='mae')

The initial training set has 2 years of data. Each 
cutoff date is separated by 180 days, or half a year. 
The forecast horizon is 365 days, which is a year.
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Figure 19.10 The first five rows of our cross-validation DataFrame. We can 
see the predictions, the upper and lower bounds, as well as the cutoff date.
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The result is shown in figure 19.12. Ideally, we will see a fairly flat line, like in figure
19.12, as it means that the error in our predictions does not increase as the model pre-
dicts further in time. If the error increases, we should revise the forecast horizon or
make sure that we are comfortable with an increasing error.

Now that you’ve seen Prophet’s cross-validation capability, we’ll look at hyperparame-
ter tuning. Combining the two will result in a robust way of finding an optimal model
for our problem. 

horizon mse rmse mae mdape coverage
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5 days
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0.147149
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Figure 19.11 The first five 
rows of the evaluation 
DataFrame. We can see 
different performance metrics 
over different horizons, 
allowing us to visualize how 
the performance varies 
according to the horizon.

Figure 19.12 Evolution of the MAE over the forecast horizon. Each dot represents the absolute error for one of 
the 13 forecast periods, while the solid line averages them over time. The line is fairly flat, meaning that we have 
a stable model where the error does not increase as it predicts further in time.
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19.4.3 Hyperparameter tuning

We can combine hyperparameter tuning and cross-validation in Prophet to design a
robust process that automatically identifies the best parameter combination to fit
our data.

 Prophet comes with many parameters that can be fine-tuned by more advanced
users in order to produce better forecasts. Four parameters are usually tuned:
changepoint_prior_scale, seasonality_prior_scale, holidays_prior_scale, and
seasonality_mode. Other parameters can technically be changed, but they are often
redundant forms of the preceding parameters:

 changepoint_prior_scale—The changepoint_prior_scale parameter is said
to be the most impactful parameter in Prophet. It determines the flexibility of
the trend, and particularly how much the trend changes at the trend change-
points. If the parameter is too small, the trend will underfit, and the variance
observed in the data will be treated as noise. If it is set too high, the trend will
overfit to noisy fluctuations. Using the range [0.001, 0.01, 0.1, 0.5] is enough to
have a well-fitted model.

 seasonality_prior_scale—The seasonality_prior_scale parameter sets the
flexibility of the seasonality. A large value allows the seasonal component to fit
smaller fluctuations, while a small value will result in a smoother seasonal com-
ponent. Using the range [0.01, 0.1, 1.0, 10.0] generally works well to find a
good model.

 holidays_prior_scale—The holidays_prior_scale parameter sets the flexi-
bility of the holiday effects and works just like seasonality_prior_scale. It
can be tuned using the same range, [0.01, 0.1, 1.0, 10.0].

 seasonality_mode—The seasonality_mode parameter can be either additive
or multiplicative. By default, it is additive, but it can be set to multiplicative if
you see that the seasonal fluctuation gets larger over time. This can be observed
by plotting the time series, but when in doubt, you can include it in the hyper-
parameter tuning process. Our current dataset of historical daily minimum
temperature is a great example of additive seasonality, as the yearly fluctuations
do not increase over time. An example of multiplicative seasonality is shown in
figure 19.13.

Let’s combine hyperparameter tuning and cross-validation to find the best model
parameters for forecasting the daily minimum temperature. We’ll use only change-
point_prior_scale and seasonality_prior_scale in this example, since we do not
have any holiday effects and our seasonal component is additive.

 We’ll first define the range of values to try for each parameter and generate a list of
unique combinations of parameters. Then, for each unique combination of parame-
ters, we’ll train a model and perform cross-validation. We will then evaluate the model
using a rolling_window of 1 to speed up the process and average the evaluation met-
ric over the entire forecasting period. We’ll finally store the parameter combinations
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and their associated MAE to find the best parameter combination. The combination
with the lowest MAE will be deemed to be the best. We’ll use the MAE because we
have been using it since the beginning of this project.

from itertools import product

param_grid = {
    'changepoint_prior_scale': [0.001, 0.01, 0.1, 0.5],
    'seasonality_prior_scale': [0.01, 0.1, 1.0, 10.0]
}

all_params = [dict(zip(param_grid.keys(), v)) for v in 

➥ product(*param_grid.values())]   

maes = []

for params in all_params:   
    m = Prophet(**params).fit(train)   
    df_cv = cross_validation(m, initial='730 days', period='180 days', 

➥ horizon='365 days', parallel='processes')    
    df_p = performance_metrics(df_cv, rolling_window=1)  
    maes.append(df_p['mae'].values[0])
    
tuning_results = pd.DataFrame(all_params)     
tuning_results['mae'] = maes

Figure 19.13 Example of multiplicative seasonality. This is taken from the capstone 
project in chapter 11, where we predicted the monthly volume of antidiabetic drug 
prescriptions in Australia. We not only saw a yearly seasonality, but we also noticed that 
the fluctuations get larger as we move through time. 

Create a list of unique 
parameter combinations.

For each unique combination, 
do the next three steps.Fit a

model.

Perform cross-
validation. We 
can speed up the 
process by using 
parallelization.

Evaluate the model
with a rolling_window
of 1. This averages the
performance over the

entire forecast horizon.Organize the results in a DataFrame.
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The parameters achieving the lowest MAE can now be found:

best_params = all_params[np.argmin(maes)]

In this case, both changepoint_prior_scale and seasonality_prior_scale should
be set to 0.01.

 This concludes our exploration of Prophet’s advanced functionality. We have mostly
worked with them in discovery mode, so let’s solidify what you’ve learned by designing
and implementing a forecast that uses Prophet’s more advanced functions, such as
cross-validation and hyperparameter tuning, to automate the forecasting process.

19.5 Implementing a robust forecasting process 
with Prophet
Having explored Prophet’s advanced functionality, we’ll now design a robust and
automated forecasting process with Prophet. This step-by-step system will allow us to
automatically find the best model that Prophet can build for a particular problem. 

 Keep in mind that finding the best Prophet model does not mean that Prophet is
the optimal solution to all problems. This process will simply identify the best possible
outcome when using Prophet. It is recommended that you test various models, using
either deep learning or statistical techniques, along with a baseline model, of course,
to ensure that you find the best possible solution to your forecasting problem.

 Figure 19.14 illustrates the forecasting process with Prophet to ensure that we
obtain the optimal Prophet model. We’ll first ensure that the columns are named and
formatted correctly for Prophet. Then we’ll combine cross-validation and hyperpa-
rameter tuning to obtain the best parameter combination, fit the model, and evaluate
it on a test set. It is a fairly straightforward process, which is to be expected. Prophet
does much of the heavy lifting for us, allowing us to quickly experiment and come up
with a model.

 Let’s apply this procedure to yet another forecasting project. It involves monthly
data, which Prophet handles in a particular way. Furthermore, we’ll work with data
that is potentially affected by holiday effects, giving us the opportunity to work with a
function of Prophet that we have not explored yet.

19.5.1 Forecasting project: Predicting the popularity of “chocolate” 
searches on Google

For this project, we’ll try to predict the popularity of the search term “chocolate” on
Google. Predicting the popularity of search terms can help marketing teams better
optimize their bidding for a particular keyword, which of course impacts the cost-per-
click on an ad, ultimately affecting the entire return on investment of a marketing
campaign. It can also give insight into consumer behavior. For example, if we know
that next month is likely to see a surge in people searching for chocolate, it can make
sense for a chocolate shop to offer discounts and ensure that they have enough supply
to meet the demand.
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The data for this project comes directly from Google Trends (https://trends.google
.com/trends/explore?date=all&geo=US&q=chocolate), and it shows the monthly popu-
larity of the keyword “chocolate” in the United States, from 2004 to today. Note that
this chapter was written before the end of 2021, so visiting the link now will not result
in the exact same dataset. I have included the dataset I used as a CSV file on GitHub
to ensure that you can recreate the work presented here.

 We’ll kick off this project by reading the data.

df = pd.read_csv('../data/monthly_chocolate_search_usa.csv')

The dataset contains 215 rows of data from January 2014 to December 2021. The data-
set also has two columns: one with the year and month, and one with the measured
popularity of “chocolate” searches. We can plot the evolution of the keyword searches
over time—the result is shown in figure 19.15. The plot shows strongly seasonal data

Rename date column to "ds" and

value column to "y"

Format date column as

YYYY-MM-DD or YYYY-MM-DD

HH:MM:SS

Find optimal parameters using

cross-validation and

hyperparameter tuning

Fit model with optimal parameters

Evaluate the model

Figure 19.14 Forecasting process using Prophet. 
First, we’ll ensure that the dataset has the right column 
names for Prophet and that the date is expressed 
correctly as a datestamp or a timestamp. Then, we’ll 
combine hyperparameter tuning with cross-validation to 
obtain the optimal parameters for our model. We’ll 
finally fit the model using the optimal parameters and 
evaluate it on a test set.

https://trends.google.com/trends/explore?date=all&geo=US&q=chocolate
https://trends.google.com/trends/explore?date=all&geo=US&q=chocolate
https://trends.google.com/trends/explore?date=all&geo=US&q=chocolate
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with repeated peaks every year. We can also see a clear trend, as the data increases
over time.

fig, ax = plt.subplots()

ax.plot(df['chocolate'])
ax.set_xlabel('Date')
ax.set_ylabel('Proportion of searches using the keyword "chocolate"')

plt.xticks(np.arange(0, 215, 12), np.arange(2004, 2022, 1))

fig.autofmt_xdate()
plt.tight_layout()

There are two elements that make this dataset very interesting to model with Prophet.
First, it is likely that we have holiday effects in action. For example, Christmas is a
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Figure 19.15 Popularity of the keyword “chocolate” in Google searches in the United States from January 
2004 to December 2021. The values are expressed as a proportion relative to the period where the search 
term was the most popular, which occurs in December 2020 and has a value of 100. Therefore, a value of 
50 for a particular month means that the keyword “chocolate” was searched for half as often, relative to the 
month of December 2020.
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holiday in the United States, and it is quite common to offer chocolate for Christmas.
The next element is that we have monthly data. While Prophet can be used to model
monthly data, some tweaking must be done to ensure that we get good results. Out of
the box, Prophet can work with daily and sub-daily data, but monthly data requires a
bit of extra work.

 Following our forecasting process with Prophet, shown earlier in figure 19.14,
we’ll start by renaming our columns following Prophet’s naming convention. Recall
that Prophet expects the date column to be named ds, while the value column must
be named y.

df.columns = ['ds', 'y'] 

We can now move on to verifying that the date is correctly formatted. In this case, we
only have the year and the month, which does not respect the YYYY-MM-DD format
expected by Prophet for a datestamp. We’ll therefore add a day to our date column.
In this case, we have monthly data, which can only be obtained at the end of the
month, so we’ll add the last day of the month to the datestamp.

from pandas.tseries.offsets import MonthEnd

df['ds'] = pd.to_datetime(df['ds']) + MonthEnd(1)

Before we dive into hyperparameter tuning, we’ll first split our data into train and test
sets, so we can perform hyperparameter tuning on the training set only and avoid data
leakage. In this case, we’ll keep the last twelve months for the test set.

train = df[:-12]
test = df[-12:]

We’ll now move on to the next step, where we’ll combine hyperparameter tuning and
cross-validation to find the optimal parameter combination for our model. Just as we
did before, we’ll define a range of values for each parameter we wish to tune and
build a list containing each unique combination of values. 

param_grid = {
    'changepoint_prior_scale': [0.001, 0.01, 0.1, 0.5],
    'seasonality_prior_scale': [0.01, 0.1, 1.0, 10.0]
}

params = [dict(zip(param_grid.keys(), v)) for v in 
product(*param_grid.values())]

NOTE We will not optimize for holidays_prior_scale to save on time here,
but feel free to add it as a tunable parameter with the following range of val-
ues: [0.01, 0.1, 1.0, 10.0].
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Next, we’ll create a list to hold the evaluation metric that we’ll use to decide on the set
of optimal parameters. We’ll use the MSE, because it penalizes large errors during the
fitting process.

mses = []

Now, because we are working with monthly data, we must define our own cutoff dates.
Recall that the cutoff dates define the training and testing periods during cross-valida-
tion, as shown in figure 19.16. Therefore, when working with monthly data, we must
define our own list of cutoff dates to specify the initial training period and forecasting
period for each step during the cross-validation process. This is a workaround that
allows us to work with monthly data using Prophet.

Here we’ll set the initial training period to be the first 5 years of data. Therefore, our
first cutoff date will be 2009-01-31. The last cutoff date can be set as the last row of the
training set, and we’ll separate each cutoff date by 12 months, so that we have a model
that forecasts a full year.

cutoffs = pd.date_range(start='2009-01-31', end='2020-01-31', freq='12M')  

With this step done, we can test each parameter combination using cross-validation
and store their MSEs in a DataFrame. Note that we’ll add the holidays effect with the
simple add_country_holidays method, and we’ll specify the country, which is the
United States in this case.

for param in params:
    m = Prophet(**param)
    m.add_country_holidays(country_name='US')     
    m.fit(train)
    
    df_cv = cross_validation(model=m, horizon='365 days', cutoffs=cutoffs)
    df_p = performance_metrics(df_cv, rolling_window=1)
    mses.append(df_p['mse'].values[0])
    

Cutoff

HorizonInitial

Training

Figure 19.16 The cutoff date sets a boundary between the training period and the 
forecast horizon during cross-validation. By defining a list of cutoff dates, we can specify 
the initial training period and forecast period for each step during cross-validation.

The first cutoff date is 2009-01-31, giving us 5 years of initial training data on the first
step of cross-validation. Each cutoff is separated by 12 months until the end of the

training set, resulting in a forecast horizon of 1 year.

Add the dates of 
the holidays in the 
United States.
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tuning_results = pd.DataFrame(params)
tuning_results['mse'] = mses

The full code for hyperparameter tuning is shown in the following listing.

param_grid = {
    'changepoint_prior_scale': [0.001, 0.01, 0.1, 0.5],
    'seasonality_prior_scale': [0.01, 0.1, 1.0, 10.0]
}

params = [dict(zip(param_grid.keys(), v)) for v in 

➥ product(*param_grid.values())]

mses = []

cutoffs = pd.date_range(start='2009-01-31', end='2020-01-31', freq='12M')

for param in params:
    m = Prophet(**param)
    m.add_country_holidays(country_name='US')
    m.fit(train)
    

    df_cv = cross_validation(model=m, horizon='365 days', cutoffs=cutoffs)
    df_p = performance_metrics(df_cv, rolling_window=1)
    mses.append(df_p['mse'].values[0])
    

tuning_results = pd.DataFrame(params)
tuning_results['mse'] = mses

Once this process is over, we can extract the optimal parameter combination.

best_params = params[np.argmin(mses)]

The result is that changepoint_prior_scale must be set to 0.01, and seasonality_
prior_scale must be set to 0.01.

 Now that we have the optimal values for each parameter, we can fit the model on
the entire training set to evaluate it later on the test set.

m = Prophet(**best_params)
m.add_country_holidays(country_name='US')
m.fit(train);

The next step is to obtain the forecast of our model for the same period as the test set
and merge them with the test set for easier evaluation and plotting.

future = m.make_future_dataframe(periods=12, freq='M')
forecast = m.predict(future)

Listing 19.1 Hyperparameter tuning in Prophet with monthly data
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test[['yhat', 'yhat_lower', 'yhat_upper']] = forecast[['yhat', 

➥ 'yhat_lower', 'yhat_upper']]

Before evaluating our model, we must have a benchmark, so we’ll use the last season
as a baseline model.

test['baseline'] = train['y'][-12:].values

We are now ready to evaluate our model from Prophet. We’ll use the MAE for its ease
of interpretation. 

prophet_mae = mean_absolute_error(test['y'], test['yhat'])
baseline_mae = mean_absolute_error(test['y'], test['baseline'])

Prophet achieves an MAE of 7.42, while our baseline gets an MAE of 10.92. Since the
MAE of Prophet is lower, the model is better than the baseline.

 We can optionally plot the forecasts, as shown in figure 19.17. Note that this plot
also shows the confidence interval of the Prophet model.

fig, ax = plt.subplots()

ax.plot(train['y'])
ax.plot(test['y'], 'b-', label='Actual')
ax.plot(test['baseline'], 'k:', label='Baseline')
ax.plot(test['yhat'], color='darkorange', ls='--', lw=3, label='Predictions')

ax.set_xlabel('Date')
ax.set_ylabel('Proportion of searches using the keyword "chocolate"')

ax.axvspan(204, 215, color='#808080', alpha=0.1)

ax.legend(loc='best')

plt.xticks(np.arange(0, 215, 12), np.arange(2004, 2022, 1))
plt.fill_between(x=test.index, y1=test['yhat_lower'], 

➥ y2=test['yhat_upper'], color='lightblue')    
plt.xlim(180, 215)

fig.autofmt_xdate()
plt.tight_layout()

In figure 19.17 it is clear that the forecast from Prophet, shown as a dashed line, is
closer to the actual values than the forecast from the baseline model, shown as a dot-
ted line. This translates to a lower MAE for Prophet.

 
 

Plot 80% confidence 
interval of the 
Prophet model.
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We can further discover how Prophet modeled our data by plotting the components
of the model, as shown in figure 19.18.

prophet_components_fig = m.plot_components(forecast)

In figure 19.18 you’ll see that the trend component in the first plot increases over
time, just as we noted when we first plotted our data. The second plot shows the holi-
day effects, which is interesting because there are troughs in the negative. This means
that Prophet used the list of holidays to determine when “chocolate” searches were
likely to decrease. This counters our first intuition when we thought that holidays
might determine when chocolate would be more popular. Finally, the third plot shows
the yearly seasonality, with peaks occurring toward the end and beginning of the year,
which corresponds to Christmas, New Year, and Valentine’s Day.
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Figure 19.17 Forecasting the popularity of “chocolate” searches on Google in the United States. The 
forecast from Prophet, shown as a dashed line, is much closer to the actual values than the baseline model, 
shown as a dotted line.
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19.5.2 Experiment: Can SARIMA do better?

In the previous section, we used Prophet to forecast the popularity of searches on
Google involving the keyword “chocolate” in the United States. Our model achieved a
better performance than our baseline, but it would be interesting to see how a SARIMA
model compares to Prophet in this situation. This section is optional, but it is a great

Figure 19.18 Components of the Prophet model. The trend component increases over time, as expected. We can 
also see the holidays component, which shows signals in the negatives. This is interesting, because it means that 
Prophet used holidays to determine when “chocolate” was not a popular search term. Finally, we have the yearly 
seasonal component, with peaks in January.
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occasion to revisit our modeling skills using statistical models, and it ultimately is a fun
experiment.

 Let’s start by importing the libraries that we need.

from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.stattools import adfuller
from tqdm import tqdm_notebook
from itertools import product
from typing import Union

Next, we’ll check whether the data is stationary using the augmented Dickey-Fuller
(ADF) test.

ad_fuller_result = adfuller(df['y'])

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

We get an ADF statistic of –2.03 and a p-value of 0.27. Since the p-value is greater than
0.05, we fail to reject the null hypothesis and conclude that our series is not stationary.

 Let’s difference our time series and test for stationarity again.

y_diff = np.diff(df['y'], n=1)

ad_fuller_result = adfuller(y_diff)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

We now obtain an ADF statistic of –7.03 and a p-value that is much smaller than
0.05, so we reject the null hypothesis and conclude that our series is now stationary.
Since we differenced only once and did not take a seasonal difference, we set d = 1
and D = 0. Also, since we have monthly data, the frequency is m = 12. As you can see,
having seasonal data does not mean that we have to take a seasonal difference to
make it stationary.

 Now we’ll use the optimize_SARIMAX function, as shown in listing 19.2, to find the
values of p, q, P, and Q that minimize the Akaike information criterion (AIC). Note
that although the function has SARIMAX in its name, we can use it to optimize any
declination of the SARIMAX mode. In this case, we’ll optimize a SARIMA model sim-
ply by setting the exogenous variables to None.

def optimize_SARIMAX(endog: Union[pd.Series, list], 

➥ exog: Union[pd.Series, list], 

➥ order_list: list, d: int, D: int, s: int) -> pd.DataFrame:
    
    results = []

Listing 19.2 Function to minimize the AIC of a SARIMAX model
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    for order in tqdm_notebook(order_list):
        try: 
            model = SARIMAX(
                endog,
                exog,
                order=(order[0], d, order[1]),
                seasonal_order=(order[2], D, order[3], s),
                simple_differencing=False).fit(disp=False)
        except:
            continue
            
        aic = model.aic
        results.append([order, model.aic])
        
    result_df = pd.DataFrame(results)
    result_df.columns = ['(p,q,P,Q)', 'AIC']
    
    result_df = result_df.sort_values(by='AIC', 

➥ ascending=True).reset_index(drop=True)
    
    return result_df

To find the optimal parameters, we’ll first define a range of values for each and create
a list of unique combinations. We can then pass that list to the optimize_SARIMAX
function.

ps = range(0, 4, 1)
qs = range(0, 4, 1)
Ps = range(0, 4, 1)
Qs = range(0, 4, 1)

order_list = list(product(ps, qs, Ps, Qs))

d = 1
D = 0
s = 12

SARIMA_result_df = optimize_SARIMAX(train['y'], None, order_list, d, D, s)
SARIMA_result_df

The resulting DataFrame, shown in figure 19.19, is interesting. The lowest AIC is
143.51 and the second-lowest AIC is 1,127.75. The difference is very large, which hints
that something is wrong with the first p, d, P, Q values. 

(p,q,P,Q) AIC
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(1,1,1,1)

(1,1,2,1)
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1129.725199
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Figure 19.19 Ordering the parameters (p, d, P, Q) in 
ascending order of AIC. We can see a large difference 
between the first two entries of the DataFrame. This 
indicates that something is wrong with the first set of 
parameters, and we should choose the second set.
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We’ll thus use the second set of values, which sets the values p, q, P, and Q to 1, result-
ing in a SARIMA(1,1,1)(1,0,1)12 model. We can fit a model on the training set using
those values and study its residuals, which are shown in figure 19.20.

SARIMA_model = SARIMAX(train['y'], order=(1,1,1), 

➥ seasonal_order=(1,0,1,12), simple_differencing=False)
SARIMA_model_fit = SARIMA_model.fit(disp=False)

SARIMA_model_fit.plot_diagnostics(figsize=(10,8));

At this point, it is hard to determine whether the residuals are close enough to white
noise, so we’ll use the Ljung-Box test to determine if the residuals are independent
and uncorrelated.

Figure 19.20 Residuals of the SARIMA(1,1,1)(1,0,1)12 model. At the top left, you can see that the 
residuals are random, with no trend. At the top right, the distribution is close to a normal distribution, 
but there is some deviation on the right. This is further supported by the Q-Q plot at the bottom left, 
where we see a fairly straight line that lies on y = x, but there is a clear departure at the end. Finally, 
the correlogram at the bottom right shows no significant coefficients after lag 0, just like white noise.
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residuals = SARIMA_model_fit.resid

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1))

The returned p-values are all greater than 0.05, except the first one, which stands at
0.044. Since all other nine p-values are greater than 0.05, we’ll assume we can reject
the null hypothesis and conclude that this is as close as we can get our residuals to
white noise.

 Next, let’s generate the predictions from the SARIMA model over the period of
the test set.

SARIMA_pred = SARIMA_model_fit.get_prediction(204, 215).predicted_mean

test['SARIMA_pred'] = SARIMA_pred

Finally, we’ll measure the MAE of the SARIMA model. Remember that our Prophet
model had an MAE of 7.42, and the baseline achieved an MAE of 10.92.

SARIMA_mae = mean_absolute_error(test['y'], test['SARIMA_pred'])

Here, SARIMA achieves an MAE of 10.09. It is better than the baseline, but it does not
perform better than Prophet in this case.

19.6 Next steps
In this chapter, we explored the use of the Prophet library for automatic time series
forecasting. Prophet uses a general additive model that combines a trend component,
a seasonal component, and holiday effects.

 The main advantage of this library is that it allows us to quickly experiment and
generate predictions. Many functions are available for visualizing and understanding
our models, and more advanced functions are also available, allowing us to perform
cross-validation and hyperparameter tuning.

 While Prophet is widely used in the industry, it must not be considered a one-size-
fits-all solution. Prophet works particularly well with strongly seasonal data that has
many historical seasons. Thus, it is to be treated as another tool in our forecasting tool
belt that can be tested along with other statistical or deep learning models.

 We’ve explored the fundamentals of time series forecasting throughout this book,
and now you’ve seen one way to automate most of the manual work we did with statis-
tical and deep learning models. I highly encourage you to browse through Prophet’s
documentation for more granular information, as well as to explore the other librar-
ies for automatic forecasting. Now that you know how to work with one library, transi-
tioning to another is very easy.

 In the next chapter, we’ll work through a final capstone project and forecast the
price of beef in Canada. This is a great occasion to apply the forecasting procedure we
developed using Prophet, as well as to experiment with the other models you have
learned so far to develop the best solution possible.
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19.7 Exercises
Here we’ll revisit problems from previous chapters but use Prophet to make forecasts.
We can then compare the performance of Prophet to the previously built models.
As always, the solution is available on GitHub: https://github.com/marcopeix/
TimeSeriesForecastingInPython/tree/master/CH19.

19.7.1 Forecast the number of air passengers

In chapter 8 we used a dataset that tracks the number of monthly air passengers between
1949 and 1960. We developed a SARIMA model that achieved a MAPE of 2.85%.

 Use Prophet to forecast the last 12 months of the dataset:

 Does it make sense to add holiday effects?
 Looking at the data, is the seasonality additive or multiplicative?
 Use hyperparameter tuning and cross-validation to find the optimal parameters.
 Fit the model with the optimal parameters and evaluate its predictions for the

last 12 months. Does it achieve a lower MAPE?

19.7.2 Forecast the volume of antidiabetic drug prescriptions

In chapter 11 we worked through a capstone project to predict the monthly volume
of antidiabetic drug prescriptions in Australia. We developed a SARIMA model that
achieved a MAPE of 7.9%.

 Use Prophet to forecast the last 36 months of the dataset:

 Does it make sense to add holiday effects?
 Looking at the data, is the seasonality additive or multiplicative?
 Use hyperparameter tuning and cross-validation to find the optimal parameters.
 Fit the model with the optimal parameters and evaluate its predictions for the

last 36 months. Does it achieve a lower MAPE?

19.7.3 Forecast the popularity of a keyword on Google Trends

Google Trends (https://trends.google.com/trends/) is a great place to generate time
series datasets. This is where you can see the popular searches on Google around the
world.

 Choose a keyword and a country of your choice, and generate a time series dataset.
Then use Prophet to predict its popularity in the future. This is a very open-ended
project with no solutions to it. Take this opportunity to explore the Google Trends
tool, and experiment with Prophet to learn what works and what does not.

 
 

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH19
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH19
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH19
https://trends.google.com/trends/
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Summary
 There are many libraries that automate the forecasting process, such as pmdarima,

Prophet, NeuralProphet, and PyTorch Forecasting.
 Prophet is one of the most widely known and used libraries in the industry for

automatic time series forecasting. Knowing how to use it is important for any
data scientist doing time series forecasting.

 Prophet uses a general additive model that combines a trend component, a sea-
sonal component, and holiday effects.

 Prophet is not the optimal solution to all problems. It works best on strongly
seasonal data with multiple historical seasons for training. Therefore, it must be
regarded as one of several tools for forecasting.



Capstone: Forecasting
the monthly average retail
price of steak in Canada
Again, congratulations on making it this far! We have come a long way since the
beginning of this book. We first defined time series and learned how to forecast
them using statistical models that generalize as the SARIMAX model. Then we
turned to large, high-dimensional datasets and used deep learning for time series
forecasting. In the previous chapter, we covered one of the most popular libraries
for automating the entire forecasting process: Prophet. We developed two forecast-
ing models using Prophet and saw how quick and easy it is to generate accurate
predictions with few manual steps.

 In this last capstone project, we’ll use everything you have learned in this book
to forecast the monthly average retail price of steak in Canada. At this point, we
have a robust methodology and a wide array of tools to develop a performant fore-
casting model.

This chapter covers
 Developing a forecasting model to predict the 

monthly average retail price of steak in Canada

 Using Prophet’s cross-validation functionality

 Developing a SARIMA model and comparing its 
performance to Prophet to determine the 
champion model
396
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20.1 Understanding the capstone project
For this project, we’ll use the historical monthly average retail price of food in Can-
ada, from 1995 to today. Note that at the time of writing, the data for December 2021
and onward was not available. The dataset, titled “Monthly average retail prices for
food and other selected products,” is available for download from Statistics Canada
here: www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000201.

 The price of a basket of goods is an important macroeconomic indicator. This is
what composes the consumer price index (CPI), which is used to determine if there is
an inflationary or deflationary period. This in turn allows analysts to assess the effec-
tiveness of the economic policy, and it can of course impact programs of government
assistance, such as social security. If the price of goods is expected to rise, the amount
reserved for social security should technically increase.

 The original dataset contains the monthly average retail price of 52 goods, from
1 kilogram of round steak to a dozen eggs, 60 grams of deodorant, and gasoline, to
name a few. The price is reported in Canadian dollars for every month starting in
1995 to November 2021. For this project, we’ll focus specifically on forecasting the
price of 1 kg of round steak. 

20.1.1 Objective of the capstone project

The objective of this capstone project is to create a model that can forecast the
monthly average retail price of 1 kg of round steak over the next 36 months. If you
feel confident, you can download the dataset and develop a forecasting model. Feel
free to use Prophet.

 If you feel you need a little more guidance, here are the steps that need to be
completed:

1 Clean the data so you only have information regarding 1 kg of round steak.
2 Rename the columns according to Prophet’s convention.
3 Format the date correctly. The datestamp only has the year and month, so the

day must be added. Recall that we are working with monthly averages, so does it
make sense to add the first day of the month, or the last day of the month?

4 Use cross-validation for hyperparameter tuning with Prophet.
5 Fit a Prophet model with the optimal parameters.
6 Forecast over the test set.
7 Evaluate your model using the mean absolute error (MAE).
8 Compare your model to a baseline.

There is one more optional, but highly recommended, step:

9 Develop a SARIMA model and compare its performance to Prophet. Did it do
better?

You now have all the steps required to successfully complete this project. I highly rec-
ommend that you try it on your own first. At any point, you can refer to the following

http://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000201
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sections for a detailed walkthrough. Also, the entire solution is available on GitHub:
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH20.
Good luck!

20.2 Data preprocessing and visualization
We’ll start by preprocessing the data in order to train a Prophet model. At the same
time, we’ll visualize our time series to deduce some of its properties.

 First we’ll import the required libraries.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from fbprophet import Prophet
from fbprophet.plot import plot_cross_validation_metric
from fbprophet.diagnostics import cross_validation, performance_metrics

from sklearn.metrics import mean_absolute_error

from itertools import product

import warnings
warnings.filterwarnings('ignore')

I also like to set some general parameters for the figures. Here we’ll specify the size
and remove the grid from the plots.

plt.rcParams['figure.figsize'] = (10, 7.5)
plt.rcParams['axes.grid'] = False

Next, we’ll read the data. You can download it from this Statistics Canada (www150
.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000201), although you are likely to get a
more up-to-date version of the dataset since I only had data up to November 2021 when
writing this book. If you wish to recreate the results shown here, I suggest you use the
CSV file in the GitHub repository for this chapter (https://github.com/marcopeix/
TimeSeriesForecastingInPython/tree/master/CH20).

df = pd.read_csv('../data/monthly_avg_retail_price_food_canada.csv')

In its original form, the dataset contains the monthly average retail price of 52 prod-
ucts, from January 1995 to November 2021. We wish to specifically forecast the retail
price of 1 kg of round steak, so we can filter the data accordingly.

df = df[df['Products'] == 'Round steak, 1 kilogram']

The next step is to remove unnecessary columns and only keep the REF_DATE col-
umn, which contains the month and year for the data point, and the VALUE column,
which contains the average retail price for that month.

https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH20
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH20
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH20
https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH20
http://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000201
http://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000201
http://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000201
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cols_to_drop = ['GEO', 'DGUID', 'Products', 'UOM', 'UOM_ID',
       'SCALAR_FACTOR', 'SCALAR_ID', 'VECTOR', 'COORDINATE', 'STATUS',
       'SYMBOL', 'TERMINATED', 'DECIMALS']

df = df.drop(cols_to_drop, axis=1)

We now have a dataset with 2 columns and 323 rows. This is a good time to visualize
our time series. The result is shown in figure 20.1.

fig, ax = plt.subplots()

ax.plot(df['VALUE'])
ax.set_xlabel('Date')
ax.set_ylabel('Average retail price of 1kg of round steak (CAD')

plt.xticks(np.arange(0, 322, 12), np.arange(1995, 2022, 1))

fig.autofmt_xdate()
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Figure 20.1 Monthly average retail price of 1 kg of round steak in Canada from January 1995 to November 
2021. There is a clear trend in the data as it increases over time. However, there does not seem to be any 
seasonality here. This might be a sign that Prophet is not the best tool for this problem. 
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Figure 20.1 shows a clear trend in our data but there is no visible seasonality in this
time series. Thus, Prophet might not be the best tool for this type of problem. How-
ever, this is pure intuition, so we’ll test it against a baseline to see if we can successfully
forecast our target.

20.3 Modeling with Prophet
We have preprocessed our data and visualized it. The next step is to rename the col-
umns according to Prophet’s naming convention. The time column must be named
ds and the value column must be named y.

df.columns = ['ds', 'y']

Next, we must format the date correctly. Right now our datestamp only has the year
and month, but Prophet also expects a day in the format YYYY-MM-DD. Since we are
working with monthly averages, we must add the last day of the month to the date-
stamp, since we cannot report the average retail price of January until the very last day
of January.

from pandas.tseries.offsets import MonthEnd

df['ds'] = pd.to_datetime(df['ds']) + MonthEnd(1)

Our data is now correctly formatted, so we’ll split our dataset into train and test sets.
Our objective is forecasting the future 36 months, so we’ll allocate the last 36 data
points to the test set. The rest is for training.

train = df[:-36]
test = df[-36:]

We can now address hyperparameter tuning. We’ll start by defining a list of possible val-
ues for changepoint_prior_scale and seasonality_prior_scale. We won’t include
any holiday effects, as they likely will not impact the price of goods. Then we’ll create a
list of all unique combinations. Here we’ll use the mean squared error (MSE) as a selec-
tion criterion, because it penalizes large errors, and we want the best-fitted model.

param_grid = {
    'changepoint_prior_scale': [0.01, 0.1, 1.0],
    'seasonality_prior_scale': [0.1, 1.0, 10.0]
}

params = [dict(zip(param_grid.keys(), v)) for v in 

➥ product(*param_grid.values())]

mses = []

Now we must define a list of cutoff dates. Recall that this is a workaround for using
Prophet with monthly data. The cutoff dates specify the initial training set and the
length of the testing period during cross-validation. 
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 In this case, we’ll allow for the first 5 years of data to be used as an initial training set.
Then each testing period must have a length of 36 months, since this is our horizon in
the objective statement. Our cutoff dates thus start in 2001-01-31 and end at the end of
the training set, which is 2018-11-30, and each cutoff date is separated by 36 months.

cutoffs = pd.date_range(start='2000-01-31', end='2018-11-30', freq='36M')

We can now test each parameter combination, fit a model, and use cross-validation to
measure its performance. The parameter combination with the lowest MSE will be
selected to generate predictions over our test set.

for param in params:
    m = Prophet(**param)
    m.fit(train)
    
    df_cv = cross_validation(model=m, horizon='365 days', cutoffs=cutoffs)
    df_p = performance_metrics(df_cv, rolling_window=1)
    mses.append(df_p['mse'].values[0])
    
tuning_results = pd.DataFrame(params)
tuning_results['mse'] = mses

best_params = params[np.argmin(mses)]
print(best_params)

This indicates that both changepoint_prior_scale and seasonality_prior_scale
should be set to 1.0. We’ll thus define a Prophet model using best_params and fit it
on the training set.

m = Prophet(**best_params)
m.fit(train);

Next, we’ll use make_future_dataframe to define the forecast horizon. In this case, it
is 36 months.

future = m.make_future_dataframe(periods=36, freq='M')

We can now generate predictions.

forecast = m.predict(future)

Let’s append them to our test set, so it’s easier to evaluate the performance and plot
the forecast against the observed values.

test[['yhat', 'yhat_lower', 'yhat_upper']] = forecast[['yhat', 

➥ 'yhat_lower', 'yhat_upper']]

Of course, our model must be evaluated against a benchmark. For this example, we’ll
simply use the last known value of the training set as a prediction for the next 36
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months. We could alternatively use the mean value method, but I would consider the
mean in recent years only, since there is a clear trend in the data, which means the
mean changes over time. Using the naive seasonal method here is not valid, since
there is no clear seasonality in the data.

test['Baseline'] = train['y'].iloc[-1]

Everything is set for evaluation. We’ll use the MAE to select the best model. This met-
ric is chosen for its ease of interpretation.

baseline_mae = mean_absolute_error(test['y'], test['Baseline'])
prophet_mae = mean_absolute_error(test['y'], test['yhat'])

print(prophet_mae)
print(baseline_mae)

From this, we obtain an MAE of 0.681 with our baseline, while Prophet achieves an
MAE of 1.163. Therefore, Prophet performs worse than the baseline, which simply
uses the last known value as a forecast.

 We can visualize the predictions in figure 20.2.
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Figure 20.2 Forecasting the monthly average retail price of 1 kg of round steak in Canada. We can see that 
Prophet (shown as a dashed line) tends to overshoot the observed values.
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fig, ax = plt.subplots()

ax.plot(train['y'])
ax.plot(test['y'], 'b-', label='Actual')
ax.plot(test['Baseline'], 'k:', label='Baseline')
ax.plot(test['yhat'], color='darkorange', ls='--', lw=3, 

➥ label='Predictions')

ax.set_xlabel('Date')
ax.set_ylabel('Average retail price of 1kg of round steak (CAD')

ax.axvspan(287, 322, color='#808080', alpha=0.1)

ax.legend(loc='best')

plt.xticks(np.arange(0, 322, 12), np.arange(1995, 2022, 1))
plt.fill_between(x=test.index, y1=test['yhat_lower'], 

➥ y2=test['yhat_upper'], color='lightblue')
plt.xlim(250, 322)

fig.autofmt_xdate()
plt.tight_layout()

We can also visualize the components of the model in figure 20.3.

prophet_components_fig = m.plot_components(forecast)

Figure 20.3 shows the components of the Prophet model. The top plot shows the
trend component, which has many changepoints. This is because we allowed the
trend to be very flexible by setting changepoint_prior_scale to 1.0, as it resulted in
the best fit during cross-validation.

 The bottom plot shows the yearly seasonal component. This component is likely
helping Prophet achieve a better fit, but I doubt there is a tangible reason for price of
goods to decrease toward September. This highlights the curve-fitting procedure of
Prophet. It’s also a great example of a case where domain knowledge could probably
help us better fine-tune this parameter.

 We have thus found a situation where Prophet is not the ideal solution. In fact, it
performed worse than our naive forecasting method. We could have anticipated that,
since we know that Prophet performs best on strongly seasonal data, but we could not
be sure until we actually tested it.

 The next portion of the project is optional, but I highly recommend that you com-
plete it, as it shows a complete solution to a time series forecasting problem. We have
tested Prophet and did not obtain satisfying results, but that does not mean we must
give up. Instead, we must search for another solution and test it. Since we do not have
a large dataset, deep learning is not a suitable tool for this problem. Therefore, let’s
try using a SARIMA model.
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20.4 Optional: Develop a SARIMA model
In the previous section, we used Prophet to forecast the monthly average retail price
of 1 kg of round steak in Canada, but Prophet performed worse than our baseline
model. We’ll now develop a SARIMA model to see if it can achieve better perfor-
mance than our baseline.

 The first step is to import the required libraries.

from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.stattools import adfuller
from tqdm import tqdm_notebook
from typing import Union

Next, we’ll test for stationarity. This will determine the values of the integration order
d and the seasonal integration order D. Recall that we are using the ADF test to test for
stationarity.

Figure 20.3 Components of the Prophet model. The top plot shows the trend component, with many changepoints, 
as we set changepoint_prior_scale to a high value, allowing the trend to be more flexible. The bottom plot 
shows the yearly seasonal component. Again, this component likely improves the fit of the model, but I doubt there 
is tangible reason to reduce the price of goods near September, for example.
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ad_fuller_result = adfuller(df['y'])

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

Here we get an ADF statistic of 0.31 and a p-value of 0.98. Since the p-value is greater
than 0.05, we conclude that the series is not stationary. This is expected, since we can
clearly see a trend in the data.

 We’ll difference the series once and test again for stationarity.

y_diff = np.diff(df['y'], n=1)

ad_fuller_result = adfuller(y_diff)

print(f'ADF Statistic: {ad_fuller_result[0]}')
print(f'p-value: {ad_fuller_result[1]}')

Now we have an ADF-statistic of –16.78 and a p-value much smaller than 0.05. We thus
conclude that we have a stationary time series. Therefore, d = 1 and D = 0. Recall that
SARIMA also requires the frequency m to be set. Since we have monthly data, the fre-
quency is m = 12.

 Next, we’ll use the optimize_SARIMAX function shown in listing 20.1 to find the
parameters (p,q,P,Q) that minimize the Akaike information criterion (AIC).

def optimize_SARIMAX(endog: Union[pd.Series, list], exog: Union[pd.Series, 

➥ list], order_list: list, d: int, D: int, s: int) -> pd.DataFrame:
    
    results = []
    
    for order in tqdm_notebook(order_list):
        try: 
            model = SARIMAX(
                endog,
                exog,
                order=(order[0], d, order[1]),
                seasonal_order=(order[2], D, order[3], s),
                simple_differencing=False).fit(disp=False)
        except:
            continue
            
        aic = model.aic
        results.append([order, model.aic])
        
    result_df = pd.DataFrame(results)
    result_df.columns = ['(p,q,P,Q)', 'AIC']
    
    #Sort in ascending order, lower AIC is better
    result_df = result_df.sort_values(by='AIC', 

➥ ascending=True).reset_index(drop=True)
    
    return result_df

Listing 20.1 Function to select the parameters that minimize the AIC
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We’ll define the range of possible values for p, q, P, and Q, generate a list of all unique
combinations, and run the optimize_SARIMAX function. Note that we do not have
exogenous variables.

ps = range(1, 4, 1)
qs = range(1, 4, 1)
Ps = range(1, 4, 1)
Qs = range(1, 4, 1)

order_list = list(product(ps, qs, Ps, Qs))

d = 1
D = 0
s = 12

SARIMA_result_df = optimize_SARIMAX(train['y'], None, order_list, d, D, s)
SARIMA_result_df

Once the search is complete, we’ll find that p = 2, q = 3, P = 1, and Q = 1 is the combi-
nation that results in the lowest AIC. We can now fit a model using this parameter
combination and study its residuals in figure 20.4, which turn out to be completely
random.

SARIMA_model = SARIMAX(train['y'], order=(2,1,3), 

➥ seasonal_order=(1,0,1,12), simple_differencing=False)
SARIMA_model_fit = SARIMA_model.fit(disp=False)

SARIMA_model_fit.plot_diagnostics(figsize=(10,8));

We can further support our conclusion by using the Ljung-Box test. Recall that the
null hypothesis of the Ljung-Box test is that the data is uncorrelated and independent.

residuals = SARIMA_model_fit.resid

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1))

print(pvalue)

The returned p-values are all greater than 0.05, so we cannot reject the null hypothe-
sis and instead conclude that the residuals are indeed random and independent. Our
SARIMA model can thus be used for forecasting.

 We’ll generate predictions over the horizon of our test set.

SARIMA_pred = SARIMA_model_fit.get_prediction(287, 322).predicted_mean

test['SARIMA_pred'] = SARIMA_pred

Then we’ll evaluate the SARIMA model using the MAE.

SARIMA_mae = mean_absolute_error(test['y'], test['SARIMA_pred'])

print(SARIMA_mae)
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Here we obtain an MAE of 0.678, which is just slightly better than our baseline, which
achieved an MAE of 0.681. We can visualize the forecasts of the SARIMA model in fig-
ure 20.5.

fig, ax = plt.subplots()

ax.plot(train['y'])
ax.plot(test['y'], 'b-', label='Actual')
ax.plot(test['Baseline'], 'k:', label='Baseline')
ax.plot(test['SARIMA_pred'], 'r-.', label='SARIMA')
ax.plot(test['yhat'], color='darkorange', ls='--', lw=3, label='Prophet')

ax.set_xlabel('Date')
ax.set_ylabel('Average retail price of 1kg of round steak (CAD)')

Figure 20.4 Residuals of the SARIMA(2,1,3)(1,0,1)12 model. The top-left plot shows the residuals over 
time, which are completely random with no trend and a fairly constant variance, just like white noise. 
The top-right plot shows the distribution of the residuals, which is very close to a normal distribution. 
This is further supported by the Q-Q plot at the bottom left. We see a straight line that lies on y = x, so 
we can conclude that the residuals are normally distributed, like white noise. Finally, the correlogram 
at the bottom right shows no significant coefficients after lag 0, which is the same behavior as white 
noise. We can conclude that the residuals are completely random.
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ax.axvspan(287, 322, color='#808080', alpha=0.1)

ax.legend(loc='best')

plt.xticks(np.arange(0, 322, 12), np.arange(1995, 2022, 1))
plt.fill_between(x=test.index, y1=test['yhat_lower'], 

➥ y2=test['yhat_upper'], color='lightblue')
plt.xlim(250, 322)

fig.autofmt_xdate()
plt.tight_layout()

While SARIMA performed better than Prophet, the difference in performance against
the benchmark is negligible. This is a situation where we must ask ourselves if it is
worth using the more complex SARIMA model for such a small difference. We can
also investigate further to determine if there are external variables that could help us
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Figure 20.5 Forecasting the monthly average retail price of 1 kg of round steak in Canada. The SARIMA 
model, shown as a dashed and dotted line, achieves the lowest MAE (0.678), but it is only slightly better than 
our baseline (0.681), which is shown as a dotted line.
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forecast our target, as it seems that using past values only is not enough to generate
accurate predictions.

20.5 Next steps
Congratulations on completing this capstone project! This was special and different
from what we have seen, as it turned out that we were addressing a fairly complex
problem, and we could not come up with a very performant solution. This situation
will happen as you tackle different time series forecasting problems, and it’s where
domain knowledge, gathering more data, and using your creativity to find external
factors that can impact your target come into play.

 Take this opportunity to make this capstone project yours. We studied only one tar-
get, but there are 52 goods to choose from. Pick another target and see if you can gen-
erate predictions that perform much better than a baseline model. Feel free to also
change the forecast horizon.

 If you want to go above and beyond, many government websites have open data,
making them a gold mine for time series datasets. Here are the links to NYC Open
Data and Statistics Canada:

 NYC Open Data—https://opendata.cityofnewyork.us/data/
 Statistics Canada—www150.statcan.gc.ca/n1/en/type/data

Explore these websites and find a time series dataset you can use to practice your fore-
casting skills. You will likely encounter a challenging problem, forcing you to search
for solutions, and ultimately making you better at time series forecasting.

https://opendata.cityofnewyork.us/data/
http://www150.statcan.gc.ca/n1/en/type/data


Going above and beyond
First of all, congratulations on making it to the end of this book! It has been quite a
journey to get here, and it required a lot of your time, effort, and attention.

 You have gained a lot of skills for time series forecasting, but there is, of course,
a lot still to learn. The objective of this chapter is to summarize what you’ve
learned and outline what else you can achieve with time series data. I’ll also encour-
age you to keep practicing your forecasting skills by listing various sources of time
series data.

 The real challenge lies ahead of you, as you apply your knowledge to problems,
either at work or as a side project, where the solutions are unknown to you. It is
important that you gain confidence in your skills, which can only come from expe-
rience and practicing often. It is my hope that this chapter will inspire you to do so.

This chapter covers
 Consolidating your learning

 Managing difficult forecasting problems

 Exploring beyond time series forecasting

 Sources of time series datasets
410
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21.1 Summarizing what you’ve learned
Our very first step in time series forecasting was to define a time series as a set of data
points ordered in time. You also quickly learned that the order of the data must
remain untouched for our forecasting models to make sense. This means that data
measured on Monday must always come after Sunday and before Tuesday. Therefore,
no shuffling of the data is allowed when splitting it into training and testing sets.

 In chapter 2 we built naive forecasting methods that used very simple statistics or
heuristics, such as the historical mean, the last known value, or repeating the last sea-
son. This is a critical step in any forecasting project, as it sets a benchmark for more
complex models, revealing whether they are actually performant models. These
benchmarks can also question the use of some advanced models since, as you have
seen in this book, there are situations where advanced forecasting models do not per-
form much better than the baselines.

 Next, in chapter 3 we encountered the random walk model, a situation where we
cannot apply forecasting models. This is because the value changes by a random num-
ber at each step, and no forecasting technique can reasonably predict a random num-
ber. In such a case, we can only resort to naive forecasting methods.

21.1.1 Statistical methods for forecasting

We then dived into the moving average and autoregressive processes in chapters 4 and
5. While real-life time series will rarely be approximated by a pure MA(q) or AR(p)
model, they are the building blocks of the more complex models that we developed
later on, such as the ARMA(p,q) model. What links all these models is that they
assume the time series is stationary, meaning that its statistical properties, such as the
mean, the variance, and autocorrelation, do not change over time. We used the aug-
mented Dickey-Fuller (ADF) test to test for stationarity. For this test, the null hypothe-
sis states that the series is not stationary. Therefore, if we obtain a p-value less than
0.05, we can reject the null hypothesis and conclude that we have a stationary process.

 While we could use the ACF and PACF plots to find the order q of a pure moving
average process or the order p of a pure autoregressive process, respectively, in chap-
ter 6 the ARMA(p,q) process forced us to design a general modeling procedure, in
which we select the model with the lowest Akaike information criterion (AIC).
Using this model selection criterion allows us to select a model that is not too com-
plex but that still fits the data well, hence achieving a balance between overfitting
and underfitting. 

 Then we studied the model’s residuals, which is the difference between the pre-
dicted and actual values. Ideally the residuals behave like white noise, meaning that
they are totally random and uncorrelated, which in turn means that our model
explains any variance that is not due to chance. One visual tool that we can use for
residual analysis is the quantile-quantile (Q-Q) plot, which compares the distribution
of a sample to another theoretical distribution, in this case, the normal distribution. If
they are identical, we should see a straight line that lies on y = x. We also used the
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Ljung-Box test to determine whether the residuals were independent and uncor-
related. The null hypothesis of this test states that the sample is uncorrelated and is
independently distributed. Therefore, if we obtain a p-value that is larger than 0.05,
we fail to reject the null hypothesis and conclude that the residuals are random. This
is important, because it means that our model has captured all the information from
the data, and only the random variations remain unexplained.

 From this general modeling procedure, we further extended it to much more
complex models, such as the ARIMA(p,d,q) model for non-stationary time series in
chapter 7. Recall that we used this model to forecast the quarterly earnings per share
of Johnson & Johnson. 

 Then we moved on to the SARIMA(p,d,q)(P,D,Q)m to account for seasonality in
time series in chapter 8. Recall that seasonality is the periodic fluctuations we see in
the data. For example, the weather is hotter in the summer and colder in the winter,
or more people drive on the road during the day than during the night. Using a
SARIMA model allowed us to accurately forecast the monthly number of passengers
for an airline. 

 Next, we discovered the SARIMAX(p,d,q)(P,D,Q)m model, which added external
variables to our model in chapter 9. Using that model, we were able to forecast the
real GDP in the United States.

 Finally, we concluded the statistical forecasting methods in chapter 11 with vector
autoregression, VAR(p), which allows us to forecast multiple time series in a single
shot, but only if they Granger-cause one another. Otherwise, the model is invalid.

21.1.2 Deep learning methods for forecasting

Complex statistical models for forecasting reach a limit when the dataset becomes too
large, usually at around 10,000 data points. At that point, statistical methods become
very slow to fit and start losing performance. Furthermore, they fail to model nonlin-
ear relationships in data.

 We thus turned our attention to deep learning, which thrives on large datasets
with many features. We developed various deep learning models to forecast the
hourly traffic on I-94 between Minneapolis and St. Paul in Minnesota. Our dataset
had more than 17,000 rows of data and six features, making it a great opportunity to
apply deep learning. 

 We started in chapter 14 with a simple linear model that has only an input and an
output layer, with no hidden layer. Then we built a deep neural network, which adds
hidden layers and can model nonlinear relationships. 

 We moved on to a more complex architecture in chapter 15, with the long short-
term memory (LSTM) network. This architecture has the added advantage that it keeps
information from the past in memory, in order to make a prediction for the future.

 We also used a convolutional neural network (CNN) in chapter 16, as they effectively
perform feature selection using the convolution operation. We used a CNN in conjunc-
tion with an LSTM to filter our time series before feeding it to the LSTM network.
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 We added one final model to our toolset in chapter 17—the autoregressive deep
neural network, which uses its own predictions to make more predictions. This archi-
tecture is very powerful and is behind some of the state-of-the-art models in time
series forecasting, such as DeepAR.

 Throughout the entire deep learning section, the models were easily built because
we first performed data windowing. This crucial step involves formatting the data in
such a way that we have windows with training examples and test examples. This gave
us the flexibility to quickly develop models for a wide variety of use cases, such as single-
step forecasting, multi-step forecasting, and multivariate forecasting.

21.1.3 Automating the forecasting process

We put a lot of manual work into developing our models, and we developed our own
functions to automate the process. However, there are many libraries available that
make time series forecasting easy and fast.

 It’s important to note that while these libraries speed up the forecasting process,
they also add a level of abstraction that removes some of the flexibility and fine-tuning
capabilities that we had available when we developed our own models. Nevertheless,
they are great tools for rapid prototyping, because the time it takes to create a model
is very short.

 One such library is Prophet, which is an open source project from Meta and prob-
ably one of the most widely used forecasting libraries in the industry. However, it is not
a one-size-fits-all solution. It works best on strongly seasonal data with many historical
seasons for training. In such cases, it can quickly produce accurate predictions. Since
it implements a general additive model, it can take into account multiple seasonal
periods as well as holiday effects and changing trends. Furthermore, Prophet comes
with a suite of utilities to visualize the predictions and the components of your data,
and it includes cross-validation and hyperparameter tuning functions, all within a sin-
gle library.

 This summarizes everything that we have discussed and applied so far. While you
have all the tools you need to be successful with time series forecasting, you’ll also
need to know how to manage situations where your attempts at predicting the future
do not work.

21.2 What if forecasting does not work?
In this book, you learned how to be successful at forecasting time series. We worked
through a wide variety of situations, from forecasting quarterly earnings per share to
predicting the retail price of steak in Canada. For every scenario, we managed to cre-
ate a performant forecasting model that was better than a baseline and generated
accurate predictions. However, we might encounter situations where nothing seems to
work. Thus, it is important to learn how to manage failure.

 There are many reasons why time series forecasting can fail. First, perhaps your
data should not be analyzed as a time series at all. For example, you might be tasked to
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forecast the number of sales for the next quarter. While you have access to historical
data for the number of sales over time, perhaps sales are simply not a function of time.
Instead, maybe the number of sales is a function of ad spending. In that case, instead
of considering this problem as a time series, we should consider it as a regression
problem, using ad spend as a feature to predict the number of sales. While this exam-
ple is simplistic, it shows how reframing the problem differently may help you find
a solution.

 Another case where time series forecasting will fail is when your data is a random
walk. Recall from chapter 3 that a random walk is a time series where each step has an
equal chance of going up or down by a random number. Therefore, we are really try-
ing to predict a value that is changing randomly over time. This is not a reasonable
thing to do, since no model can predict a random number. In that case, we must
resort to using naive forecasting methods, as shown in chapter 2.

 One other possible avenue for solving a difficult forecasting problem is to resam-
ple your data. For example, suppose you are forecasting the temperature outside. To
collect your data, you place a thermometer outside and record the temperature every
minute. We can consider whether working with temperature data recorded every min-
ute makes sense. Chances are that the temperature will not vary much minute by
minute. It may also introduce unnecessary noise if you have a very sensitive thermom-
eter that records changes of 0.1 degrees or less. This is a situation where resampling
the data will make sense and allow you to build performant forecasting models. Here
you could resample the data so you have a temperature reading every hour. That way
you’ll smooth out the time series and be able to uncover a daily seasonality. Alterna-
tively, you could resample the data daily and uncover a yearly seasonality.

 Thus, you should explore different resampling possibilities with your time series
data. This idea can also come from your objective. In the temperature forecasting
example, it probably does not make sense to forecast the temperature for the next
minute. No one is likely to be interested in that. However, forecasting the temperature
for the next hour or the next day has value. Therefore, resampling the data is the way
to go.

 Finally, if your forecasting efforts fail, you might want to reach out to someone with
domain knowledge or look for alternative data. Domain knowledge comes with expe-
rience, and people with expertise in a certain field can better guide data scientists to
uncover new solutions. For example, an economist knows that gross domestic product
and unemployment are linked, but this connection may be unknown to the data sci-
entist. Thus, a domain expert can help the data scientist uncover a new relationship
and look for unemployment data in order to forecast gross domestic product.

 As you can see, there are different ways of managing difficult forecasting problems.
In some cases, you might get absolutely stuck, which can mean that you are working
on a very advanced problem that has not been tackled before. At this point, having an
academic partner who can lead a research team in trying to solve the problem may be
the best option.
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 There is always value in failure, and you should not feel defeated if a forecast fails. In
fact, a failed forecast can help you become a better data scientist, because you’ll learn to
recognize which problems have a good chance of being solved and which don’t.

21.3 Other applications of time series data
This book focused entirely on forecasting techniques where the objective is to predict
a continuous numerical value. However, we can do more than forecasting with time
series data. We can also perform classification. 

 In time series classification, the goal is to identify whether a time series is coming
from one particular category. An example application of time series classification is
analyzing data from an electrocardiogram (ECG), which evaluates the heart’s condi-
tion. A healthy heart will generate a different ECG than a heart with issues. Since the
data is gathered over time, this is a perfect situation for applying time series classifica-
tion in a real-life situation.

We can also use time series data to perform anomaly detection. An anomaly is basi-
cally an outlier—a data point that is significantly different from the rest of the data.
We can see applications of anomaly detection in data monitoring, which in turn is
used for application maintenance, intrusion detection, credit card fraud, etc. Taking
application maintenance as an example, imagine that a global e-commerce company
is tracking page visits over time. If the page visit count suddenly falls to zero, it’s likely
there is a problem with the website. An anomaly detection algorithm would notice the
event and signal the maintenance team about a problem.

Anomaly detection is a particularly interesting challenge, because outliers are often
rare, and there is a risk of generating many false positives. It also adds another layer of
complexity, since the scarcity of the event means that we have few training labels. 

Time series classification
Time series classification is a task where the objective is to identify whether a time
series comes from a particular category. 

For example, we could use time series classification to analyze heart-monitoring data
and determine if it comes from a healthy heart or not.

Anomaly detection
Anomaly detection is a task where the objective is to identify the presence of outliers
or abnormal data.

For example, we could track the expenses on someone’s credit card. If there is sud-
denly a very large expenditure, this may potentially be an outlier, and maybe the per-
son is a victim of fraud. 
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NOTE If you are curious about this type of problem, I recommend reading
two papers from Microsoft and Yahoo where they expose how they built their
own frameworks for time series anomaly detection: Hansheng Ren, Bixiong
Xu, Yujing Wang, et al., “Time-Series Anomaly Detection Service at Micro-
soft,” arXiv:1906.03821v1 (2019), https://arxiv.org/pdf/1906.03821.pdf; and
Nikolay Laptev, Saeed Amizadeh, and Ian Flint, “Generic and Scalable Frame-
work for Automated Time-series Anomaly Detection,” KDD ’15: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (ACM, 2015), http://mng.bz/pOwE. 

There are, of course, many more tasks that we can perform with time series data, such
as clustering, changepoint detection, simulation, or signal processing. I hope that this
encourages you to further explore what is possible and what is being done.

21.4 Keep practicing
While this book has provided you with many opportunities to apply your knowledge in
the form of exercises, real-life scenarios in each chapter, and capstone projects, it is
important that you keep practicing to truly master time series forecasting. You will
gain confidence in your skills and encounter new problems that will inevitably make
you better at handling time series data.

 To do so, you’ll need to access time series data. The following list identifies some
websites where you freely access such data:

 “Datasets,” on Papers with Code—https://paperswithcode.com/datasets?mod=time-
series.
A list of close to a hundred datasets (at the time of writing) for time series anal-
ysis. You can filter them by task, such as anomaly detection, forecasting, classifi-
cation, etc. You will likely encounter datasets used for research papers, which
are used to test novel techniques and establish state-of-the-art approaches.

 UCI machine learning repository—https://archive.ics.uci.edu/ml/datasets.php.
This a very popular source of data for many machine learning practitioners.
Click the link for the Time-Series data type, and you’ll find 126 time series data-
sets. You can also filter by task, such as classification, regression (forecasting),
and clustering.

 NYC Open Data—https://opendata.cityofnewyork.us/data/.
This website catalogs numerous datasets from the city of New York. You can fil-
ter by domain, such as education, environment, health, transportation, and
more. While not all of the datasets are time series, you can still find many of
them. You could also check whether your local city provides openly accessible
data and work with that as well. 

 Statistics Canada—www150.statcan.gc.ca/n1/en/type/data.
This is a Canadian governmental agency that gives free access to a great amount
of data, including time series data. You can filter by domain, but also by frequency

https://arxiv.org/pdf/1906.03821.pdf
http://mng.bz/pOwE
https://paperswithcode.com/datasets?mod=time-series
https://paperswithcode.com/datasets?mod=time-series
https://archive.ics.uci.edu/ml/datasets.php
https://opendata.cityofnewyork.us/data/
http://www150.statcan.gc.ca/n1/en/type/data
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of sampling (daily, weekly, monthly, etc.). Search your own government’s web-
sites to see if you can find a similar resource.

 Google Trends—https://trends.google.com/trends/.
Google Trends gathers data about searches from all around the world. You can
search for a particular theme and segment by country. You can also set the
length of the time series, which changes the sampling frequency. For example,
you can download the last 24 hours of data, which is sampled every 8 minutes. If
you download the last 5 years, the data is sampled every week.

 Kaggle—www.kaggle.com/datasets?tags=13209-Time+Series+Analysis.
Kaggle is a popular website among data scientists where companies can host
competitions and reward top-performing teams. You can also download time
series data—there are over a thousand datasets at the time of writing. You can
also find notebooks that use these datasets to inspire you or give you a starting
point. However, be careful—anyone can publish a notebook on Kaggle, and
their workflow is not always correct. Note that you’ll need to create a free
account to download the dataset on your local machine.

You now have a wide variety of tools and resources for practicing and honing your
skills. I wish you good luck in your future endeavors, and I hope that you enjoyed
reading this book as much as I enjoyed writing it.

https://trends.google.com/trends/
http://www.kaggle.com/datasets?tags=13209-Time+Series+Analysis
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Installation instructions

Installing Anaconda
The code in this book was run on a Windows 10 computer using Jupyter Notebooks
with Anaconda. I highly recommend using Anaconda, especially if you are on a
Windows machine, as it automatically installs Python and many libraries that we’ll
use throughout the book, such as pandas, numpy, matplotlib, statsmodels, and
others. You can install Anaconda’s individual edition, which is free, from their web-
site (www.anaconda.com/products/individual). It comes with a graphical installer,
making for an easy installation. Note that at the time of writing, Anaconda installs
Python 3.9.

Python
If you follow the recommendation of using Anaconda, you will not need to install
Python separately. If you do need to install Python separately, you can download it
from the official website (www.python.org/downloads/). The code in this book
used Python 3.7, but any later version of Python will also work.

Jupyter Notebooks
The code in this book was run on Jupyter Notebooks. This allows you to immedi-
ately see the output of your code, and it’s a great tool for learning and exploration.
It also allows you to write text and display equations.

 Assuming you installed Anaconda, Jupyter Notebook will also install on your
machine. On Windows, you can press the Windows key and start typing Jupyter
Notebook. You can then launch the application, which will open your browser. It
will display a folder structure, and you can navigate to where you want to save your
notebooks or where you cloned the GitHub repository containing the source code.
418
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GitHub Repository
The entire source code for this book is available on GitHub: https://github.com/mar-
copeix/TimeSeriesForecastingInPython. At the root of the repository, there is a data
folder that contains all the data files used throughout the entire book. 

 The repository is organized by chapter. Each folder contains a notebook that will
run all the code and generate the figures for that specific chapter. You can also find
the solutions to the exercises there. Provided that Git is installed, you can clone the
repository and access it on your local machine:

git clone https:/ /github.com/marcopeix/TimeSeriesForecastingInPython.git

If Git is not installed, you can download and install it from the Git website (https://git-
scm.com/downloads). I then recommend those on Windows use Git Bash to run the
preceding command.

Installing Prophet
In this book, we use the Prophet library, a popular forecasting library that automates
most of the process. Windows users might have some trouble installing the library, even
when using Anaconda.

 To install the library, you can run the following commands at your Anaconda prompt:

conda install libpython m2w64-toolchain -c msys2
conda install numpy cython matplotlib scipy pandas -c conda-forge
conda install -c conda-forge pystan
conda install -c conda-forge fbprophet

Installing libraries in Anaconda
If at any time you need to install a particular library while using Anaconda, you can do
a Google search: conda <package name>. The first result should lead you to the https://
anaconda.org/conda-forge/<package name> website, where you will see a list of com-
mands that will install the package. Usually, the first command will work, and it will
have the format conda install -c conda-forge <package name>.

 For example, to install TensorFlow 2.6 with Anaconda, you can run conda install
-c conda-forge tensorflow at your Anaconda prompt.

https://github.com/marcopeix/TimeSeriesForecastingInPython
https://github.com/marcopeix/TimeSeriesForecastingInPython
https://git-scm.com/downloads
https://git-scm.com/downloads
https://anaconda.org/conda-forge/<package name>
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